Skip to main content

β-Cell Function in Obese-Hyperglycemic Mice (ob /ob Mice)

  • Reference work entry
  • First Online:

Abstract

This review summarizes key aspects of what has been learned about β-cell physiology from studies in ob/ob mice. Ob/ob mice lack functional leptin. They are grossly overweight and hyperphagic particularly at young ages and develop severe insulin resistance with hyperglycemia and hyperinsulinemia. Ob/ob mice have large pancreatic islets. The β-cells respond adequately to most stimuli, and ob/ob mice have been used as a rich source of pancreatic islets with high insulin release capacity. Depending on the genetic background, ob/ob mice can be described as a model for a constant prediabetic state or as a model for β-cell events leading to overt type 2 diabetes. The large capacity for islet growth and insulin release makes ob/ob mice from the C57Bl/6J or Umeå ob/ob strain a good model for studies on how β-cells can cope with prolonged functional stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed M, Grapengiesser E (2001) Pancreatic β-cells from obese-hyperglycemic mice are characterized by excessive firing of cytoplasmic Ca2+ transients. Endocrine 15:73–78

    PubMed  CAS  Google Scholar 

  • Ahrén B, Sörhede Winzell M (2008) Disturbed α-cell function in mice with β-cell specific overexpression of human islet amyloid polypeptide. Exp Diabetes Res 2008:304–313

    Google Scholar 

  • Andersson A, Korsgren O, Naeser P (1989) DNA replication in transplanted and endogenous pancreatic islets of obese-hyperglycemic mice at different stages of the syndrome. Metabolism 38:974–978

    PubMed  CAS  Google Scholar 

  • Baetens D, Stefan Y, Ravazzola M, Malaisse-Lagae F, Coleman DL, Orci L (1978) Alteration of islet cell populations in spontaneously diabetic mice. Diabetes 27:1–7

    PubMed  CAS  Google Scholar 

  • Bailey CJ, Flatt PR (1987) Insulin releasing effects of adrenocorticotropin (ACTH 1-39) and ACTH fragments (1-24 and 18-39) in lean and genetically obese hyperglycaemic (ob/ob) mice. Int J Obes 11:175–181

    PubMed  CAS  Google Scholar 

  • Barker CF, Frangipane LG, Silvers WK (1977) Islet transplantation in genetically determined diabetes. Ann Surg 186:401–410

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berne C (1975) The metabolism of lipids in mouse pancreatic islets. The oxidation of fatty acids and ketone bodies. Biochem J 152:661–666

    PubMed  CAS  PubMed Central  Google Scholar 

  • Black MA, Heick HM, Begin-Heick N (1986) Abnormal regulation of insulin secretion in the genetically obese (ob/ob) mouse. Biochem J 238:863–869

    PubMed  CAS  PubMed Central  Google Scholar 

  • Black MA, Heick HM, Begin-Heick N (1988a) Abnormal regulation of cAMP accumulation in pancreatic islets of obese mice. Am J Physiol 255:E833–E838

    PubMed  CAS  Google Scholar 

  • Black MA, Fournier LA, Heick HM, Begin-Heick N (1988b) Different insulin secretory responses to calcium-channel blockers in islets of lean and obese (ob/ob) mice. Biochem J 249:401–407

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blandino-Rosano M, Perez-Arana G, Mellado-Gil JM, Segundo C, Aguilar- Diosdado M (2008) Anti-proliferative effect of pro-inflammatory cytokines in cultured β cells is associated with extracellular signal-regulated kinase 1/2 pathway inhibition: protective role of glucagon-like peptide -1. J Mol Endocrinol 41:35–44

    PubMed  CAS  Google Scholar 

  • Bleisch VR, Mayer J, Dickie MM (1952) Familiar diabetes mellitus in mice associated with insulin resistance, obesity, and hyperplasia of the islands of Langerhans. Am J Pathol 28:369–385

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bock T, Pakkenberg B, Buschard K (2003) Increased islet volume but unchanged islet number in ob/ob mice. Diabetes 52:1716–1722

    PubMed  CAS  Google Scholar 

  • Bonner-Weir S, Deery D, Leahy JL, Weir GC (1989) Compensatory growth of pancreatic β-cells in adult rats after short-term glucose infusion. Diabetes 38:49–53

    PubMed  CAS  Google Scholar 

  • Bruton JD, Lemmens R, Shi CL, Persson-Sjögren S, Westerblad H, Ahmed M, Pyne NJ, Frame M, Furman BL, Islam MS (2003) Ryanodine receptors of pancreatic β cells mediate a distinct context-dependent signal for insulin secretion. FASEB J 17:301–303

    PubMed  CAS  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    PubMed  CAS  Google Scholar 

