Skip to main content

Wnt Signaling in Pancreatic Islets

  • Reference work entry
  • First Online:
Islets of Langerhans
  • 1686 Accesses

Abstract

The Wnt signaling pathway is critically important not only for stem cell amplification, but also for the differentiation and migration and for organogenesis and the development of the body plan. β-catenin/TCF7L2-dependent Wnt signaling (the canonical pathway) is involved in pancreas development, islet function, and insulin production and secretion. The glucoincretin hormone glucagon-like peptide-1 and the chemokine stromal cell-derived factor-1 modulate canonical Wnt signaling in β cells which is obligatory for their mitogenic and cytoprotective actions.

Genome-wide association studies have uncovered approximately 90 gene loci that confer susceptibility for the development of type 2 diabetes (Marchetti P, Syed F, Suleiman M, Bugliani M, Marselli L, Islets 4:323–332, 2012). The majority of these diabetes risk alleles encode proteins that are implicated in islet growth and functioning (Marchetti P, Syed F, Suleiman M, Bugliani M, Marselli L, Islets 4:323–332, 2012, Ahlqvist E, Ahluwalia TS, Groop L, Clin Chem 57:241–254, 2011). At least 20 of the type 2 diabetes genes that affect islet functions are either components of or known target genes for Wnt signaling. The transcription factor TCF7L2 is particularly strongly associated with risk for diabetes and appears to be fundamentally important in both canonical Wnt signaling and β cell functioning. Experimental loss of TCF7L2 function in islets and polymorphisms in TCF7L2 alleles in humans impair glucose-stimulated insulin secretion suggesting that perturbations in the Wnt signaling pathway may contribute substantially to the susceptibility for, and pathogenesis of, type 2 diabetes. This review focuses on considerations of the hormonal regulation of Wnt signaling in islets and implications for mutations in components of the Wnt signaling pathway as a source for risk alleles for type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlqvist E, Ahluwalia TS, Groop L (2011) Genetics of type 2 diabetes. Clin Chem 57:241–254, PMID: 21119033

    PubMed  CAS  Google Scholar 

  • Al-Hasani K, Pfeifer A, Courtney M, Ben-Othman N, Gjernes E, Vieira A, Druelle N, Avolio F, Ravassard P, Leuckx G, Lacas-Gervais S, Ambrosetti D, Benizri E, Hecksher-Sorensen J, Gounon P, Ferrer J, Gradwohl G, Heimberg H, Mansouri A, Collombat P (2013) Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev Cell 26:86–100

    PubMed  CAS  Google Scholar 

  • Anselme I, Lacief C, Lanaud M, Ruther U, Schneider-Maunoury S (2007) Defects in brain patterning and head morphogenesis in the mouse mutant fused toes. Dev Biol 304:208–220

    PubMed  CAS  Google Scholar 

  • Barker N et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    PubMed  CAS  Google Scholar 

  • Bonner-Weir S, Sharma A (2006) Are their pancreatic progenitor cells from which new islets form after birth? Nat Clin Pract Endocrinol Metab 2:240–241

    PubMed  Google Scholar 

  • Bordonaro M (2009) Role of Wnt signaling in the development of type 2 diabetes. Vitam Horm 80:563–581

    PubMed  CAS  Google Scholar 

  • Bort R, Martinez-Barbera JP, Beddington RS, Zaret KS (2004) Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 131:797–806

    PubMed  CAS  Google Scholar 

  • Bort R, Signore M, Tremblay K, Martinez-Barbera JP, Zaret KS (2006) Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev Biol 290:44–56

    PubMed  CAS  Google Scholar 

  • Boutant M, Ramos OH, Tourrel-Cuzin C, Movassat J, Ilias A, Vallois D, Planchais J, Pégorier JP, Schuit F, Petit PX, Bossard P, Maedler K, Grapin-Botton A, Vasseur-Cognet M (2012) COUP-TFII controls mouse pancreatic β-cell mass through GLP-1-β-catenin signaling pathways. PLoS One 7:e30847

    PubMed  CAS  PubMed Central  Google Scholar 

  • Braun MM, Etheridge A, Bernard A, Robertson CP, Roelink H (2003) Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development 130:5579–5587

    PubMed  CAS  Google Scholar 

  • Burger JA, Kipps TJ (2006) CXCR4 a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    PubMed  CAS  Google Scholar 