  • Camus MC, Aubert R, Bourgeois F, Herzog J, Alexiu A, Lemonnier D (1988) Serum lipoprotein and apolipoprotein profiles of the genetically obese ob/ob mouse. Biochim Biophys Acta 961:53–64

    PubMed  CAS  Google Scholar 

  • Carlsson PO, Andersson A, Jansson L (1996) Pancreatic islet blood flow in normal and obese-hyperglycemic (ob/ob) mice. Am J Physiol 271:E990–E995

    PubMed  CAS  Google Scholar 

  • Chan JY, Luzuriaga J, Bensellam M, Biden TJ, Laybutt DR (2013) Failure of the adaptive unfolded protein response in islets of obese mice is linked with abnormalities in β-cell gene expression and progression to diabetes. Diabetes 62:1557–1568

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chehab FF, Qiu J, Ogus S (2004) The use of animal models to dissect the biology of leptin. Recent Prog Horm Res 59:245–266

    PubMed  CAS  Google Scholar 

  • Chen NG, Romsos DR (1995) Enhanced sensitivity of pancreatic islets from preobese 2-week-old ob/ob mice to neurohormonal stimulation of insulin secretion. Endocrinology 13:505–511

    Google Scholar 

  • Chen L, Komiya I, Inman L, McCorkle K, Alam T, Unger RH (1989) Molecular and cellular responses of islets during perturbations of glucose homeostasis determined by in situ hybridization histochemistry. Proc Natl Acad Sci USA 86:1367–1371

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen NG, Tassava TM, Romsos DR (1993) Threshold for glucose-stimulated insulin secretion in pancreatic islets of genetically obese (ob/ob) mice is abnormally low. J Nutr 123:1567–1574

    PubMed  CAS  Google Scholar 

  • Cho YR, Kim CW (2004) Neuropeptide Y promotes β-cell replication via extracellular signal-regulated kinase activation. Biochem Biophys Res Commun 314:773–780

    PubMed  CAS  Google Scholar 

  • Chua S Jr, Liu SM, Li Q, Yang L, Thassanapaff VT, Fisher P (2002) Differential β cell responses to hyperglycaemia and insulin resistance in two novel congenic strains of diabetes (FVB- Lepr (db)) and obese (DBA- Lep (ob)) mice. Diabetologia 45:976–990

    PubMed  CAS  Google Scholar 

  • Cirillo D, Rachiglio AM, la Montagna R, Giordano A, Normanno N (2008) Leptin signaling in breast cancer: an overview. J Cell Biochem 10:956–964

    Google Scholar 

  • Clee SM, Nadler ST, Attie AD (2005) Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes. Am J Ther 12:491–498

    PubMed  Google Scholar 

  • Clement K (2006) Genetics of human obesity. C R Biol 329:608–622

    PubMed  CAS  Google Scholar 

  • Coleman DL (1973) Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9:294–298

    PubMed  CAS  Google Scholar 

  • Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes obesity syndromes in mice. Diabetologia 14:141–148

    PubMed  CAS  Google Scholar 

  • Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of the obese (ob) gene in the mouse. Diabetologia 9:287–293

    PubMed  CAS  Google Scholar 

  • Cuenda A, Nebreda AR (2009) p38 delta and PKD1: kinase switches for insulin secretion. Cell 136:209–210

    PubMed  CAS  Google Scholar 

  • Cullinan CA, Brady EJ, Saperstein R, Leibowitz MD (1994) Glucose-dependent alterations of intracellular free calcium by glucagon-like peptide-1(7-36amide) in individual ob/ob mouse β-cells. Cell Calcium 15:391–400

    PubMed  CAS  Google Scholar 

  • Dai C, Brissova M, Reinert RB, Nyman L, Liu EH, Thompson C, Shostak A, Shiota M, Takahashi T, Powers AC (2013) Pancreatic islet vasculature adapts to insulin resistance through dilation and not angiogenesis. Diabetes 62:4144–4153 [Epub ahead of print]

    PubMed  CAS  Google Scholar 

  • Danielsson Å, Hellman B, Täljedal I-B (1968) Glucose tolerance in the period preceding the appearance of the manifest obese-hyperglycemic syndrome in mice. Acta Physiol Scand 72:81–84

    PubMed  CAS  Google Scholar 

  • Davis DB, Lavine JA, Suhonen JI, Krautkramer KA, Rabaglia ME, Sperger JM, Fernandez LA, Yandell BS, Keller MP, Wang IM, Schadt EE, Attie AD (2010) FoxM1 is up-regulated by obesity and stimulates β-cell proliferation. Mol Endocrinol 24:1822–1834

    PubMed  CAS  PubMed Central  Google Scholar 

  • De Souza CT, Araújo EP, Stoppiglia LF, Pauli JR, Ropelle E, Rocco SA, Marin RM, Franchini KG, Carvalheira JB, Saad MJ, Boschero AC, Carneiro EM, Velloso LA (2007) Inhibition of UCP2 expression reverses diet-induced diabetes mellitus by effects on both insulin secretion and action. FASEB J 21:1153–1163

    PubMed  Google Scholar 

  • Diani AR, Sawada G, Wyse B, Murray FT, Khan M (2004) Pioglitazone preserves pancreatic islet structure and insulin secretory function in three murine models of type 2 diabetes. Am J Physiol 286:E116–E122

    CAS  Google Scholar 

  • Donath MY, Schumann DM, Faulenbach M, Ellingsgaard H, Perren A, Ehses JA (2008) Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 31(Suppl 2):S161–S164

    PubMed  CAS  Google Scholar 

  • Dubuc PU, Mobley PW, Mahler RJ, Ensinck JW (1977) Immunoreactive glucagon levels in obese-hyperglycemic (ob/ob) mice. Diabetes 26:841–846

    PubMed  CAS  Google Scholar 

  • Dyachok O, Isakov Y, Sågetorp J, Tengholm A (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting β-cells. Nature 439:349–352

    PubMed  CAS  Google Scholar 

  • Dyck DJ, Heigenhauser GJ, Bruce CR (2006) The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol 186:5–16

    CAS  Google Scholar 

  • Edvell A, Lindström P (1995) Development of insulin secretory function in young obese hyperglycemic mice (Umeå ob/ob). Metabolism 44:906–913

    PubMed  CAS  Google Scholar 

  • Edvell A, Lindström P (1998) Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation. Am J Physiol 274:E1034–E1039

    PubMed  CAS  Google Scholar 

  • Edvell A, Lindström P (1999) Initiation of increased pancreatic growth in young normoglycemic mice (Umeå +/?). Endocrinology 140:778–783

    PubMed  CAS  Google Scholar 

  • Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61

    PubMed  CAS  Google Scholar 

  • Elmi A (2001) Increased number of Na+/K+ ATPase enzyme units in Ob/Ob mouse pancreatic islets. Pancreas 23:113–115

    PubMed  CAS  Google Scholar 

  • Emilsson V, Liu YL, Cawthorne MA, Morton NM, Davenport M (1997) Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes 46:313–316

    PubMed  CAS  Google Scholar 

  • Enyeart JJ (2005) Biochemical and ionic signaling mechanisms for ACTH-stimulated cortisol production. Vitam Horm 70:265–279

    PubMed  CAS  Google Scholar 

  • Flier SN, Kulkarni RN, Kahn CR (2001) Evidence for a circulating islet cell growth factor in insulin-resistant states. Proc Natl Acad Sci USA 98:7475–7480

    PubMed  CAS  PubMed Central  Google Scholar 

  • Flowers JB, Rabaglia ME, Schueler KL, Flowers MT, Lan H, Keller MP, Ntambi JM, Attie AD (2007) Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice. Diabetes 5:1228–1239

    Google Scholar 

  • Fournier LA, Heick HM, Begin-Heick N (1990) The influence of K+-induced membrane depolarization on insulin secretion in islets of lean and obese (ob/ob) mice. Biochem Cell Biol 68:243–248

    PubMed  CAS  Google Scholar 

  • Friedman JM, Leibel RL, Siegel DS, Walsh J, Bahary N (1991) Molecular mapping of the mouse ob mutation. Genomics 11:1054–1062

    PubMed  CAS  Google Scholar 

  • Frühbeck G (2006) Intracellular signalling pathways activated by leptin. Biochem J 393:7–20

    PubMed  PubMed Central  Google Scholar 

  • Garris DR, Garris BL (2004) Cytochemical analysis of pancreatic islet hypercytolipidemia following diabetes (db/db) and obese (ob/ob) mutation expression: influence of genomic background. Pathobiology 71:231–240

    PubMed  CAS  Google Scholar 

  • Garthwaite TL, Martinson DR, Tseng LF, Hagen TC, Menahan LA (1980) A longitudinal hormonal profile of the genetically obese mouse. Endocrinology 107:671–676

    PubMed  CAS  Google Scholar 

  • Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, Landau BR, Ferrannini E (2000) Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 49:1367–1373

    PubMed  CAS  Google Scholar 

  • Gault VA, Irwin N, Green BD, McCluskey JT, Greer B, Bailey CJ, Harriott P, O’harte FP, Flatt PR (2005) Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes 54:2436–2446

    PubMed  CAS  Google Scholar 

  • Gautam D, Jeon J, Li JH, Han SJ, Hamdan FF, Cui Y, Lu H, Deng C, Gavrilova O, Wess J (2008) Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review. J Recept Signal Transduct Res 28:93–108

    PubMed  CAS  Google Scholar 

  • Gepts W, Christophe J, Mayer J (1960) Pancreatic islets in mice with the obese hyperglycemic syndrome: lack of effect of carbutamide. Diabetes 9:63–69