  • Cano DA, Rulifson IC, Heiser PW, Swigart LB, Pelengaris S, German M, Evan GI, Bluestone JA, Hebrok M (2008) Regulated β-cell regeneration in the adult mouse pancreas. Diabetes 57:958–966

    PubMed  CAS  Google Scholar 

  • Cauchi S, Froguel P (2008) TCF7L2 genetic defect and type 2 diabetes. Curr Diab Rep 8:149–155, Review

    PubMed  CAS  Google Scholar 

  • Cauchi S et al (2008) Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS One 3:e2031

    PubMed  PubMed Central  Google Scholar 

  • Chen T, Li M, Ding Y, Zhang LS, Xi Y, Pan WJ, Tao DL, Wang JY, Li L (2009a) Identification of zinc-finger BED domain-containing 3 (Zbed3) as a novel Axin-interacting protein that activates Wnt/β-catenin signaling. J Biol Chem 284:6683–6689

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen M, Philipp M, Wang J, Premont RT, Garrison TR, Caron MG, Lefkowitz RJ, Chen W (2009b) G Protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway. J Biol Chem 284:35040–35048

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheta D (1998) Animal models of type 1 (insulin-dependent) diabetes mellitus. J Pediatr Endocrinol Metab 11:11–19

    PubMed  CAS  Google Scholar 

  • Chiang YT, Ip W, Jin T (2012) The role of the Wnt signaling pathway in incretin hormone production and function. Front Physiol 12(3):273

    Google Scholar 

  • Ching YP, Pang AS, Lam WH, Qi RZ, Wang JH (2002) Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor J. Biol Chem 277:15237–15240

    CAS  Google Scholar 

  • Colletti M, Cicchini C, Conigliaro A, Santangelo L, Alonzi T, Pasquini E, Tripodi M, Amicone L (2009) Convergence of Wnt signaling on the HNF4α-driven transcription in controlling liver zonation. Gastroenterology 137:660–672

    PubMed  CAS  Google Scholar 

  • Colli LM, Saggioro F, Serafini LN, Camargo RC, Machado HR, Moreira AC, Antonini SR, de Castro M (2013) Components of the canonical and non-canonical Wnt pathways are not mis-expressed in pituitary tumors. PLoS One 8:e62424

    PubMed  CAS  PubMed Central  Google Scholar 

  • Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H, Mansouri A (2009) The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell 138:449–462

    PubMed  CAS  PubMed Central  Google Scholar 

  • Courtney M, Gjernes E, Druelle N, Ravaud C, Vieira A, Ben-Othman N, Pfeifer A, Avolio F,Leuckx G, Lacas-Gervais S, Hecksher-Sorensen J, Ravassard P, Heimberg H Mansouri A, Patrick Collombat P. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genetics 9(10):e1003934

    Google Scholar 

  • da Silva XG, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K, Barg S, Rutter GA (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet β cells. Diabetes 58(4):894–905, Jan 23 ahead of print

    Google Scholar 

  • da Silva XG, Mondragon A, Sun G, Chen L, McGinty JA, French PM, Rutter GA (2012) Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2-null mice. Diabetologia 55:2667–2676

    Google Scholar 

  • Dabernat S, Secrest P, Peuchant E, Moreau-Gaudry F, Dubus P, Sarvetnick N (2009) Lack of β-catenin in early life induces abnormal glucose homeostasis in mice. Diabetologia 52:1608–1617

    PubMed  CAS  Google Scholar 

  • Delmas V, Beermann F, Martinozzi S, Carreira S, Ackermann J, Kumasaka M, Denat L, Goodall J, Luciani F, Viros A, Demirkan N, Bastian BC, Goding CR, Larue L (2007) β-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev 21:2923–2935

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dessimoz J, Bonnard C, Huelsken J, Grapin-Botton A (2005) Pancreas-specific deletion of β-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr Biol 15:1677–1683

    PubMed  CAS  Google Scholar 

  • Do R, Bailey SD, Desbiens K, Belisle A, Montpetite, Bouchard C, Perusse L, Vohl MC, Engert JC (2008) Genetic variants of FTO influence adiposity, insulin sensitivity, leptin levels, and resting metabolic rate in the Quebec family diabetes. Diabetes 57:1147–1150

    PubMed  CAS  Google Scholar 

  • Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic β cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46