    PubMed  CAS  Google Scholar 

  • Grapengiesser E, Gylfe E, Hellman B (1991) Cyclic AMP as a determinant for glucose induction of fast Ca2+ oscillations in isolated pancreatic β-cells. J Biol Chem 266:12207–12210

    PubMed  CAS  Google Scholar 

  • Gustavsson N, Larsson-Nyren G, Lindström P (2006) Cell specificity of the cytoplasmic Ca2+ response to tolbutamide is impaired in β-cells from hyperglycemic mice. J Endocrinol 190:461–470

    PubMed  CAS  Google Scholar 

  • Gysemans C, Callewaert H, Overbergh L, Mathieu C (2008) Cytokine signalling in the β-cell: a dual role for INFγ. Biochem Soc Trans 36:328–333

    PubMed  CAS  Google Scholar 

  • Hahn HJ, Hellman B, Lernmark Å, Sehlin J, Täljedal I-B (1974) The pancreatic β-cell recognition of insulin secretogogues. Influence of neuraminidase treatment on the release of insulin and the islet content of insulin, sialic acid, and cyclic adenosine 3′:5′- monophosphate. J Biol Chem 249:5275–5284

    PubMed  CAS  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    PubMed  CAS  Google Scholar 

  • Han D, Yamamoto Y, Munesue S, Motoyoshi S, Saito H, Win MT, Watanabe T, Tsuneyama K, Yamamoto H (2013) Induction of receptor for advanced glycation end products by insufficient leptin action triggers pancreatic β-cell failure in type 2 diabetes. Genes Cells 18:302–314

    PubMed  CAS  Google Scholar 

  • Heart E, Smith PJ (2007) Rhythm of the β-cell oscillator is not governed by a single regulator: multiple systems contribute to oscillatory behavior. Am J Physiol 292:E1295–E1300

    CAS  Google Scholar 

  • Hellman B, Idahl L-Å, Lernmark Å, Sehlin J, Täljedal I-B (1974) The pancreatic β-cell recognition of insulin secretagogues. Comparisons of glucose with glyceraldehyde isomers and dihydroxyacetone. Arch Biochem Biophys 162:448–457

    PubMed  CAS  Google Scholar 

  • Herberg L, Major E, Hennings U, Grüneklee D, Freytag G, Gries FA (1970) Differences in the development of the obese-hyperglycemic syndrome in obob and NZO mice. Diabetologia 6:292–299

    PubMed  CAS  Google Scholar 

  • Hill MJ, Metcalfe D, McTernan PG (2009) Obesity and diabetes: lipids, ‘nowhere to run to’. Clin Sci 116:113–123

    PubMed  CAS  Google Scholar 

  • Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers MG Jr, Chua SC Jr, Kim JK, Kaestner KH, Karsenty G (2008) The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol 183:1235–1242

    PubMed  CAS  PubMed Central  Google Scholar 

  • Imai Y, Patel HR, Hawkins EJ, Doliba NM, Matschinsky FM, Ahima RS (2007) Insulin secretion is increased in pancreatic islets of neuropeptide Y-deficient mice. Endocrinology 148:5716–5723

    PubMed  CAS  Google Scholar 

  • Imai J, Katagiri H, Yamada T, Ishigaki Y, Suzuki T, Kudo H, Uno K, Hasegawa Y, Gao J, Kaneko K, Ishihara H, Niijima A, Nakazato M, Asano T, Minokoshi Y, Oka Y (2008) Regulation of pancreatic β cell mass by neuronal signals from the liver. Science 322:1250–1254

    PubMed  CAS  Google Scholar 

  • Ingalls AM, Dickie MM, Snell GD (1950) Obese, a new mutation in the house mouse. J Hered 41:317–318

    PubMed  CAS  Google Scholar 

  • Irwin N, McClean PL, O’Harte FP, Gault VA, Harriott P, Flatt PR (2007) Early administration of the glucose-dependent insulinotropic polypeptide receptor antagonist (Pro3)GIP prevents the development of diabetes and related metabolic abnormalities associated with genetically inherited obesity in ob/ob mice. Diabetologia 50:1532–1540

    PubMed  CAS  Google Scholar 

  • Islam MS (2002) The ryanodine receptor calcium channel of β-cells: molecular regulation and physiological significance. Diabetes 51:1299–1309

    PubMed  CAS  Google Scholar 

  • Jetton TL, Liang Y, Cincotta AH (2001) Systemic treatment with sympatholytic dopamine agonists improves aberrant β-cell hyperplasia and GLUT2, glucokinase, and insulin immunoreactive levels in ob/ob mice. Metabolism 50:1377–1384

    PubMed  CAS  Google Scholar 

  • Karlsson E, Stridsberg M, Sandler S (1998) Leptin regulation of islet amyloid polypeptide secretion from mouse pancreatic islets. Biochem Pharmacol 56:1339–1346

    PubMed  CAS  Google Scholar 

  • Keller MP, Choi Y, Wang P, Davis DB, Rabaglia ME, Oler AT, Stapleton DS, Argmann C, Schueler KL, Edwards S, Steinberg HA, Chaibub Neto E, Kleinhanz R, Turner S, Hellerstein MK, Schadt EE, Yandell BS, Kendziorski C, Attie AD (2008) A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18:706–716

    PubMed  CAS  PubMed Central  Google Scholar 

  • Khaldi MZ, Guiot Y, Gilon P, Henquin JC, Jonas JC (2004) Increased glucose sensitivity of both triggering and amplifying pathways of insulin secretion in rat islets cultured for 1 wk in high glucose. Am J Physiol 287:E207–E217

    CAS  Google Scholar 

  • Khan A, Hong-Lie C, Landau BR (1995) Glucose-6-phosphatase activity in islets from ob/ob and lean mice and the effect of dexamethasone. Endocrinology 136:1934–1938

    PubMed  CAS  Google Scholar 

  • Khan A, Narangoda S, Ahren B, Holm C, Sundler F, Efendic S (2001) Long-term leptin treatment of ob/ob mice improves glucose-induced insulin secretion. Int J Obes Relat Metab Disord 25:816–821

    PubMed  CAS  Google Scholar 

  • Kieffer TJ, Heller RS, Habener JF (1996) Leptin receptors expressed on pancreatic β-cells. Biochem Biophys Res Commun 224:522–527

    PubMed  CAS  Google Scholar 

  • Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M (2009) Islet architecture: a comparative study. Islets 1:129–136

    PubMed  PubMed Central  Google Scholar 

  • Kojima H, Fujimiya M, Matsumura K, Nakahara T, Hara M, Chan L (2004) Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci USA 101:2458–2463

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lalloyer F, Vandewalle B, Percevault F, Torpier G, Kerr-Conte J, Oosterveer M, Paumelle R, Fruchart JC, Kuipers F, Pattou F, Fiévet C, Staels B (2006) Peroxisome proliferator-activated receptor α improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes 55:1605–1613

    PubMed  CAS  Google Scholar 

  • Lam QJ, Lu L (2007) Role of leptin in immunity. Cell Mol Immunol 4:1–13

    PubMed  CAS  Google Scholar 

  • Larcher F, Del Rio M, Serrano F, Segovia JC, Ramirez A, Meana A, Page A, Abad JL, Gonzalez MA, Bueren J, Bernad A, Jorcano JL (2001) A cutaneous gene therapy approach to human leptin deficiencies: correction of the murine ob/ob phenotype using leptin targeted keratinocyte grafts. FASEB J 15:1529–1538

    PubMed  CAS  Google Scholar 

  • Lavine RL, Voyles N, Perrino PV, Recant L (1977) Functional abnormalities of islets of Langerhans of obese hyperglycemic mouse. Am J Physiol 233:E86–E90

    PubMed  CAS  Google Scholar 

  • Leckström A, Lundquist I, Ma Z, Westermark P (1999) Islet amyloid polypeptide and insulin relationship in a longitudinal study of the genetically obese (ob/ob) mouse. Pancreas 18:266–273

    PubMed  Google Scholar 

  • Lee YC, Nielsen JH (2009) Regulation of β cell replication. Mol Cell Endocrinol 297:18–27

    PubMed  CAS  Google Scholar 

  • Li Z, Schmidt SF, Friedman JM (2013) Developmental role for endocannabinoid signaling in regulating glucose metabolism and growth. Diabetes 62:2359–2367

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lindberg K, Rønn SG, Tornehave D, Richter H, Hansen JA, Rømer J, Jackerott M, Billestrup N (2005) Regulation of pancreatic β-cell mass and proliferation by SOCS-3. J Mol Endocrinol 35:231–243

    PubMed  CAS  Google Scholar 

  • Ling Z, Pipeleers DG (1996) Prolonged exposure of human β cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation. J Clin Invest 98:2805–2812

    PubMed  CAS  PubMed Central  Google Scholar 

  • Loreti L, Dunbar JC, Chen S, Foà PP (1974) The autoregulation of insulin secretion in the isolated pancreas islets of lean (obob) and obese-hyperglycemic (obob) mice. Diabetologia 10:309–315

    PubMed  CAS  Google Scholar 

  • Lulu Strat A, Kokta TA, Dodson MV, Gertler A, Wu Z, Hill RA (2005) Early signaling interactions between the insulin and leptin pathways in bovine myogenic cells. Biochim Biophys Acta 1744:164–175