    PubMed  CAS  Google Scholar 

  • Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3:153–165

    PubMed  CAS  Google Scholar 

  • Edwin F, Anderson K, Ying C, Patel TB (2009) Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 76:679–691

    PubMed  CAS  PubMed Central  Google Scholar 

  • Espinosa L, Engles-Esteve J, Aguilera C, Bigas A (2003) Phosphorylation by glycogen synthase kinase 3 β down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 278:32227–32235

    PubMed  CAS  Google Scholar 

  • Figeac F, Uzan B, Faro M, Chelali N, Portha B, Movassat J (2010) Neonatal growth and regeneration of β-cells are regulated by the Wnt/β-catenin signaling in normal and diabetic rats. Am J Physiol Endocrinol Metab 298(2):E245–E256

    PubMed  CAS  Google Scholar 

  • Florez JC (2007) The new type 2 diabetes gene TCF7L2. Curr Opin Clin Nutr Metab Care 10:391–396

    PubMed  CAS  Google Scholar 

  • Florez J (2008a) Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. J Clin Endocrinol Metab 93:4633–4642

    PubMed  CAS  PubMed Central  Google Scholar 

  • Florez J (2008b) Newly identified loci highlight β cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51:1100–1110

    PubMed  CAS  Google Scholar 

  • Foley AC, Mercola M (2005) Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev 19:387–396

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fonseca SG, Fukuma M, Lipson KL et al (2005) WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic β cells. J Biol Chem 280:39609–39615

    PubMed  CAS  Google Scholar 

  • Frederiksson R, Hagglund M, Olszewski PK, Sstephansson O, Jacobsson JA, Olszewska AM, Levine AS, Lindblom J, Schioth HB (2008) The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology 149:2062–2071

    Google Scholar 

  • Fujino T et al (2003) Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci USA 100:229–234

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gloyn AL, Braun M, Rorsman P (2009) Type 2 diabetes susceptibility gene TCF7L2 and its role in β cell function. Diabetes 58:832–834

    Google Scholar 

  • Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433

    PubMed  CAS  Google Scholar 

  • Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 9:1607–1611

    Google Scholar 

  • Grant SF et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genet 38:320–323

    PubMed  CAS  Google Scholar 

  • Grarup N et al (2007) Studies of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 56:3105–3111

    PubMed  CAS  Google Scholar 

  • Guy GR, Jackson RA, Yusoff P, Chow SY (2009) Sprouty proteins: modified modulators, matchmakers or missing links? J Endocrinol 203:191–202

    PubMed  CAS  Google Scholar 

  • Habener JF, Stanojevic V (2012) α-cell role in β-cell generation and regeneration. Islets 4(3):188–198

    PubMed  PubMed Central  Google Scholar 

  • Habener JF, Stanojevic V (2013) α cells come of age. Trends Endocrinol Metab 24:153–163

    PubMed  CAS  Google Scholar 

  • Haldorsen IS, Vesterhus M, Raeder H, Jensen DK, Sovik O, Molven A, Njelstad PR (2008) Lack of pancreatic body and tail in HNF1B mutation carriers. Diabet Med 25:782–787

    PubMed  CAS  Google Scholar 

  • Hallaq H et al (2004) A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels. Development 131:5197–5209

    PubMed  CAS  Google Scholar 

  • Hanson AJ, Wallace HA, Freeman TJ, Beauchamp RD, Lee LA, Lee E (2012) XIAP monoubiquitylates Groucho/TLE to promote canonical Wnt signaling. Mol Cell 45(5):619–628

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hattersley AT (2007) Prime suspect: the TCF7L2 gene and type 2 diabetes risk. J Clin Invest 117:2077–2079

    PubMed  CAS  PubMed Central  Google Scholar 

  • Haumaitre C, Fabre M, Cormier S, Baumann C, Delezoide AL, Ceereghini S (2006) Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1β/MODY5 mutations. Hum Mol Genet 15:2363–2375

    PubMed  CAS  Google Scholar 

  • Hayes MG et al (2007) Identification of type 2 diabetes genes in Mexican Americans through genome-wide association studies. Diabetes 56:3033–3044

    PubMed  CAS  Google Scholar 

  • Heiser PW, Lalu J, Taketo MM, Herrera PL, Hebrok M (2006) Stabilization of β-catenin impacts pancreatic growth. Development 133:2023–2033