    PubMed  CAS  Google Scholar 

  • Malendowicz LK, Rucinski M, Belloni AS, Ziolkowska A, Nussdorfer GG (2007) Leptin and the regulation of the hypothalamic-pituitary-adrenal axis. Int Rev Cytol 263:63–102

    PubMed  CAS  Google Scholar 

  • Marí M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, Fernandez-Checa JC, García-Ruiz C (2006) Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 4:185–198

    PubMed  Google Scholar 

  • Marroquí L, Gonzalez A, Ñeco P, Caballero-Garrido E, Vieira E, Ripoll C, Nadal A, Quesada I (2012) Role of leptin in the pancreatic β-cell: effects and signaling pathways. J Mol Endocrinol 49:R9–R17

    PubMed  Google Scholar 

  • Mayer J (1960) The obese hyperglycaemic syndrome of mice as an example of “metabolic” obesity. Am J Clin Nutr 8:712–718

    Google Scholar 

  • Mayer J, Silides N (1953) A quantitative method of determination of the diabetogenic activity of growth hormone preparations. Endocrinology 52:54–56

    PubMed  CAS  Google Scholar 

  • Mayer J, Russel E, Bates MV, Dickie MM (1953) Metabolic, nutritional and endocrine studies of the hereditary obesity-diabetes syndrome of mice and mechanisms of its development. Metabolism 2:9–21

    PubMed  CAS  Google Scholar 

  • McQuaid TS, Saleh MC, Joseph JW, Gyulkhandanyan A, Manning-Fox JE, MacLellan JD, Wheeler MB, Chan CB (2006) cAMP-mediated signaling normalizes glucose stimulated insulin secretion in uncoupling protein-2 overexpressing β-cells. J Endocrinol 190:669–680

    PubMed  CAS  Google Scholar 

  • Medina-Gomez G, Yetukuri L, Velagapudi V, Campbell M, Blount M, Jimenez-Linan M, Ros M, Oresic M, Vidal-Puig A (2009) Adaptation and failure of pancreatic β cells in murine models with different degrees of metabolic syndrome. Dis Model Mech 2:582–592

    PubMed  CAS  PubMed Central  Google Scholar 

  • Melloul D, Marshak S, Cerasi E (2002) Regulation of insulin gene transcription. Diabetologia 45:309–326

    PubMed  CAS  Google Scholar 

  • Milman P, Fu A, Screaton RA, Woulfe JM (2010) Depletion of intranuclear rodlets in mouse models of diabetes. Endocr Pathol 21:230–235

    PubMed  CAS  Google Scholar 

  • Moritoh Y, Takeuchi K, Asakawa T, Kataoka O, Odaka H (2008) Chronic administration of alogliptin, a novel, potent, and highly selective dipeptidyl peptidase-4 inhibitor, improves glycemic control and β-cell function in obese diabetic ob/ob mice. Eur J Pharmacol 588:325–332

    PubMed  CAS  Google Scholar 

  • Norlund R, Norlund L, Täljedal I-B (1987) Morphogenetic effects of glucose on mouse islet-cell re-aggregation in culture. Med Biol 65:209–216

    PubMed  CAS  Google Scholar 

  • Nyholm B, Fineman MS, Koda JE, Schmitz O (1998) Plasma amylin immunoreactivity and insulin resistance in insulin resistant relatives of patients with noninsulin-dependent diabetes mellitus. Horm Metab Res 30:206–212

    PubMed  CAS  Google Scholar 

  • Nyrén R, Chang CL, Lindström P, Barmina A, Vorrsjö E, Ali Y, Juntti-Berggren L, Bensadoun A, Young SG, Olivecrona T, Olivecrona G (2012) Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: effects of diet and leptin deficiency. BMC Physiol 12:14

    PubMed  PubMed Central  Google Scholar 

  • Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U (2009) Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 9:35–51

    PubMed  CAS  Google Scholar 

  • Park K, Lee BM, Kim YH, Han T, Yi W, Lee DH, Choi HH, Chong W, Lee CH (2013) Discovery of a novel phenylethyl benzamide glucokinase activator for the treatment of type 2 diabetes mellitus. Bioorg Med Chem Lett 23:537–542

    PubMed  CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    PubMed  CAS  Google Scholar 

  • Persson-Sjögren S, Lindström P (2004) Effects of cholinergic m-receptor agonists on insulin release in islets from obese and lean mice of different ages: the importance of bicarbonate. Pancreas 29:90–99

    Google Scholar 

  • Persson-Sjögren S, Forsgren S, Lindström P (2006) Vasoactive intestinal polypeptide and pituitary adenylate cyclase activating polypeptide: effects on insulin release in isolated mouse islets in relation to metabolic status and age. Neuropeptides 40:283–290

    PubMed  Google Scholar 

  • Peterson SJ, Drummond G, Kim DH, Li M, Kruger AL, Ikehara S, Abraham NG (2008) L-4F treatment reduces adiposity, increases adiponectin levels, and improves insulin sensitivity in obese mice. J Lipid Res 49:1658–1669

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prieto J, Kaaya EE, Juntti-Berggren L, Berggren PO, Sandler S, Biberfeld P, Patarroyo M (1992) Induction of intercellular adhesion molecule-1 (CD54) on isolated mouse pancreatic β cells by inflammatory cytokines. Clin Immunol Immunopathol 65:247–253

    PubMed  CAS  Google Scholar 

  • Quan W, Hur KY, Lim Y, Oh SH, Lee JC, Kim KH, Kim GH, Kim SW, Kim HL, Lee MK, Kim KW, Kim J, Komatsu M, Lee MS (2012) Autophagy deficiency in β cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55:392–403

    PubMed  CAS  Google Scholar 

  • Ranheim T, Dumke C, Schueler KL, Cartee GD, Attie AD (1997) Interaction between BTBR and c57Bl/6J genomes produces an insulin resistance syndrome in [BTBNR x C57Bl/6J] F1 mice. Arterioscler Thromb Vasc Biol 17:3286–3293

    PubMed  CAS  Google Scholar 

  • Rattarasarn C (2006) Physiological and pathophysiological regulation of regional adipose tissue in the development of insulin resistance and type 2 diabetes. Acta Physiol 186:87–101

    CAS  Google Scholar 

  • Ravier MA, Sehlin J, Henquin JC (2002) Disorganization of cytoplasmic Ca2+ oscillations and pulsatile insulin secretion in islets from ob/ob mice. Diabetologia 45:1154–1163

    PubMed  CAS  Google Scholar 

  • Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, Berggren PO, Caicedo A (2011) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab 14:45–54

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rolin B, Larsen MO, Gotfredsen CF, Deacon CF, Carr RD, Wilken M, Knudsen LB (2002) The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases β-cell mass in diabetic mice. Am J Physiol 283:E745–E752

    CAS  Google Scholar 

  • Rooth P, Täljedal I-B (1987) Vital microscopy of islet blood flow: catecholamine effects in normal and ob/ob mice. Am J Physiol 252:E130–E135

    PubMed  CAS  Google Scholar 

  • Rutter GA, Da Silva Xavier G, Leclerc I (2003) Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J 375:1–16

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saleh MC, Wheeler MB, Chan CB (2006) Endogenous islet uncoupling protein-2 expression and loss of glucose homeostasis in ob/ob mice. Endocrinology 190:659–667

    CAS  Google Scholar 

  • Sener A, Anak O, Leclercq-Meyer V, Herberg L, Malaisse WJ (1993) FAD glycerophosphate dehydrogenase activity in pancreatic islets and liver of ob/ob mice. Biochem Mol Biol Int 30:397–402

    PubMed  CAS  Google Scholar 

  • Seufert J (2004) Leptin effects on pancreatic β-cell gene expression and function. Diabetes 53(Suppl 1):S152–S158

    PubMed  CAS  Google Scholar 

  • Shafrir E, Ziv E, Mosthaf L (1999) Nutritionally induced insulin resistance and receptor defect leading to β-cell failure in animal models. Ann NY Acad Sci 892:223–246

    PubMed  CAS  Google Scholar 

  • Singh H, Farouk M, Bose BB, Singh P (2013) Novel genes underlying β cell survival in metabolic stress. Bioinformation 9:37–41

    PubMed  PubMed Central  Google Scholar 

  • Sorensen H, Brand CL, Neschen S, Holst JJ, Fosgerau K, Nishimura E, Shulman GI (2006) Immunoneutralization of endogenous glucagon reduces hepatic glucose output and improves long-term glycemic control in diabetic ob/ob mice. Diabetes 55:2843–2848

    PubMed  Google Scholar 

  • Sreejayan N, Dong F, Kandadi MR, Yang X, Ren J (2008) Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese mice. Obesity 16:1331–1337

    PubMed  CAS  Google Scholar 

  • Stoehr JP, Byers JE, Clee SM, Lan H, Boronenkov OIV, Schueler KL, Yandell BS, Attie AD (2004) Identification of major quantitative trait loci controlling body weight variation in ob/ob mice. Diabetes 53:245–249

    PubMed  CAS  Google Scholar 

  • Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner-Weir S, Habener JF, Egan JM (2000) Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49:741–747

    PubMed  CAS  Google Scholar 

  • Sumara G, Formentini I, Collins S, Sumara I, Windak R, Bodenmiller B, Ramracheya R, Caille D, Jiang H, Platt KA, Meda P, Aebersold R, Rorsman P, Ricci R (2009) Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell 136:235–248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sweeney G (2002) Leptin signaling. Cell Signal 14:655–663