    PubMed  CAS  Google Scholar 

  • Heller RS, Dichmann DS, Jensen J, Miller C, Wong G, Madsen OD, Serup P (2002) Expression patterns of Wnts, Frizzleds, sFRPs and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Dev Dyn 225:260–270

    PubMed  CAS  Google Scholar 

  • Heller RS, Klein T, Ling Z, Heimberg H, Katoh M, Madsen OD, Serup (2003) Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas. Gene Expr 11:141–147

    PubMed  CAS  Google Scholar 

  • Heller C, Kühn MC, Mülders-Opgenoorth B, Schott M, Willenberg HS, Scherbaum WA, Schinner S (2011) Exendin-4 upregulates the expression of Wnt-4, a novel regulator of pancreatic β-cell proliferation. Am J Physiol Endocrinol Metab 301:E864–E872

    PubMed  CAS  Google Scholar 

  • Ishihara H, Takeda S, Tamura A et al (2004) Disruption of the WFS1 gene in mice causes progressive β cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum Mol Genet 13:1159–1170

    PubMed  CAS  Google Scholar 

  • Jäggi F, Cabrita MA, Perl AK, Christofori G (2008) Modulation of endocrine pancreas development but not β-cell carcinogenesis by Sprouty4. Mol Cancer Res 6:468–482

    PubMed  Google Scholar 

  • James C, Kapoor RR, Ismail D, Hussain K (2009) The genetic basis of congenital hyperinsulinism. J Med Genet 46:289–299

    PubMed  CAS  Google Scholar 

  • Jensen JM, Cameron E, Baray MV, Starkev TW, Gianani R, Jensen J (2005) Recapitulation of elements on embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128:728–741

    PubMed  CAS  Google Scholar 

  • Jia G, Yano CG, Yang S, Jian X, Yi C, Zhou ZA, He C (2008) Oxidative demethylation of 3-methylthymidine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 582:331319

    Google Scholar 

  • Jin T (2008) The WNT, signalling pathway and diabetes mellitus. Diabetologia 51:1771–1780

    PubMed  CAS  Google Scholar 

  • Jin T, Liu L (2008) The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol 22:2383–2392

    PubMed  CAS  Google Scholar 

  • Jin W, Patti ME (2009) Genetic determinants and molecular pathways in the pathogenesis of type 2 diabetes. Clin Sci 116:99–111

    PubMed  CAS  Google Scholar 

  • Jungers KA, Le Goff C, Sommerville RP, Apte SS (2005) Adamts9 is widely expressed during mouse embryo development. Gene Expr Patterns 5:609–617

    PubMed  CAS  Google Scholar 

  • Karalay O, Doberauer K, Vadodaria KC, Knobloch M, Berti L, Miquelajauregui A, Schwark M, Jagasia R, Taketo MM, Tarabykin V, Lie DC, Jessberger S (2011) Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci USA 108:5807–5812

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kayali AG, Van Gunst K, Campbell IL, Stotland A, Kritzik M, Liu G, Flodstrom-Tullberg M, Zhang YQ, Sarvetnick N (2003) The stromal cell-derived factor-1α/CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas. J Cell Biol 163:859–869

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kieffer TJ, Habener JF (1999) The glucagon-like peptides. Endocr Rev 20:876–913

    PubMed  CAS  Google Scholar 

  • Kikuchi A, Kishido S, Yamamoto H (2006) Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med 38:1–10

    PubMed  CAS  Google Scholar 

  • Kim HJ, Schieffarth JB, Jessurun J, Sumanas S, Petryk A, Lin S, Ekker SC (2005) Wnt5 signaling in vertebrate pancreas development. BMC Biol 24:3–23

    Google Scholar 

  • Kim YS, Kang HS, Takeda Y, Hom L, Song HY, Jensen J, Jetten AM (2012) Glis3 regulates neurogenin 3 expression in pancreatic β-cells and interacts with its activator, Hnf6. Mol Cells 34:193–200

    PubMed  CAS  PubMed Central  Google Scholar 

  • Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4:68–75

    PubMed  PubMed Central  Google Scholar 

  • Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383

    PubMed  CAS  Google Scholar 

  • Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443:453–457

    PubMed  CAS  Google Scholar 

  • Kryczek I, Wei S, Keller E, Liu R, Zou W (2007) Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol 292:C987–C995