    PubMed  CAS  Google Scholar 

  • Takada K, Kanatsuka A, Tokuyama Y, Yagui K, Nishimura M, Saito Y, Makino H (1996) Islet amyloid polypeptide/amylin contents in pancreas change with increasing age in genetically obese and diabetic mice. Diabetes Res Clin Pract 33:153–158

    PubMed  CAS  Google Scholar 

  • Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, Noguchi N, Kobayashi S, Kato I, Katada T, Okamoto H (1998) Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic β-cells. J Biol Chem 273:2497–2500

    PubMed  CAS  Google Scholar 

  • Tassava TM, Okuda T, Romsos DR (1992) Insulin secretion from ob/ob mouse pancreatic islets: effects of neurotransmitters. Am J Physiol 262:E338–E343

    PubMed  CAS  Google Scholar 

  • Tentolouris N, Argyrakopoulou G, Katsilambros N (2008) Perturbed autonomic nervous system function in metabolic syndrome. Neuromol Med 10:169–178

    CAS  Google Scholar 

  • Tomita T, Doull V, Pollock HG, Krizsan D (1992) Pancreatic islets of obese hyperglycemic mice (ob/ob). Pancreas 7:367–375

    PubMed  CAS  Google Scholar 

  • Tu Z, Keller MP, Zhang C, Rabaglia ME, Greenawalt DM, Yang X, Wang IM, Dai H, Bruss MD, Lum PY, Zhou YP, Kemp DM, Kendziorski C, Yandell BS, Attie AD, Schadt EE, Zhu J (2012) Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets. PLoS Genet 8:e1003107

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tyrberg B, Ustinov J, Otonkoski T, Andersson A (2001) Stimulated endocrine cell proliferation and differentiation in transplanted human pancreatic islets: effects of the ob gene and compensatory growth of the implantation organ. Diabetes 50:301–307

    PubMed  CAS  Google Scholar 

  • Unger RH, Orci L (2001) Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J 15:312–321

    PubMed  CAS  Google Scholar 

  • Vivas Y, Martínez-García C, Izquierdo A, Garcia-Garcia F, Callejas S, Velasco I, Campbell M, Ros M, Dopazo A, Dopazo J, Vidal-Puig A, Medina-Gomez G (2011) Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic β cell mass. BMC Med Genomics 4:86

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wajchenberg BL (2007) β-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 28:187–218

    PubMed  CAS  Google Scholar 

  • Welsh M, Welsh N, Nilsson T, Arkhammar P, Pepinsky RB, Steiner DF, Berggren PO (1988) Stimulation of pancreatic islet β-cell replication by oncogenes. Proc Natl Acad Sci USA 85:116–120

    PubMed  CAS  PubMed Central  Google Scholar 

  • Westman S (1968a) Development of the obese-hyperglycemic syndrome in mice. Diabetologia 4:141–149

    PubMed  CAS  Google Scholar 

  • Westman S (1968b) The endocrine pancreas of old obese-hyperglycemic mice. Acta Med Upsal 73:81–89

    CAS  Google Scholar 

  • Woulfe J, Munoz D (2000) Tubulin immunoreactive neuronal intranuclear inclusions in the human brain. Neuropathol Appl Neurobiol 26:161–171

    PubMed  CAS  Google Scholar 

  • Xu G, Chen J, Jing G, Shalev A (2012) Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes 61:848–856

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang L, Jhaveri R, Huang J, Qi Y, Diehl AM (2007) Endoplasmic reticulum stress, hepatocyte CD1d and NKT cell abnormalities in murine fatty livers. Lab Invest 87:927–937

    PubMed  CAS  Google Scholar 

  • Young AA, Gedulin BR, Bhavsar S, Bodkin N, Jodka C, Hansen B, Denaro M (1999) Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes 48:1026–1034

    PubMed  CAS  Google Scholar 

  • Zaitseva II, Sharoyko V, Størling J, Efendic S, Guerin C, Mandrup-Poulsen T, Nicotera P, Berggren PO, Zaitsev SV (2006) RX871024 reduces NO production but does not protect against pancreatic β-cell death induced by proinflammatory cytokines. Biochem Biophys Res Commun 347:1121–1128

    PubMed  CAS  Google Scholar 

  • Zawalich WS, Tesz GJ, Zawalich KC (2002) Inhibitors of phosphatidylinositol 3-kinase amplify insulin release from islets of lean but not obese mice. J Endocrinol 174:247–258

    PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    PubMed  CAS  Google Scholar 

  • Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig AJ, Boss O, Kim YB, Zheng XX, Wheeler MB, Shulman GI, Chan CB, Lowell BB (2001) Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, β cell dysfunction, and type 2 diabetes. Cell 105:745–755

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Lindström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lindström, P. (2015). β-Cell Function in Obese-Hyperglycemic Mice (ob /ob Mice). In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_15

Download citation

Publish with us

Policies and ethics