    PubMed  CAS  Google Scholar 

  • Kucia M, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell 97:133–146

    PubMed  CAS  Google Scholar 

  • Le Bacquer O, Shu L, Marchand M, Neve B, Paroni F, Kerr Conte J, Pattou F, Froguel P, Maedler K (2011) TCF7L2 splice variants have distinct effects on β-cell turnover and function. Hum Mol Genet 20:1906–1915

    PubMed  Google Scholar 

  • Lee KM, Yasuda H, Hollingsworth MA, Ouellette MM (2005) Notch2-positive progenitors with the intrinsic ability to give rise to pancreatic duct cells. Lab Invest 85:1003–1012

    PubMed  CAS  Google Scholar 

  • Lee SH, Demeterco C, Geron I, Abrahamsson A, Levine F, Itkin-Ansari P (2008) Islet specific Wnt activation in human type 2 diabetes. Exp Diabetes Res 2008:728–763

    Google Scholar 

  • Liu Z, Habener JF (2008) Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic β cell proliferation. J Biol Chem 283:8723–8735

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Z, Habener JF (2009) Stromal cell-derived factor-1 promotes survival of pancreatic β cells by the stabilisation of β-catenin and activation of transcription factor 7-like 2 (TCF7L2). Diabetologia 52:1589–1598

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Z, Stanojevic V, Avadhani S, Yano T, Habener JF (2011) Stromal cell-derived factor-1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis activation induces intra-islet glucagon-like peptide-1 (GLP-1) production and enhances β cell survival. Diabetologia 54:2067–2076

    PubMed  CAS  PubMed Central  Google Scholar 

  • Loder MK, da Silva XG, McDonald A, Rutter GA (2008) TCF7L2 controls insulin gene expression and insulin secretion in mature pancreatic β cells. Biochem Soc Trans 36:357–359

    PubMed  CAS  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    PubMed  CAS  Google Scholar 

  • Longo KA, Kennell JA, Ochocinska MJ, Ross SE, Wright WS, McDougald OA (2002) Wnt signaling protects 3 T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. J Biol Chem 277:38239–38244

    PubMed  CAS  Google Scholar 

  • Luo Y, Cai J, Xue H, Mattson MP, Rao MS (2006) SDF-1α/CXCR4 signaling stimulates β-catenin transcriptional activity in rat neural progenitors. Neurosci Lett 398:291–295

    PubMed  CAS  Google Scholar 

  • Lyssenko V (2008) The transcription factor 7-like 2 gene and increased risk of type 2 diabetes: an update. Curr Opin Clin Nutr Metab Care 11:385–392

    PubMed  CAS  Google Scholar 

  • Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, Sjögren M, Ling C, Eriksson KF, Lethagen AL, Mancarella R, Berglund G, Tuomi T, Nilsson P, Del Prato S, Groop L (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117:2155–2163

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tusomi T, Gerglund G, Altshuler D, Nisson P, Groop L (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232

    PubMed  CAS  Google Scholar 

  • MacDonald BT, Semenov MV, He X (2007) SnapShot: Wnt/β-catenin signaling. Cell 131:1204

    PubMed  CAS  Google Scholar 

  • Maestro MA, Cardaida C, Boj SF, Luco RF, Servitja JM, Ferrer J (2007a) Distinct roles of HNF1β, HNF1α, and HNF4α in regulating pancreas development, β cell function, and growth. Endocr Rev 12:33–45

    CAS  Google Scholar 

  • Maestro MA, Cardalda C, Boj SF, Luco RF, Servitja JM, Ferrer J (2007b) Distinct roles of HNF1β, HNF1α, and HNF4α in regulating pancreas development, β-cell function and growth. Endocr Dev 12:33–45

    PubMed  CAS  Google Scholar 

  • Marchetti P, Syed F, Suleiman M, Bugliani M, Marselli L (2012) From genotype to human β cell phenotype and beyond. Islets 4:323–332

    PubMed  PubMed Central  Google Scholar 

  • Marzo N, Mora C, Fabregat ME, Martín J, Usac EF, Franco C, Barbacid M, Gomis R (2004) Pancreatic islets from cyclin-dependent kinase 4/R24C (Cdk4) knockin mice have significantly increased β cell mass and are physiologically functional, indicating that Cdk4 is a potential target for pancreatic β cell mass regeneration in Type 1 diabetes. Diabetologia 47:686–694

    PubMed  CAS  Google Scholar 

  • McDonald TJ, Ellard S (2013) Maturity onset diabetes of the young: identification and diagnosis. Ann Clin Biochem 50:403–415

    PubMed  Google Scholar 

  • McLin VA, Rankin SA, Zorn AM (2007) Repression of Wnt/β-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 134:2207–2217

    PubMed  CAS  Google Scholar 

  • Mettus RV, Rane SG (2003) Characterization of the abnormal pancreatic development, reduced growth and infertility in Cdk4 mutant mice. Oncogene 22:8413–8422

    PubMed  CAS  Google Scholar 

  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and β-catenin signalling: diseases and therapies. Nat Rev Genet 5:691–701

    PubMed  CAS  Google Scholar 

  • Moore AF et al (2008) Extension of type 2 diabetes genome-wide association scan results in the diabetes prevention program. Diabetes 57:2503–2510

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moritani M, Yamasaki S, Kagami M, Suzuki T, Yamaoka T, Sano T, Hata J, Itakura M (2005) Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-β1. Mol Cell Endocrinol 229:175–184

    PubMed  CAS  Google Scholar 

  • Murtaugh LC (2008) The what, where, when and how of Wnt/β-catenin signaling in pancreas development. Organogenesis 4:81–86

    PubMed  PubMed Central  Google Scholar 

  • Murtaugh LC, Law AC, Dor Y, Melton DA (2005) β-catenin is essential for pancreatic acinar but not islet development. Development 132:4663–4674

    PubMed  CAS  Google Scholar 

  • Nakhai H et al (2008) Conditional ablation of Notch signaling in pancreatic development. Development 135:2757–2765

    PubMed  CAS  Google Scholar 

  • Nauck MA, Meier JJ (2007) The enteroinsular axis may mediate the diabetogenic effects of TCF7L2 polymorphisms. Diabetologia 50:2413–2416

    PubMed  CAS  Google Scholar 

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, β-catenin, and cadherin pathways. Science 303:1483–1487

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC, Elsen J et al (1999) A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 19:1262–1269

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nusse R (2008) Wnt signaling and stem cell control. Cell Res 18:523–527

    PubMed  CAS  Google Scholar 

  • Owen KR, McCarthy MI (2007a) Genetics of type 2 diabetes. Curr Opin Genet Dev 17:239–244

    PubMed  CAS  Google Scholar 

  • Owen KR, McCarthy MI (2007b) Genetics of type 2 diabetes. Curr Opin Genet Develop 17:239–244

    CAS  Google Scholar 

  • Palmer ND et al (2008) Quantitative trait analysis of type 2 diabetes susceptibility loci identified from whole genome association studies in the insulin resistance atherosclerosis family study. Diabetes 57:1093–1100

    PubMed  CAS  Google Scholar 

  • Papadopoulou S, Edlund H (2005) Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function. Diabetes 54:2844–2851

    PubMed  CAS  Google Scholar 

  • Pascoe L, Tura A, Patel SK, Ibrahim IM, Ferrannini E, Zeggini E, Weedon MN, Mari A, Hattersley AT, McCarthy MI, Frayling TM, Walker M (2007) RISC Consortium; U.K. Type 2 Diabetes Genetics Consortium. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic β cell function. Diabetes 56:3101–3104

    PubMed  CAS  Google Scholar 

  • Pauls F, Bancroft RW (1950) Production of diabetes in the mouse by partial pancreatectomy. Am J Physiol 160:103–106

    PubMed  CAS  Google Scholar 

  • Pedersen AH, Heller RS (2005) A possible role for the canonical Wnt pathway in endocrine cell development in chicks. Biochem Biophys Res Commun 333:961–968

    PubMed  CAS  Google Scholar 

  • Perry JR, Frayling TM (2008) New gene variants alter type 2 diabetes risk predominantly through reduced β cell function. Curr Opin Clin Nutr Metab Care 11:371–377

    PubMed  CAS  Google Scholar 

  • Peters T, Ausmeier K, Dildrop R, Ruther U (2002) The mouse Fused toes (Ft) mutation is the result of a 1.6 Mb deletion including the entire Iroquois B gene locus. Mamm Genome 13:186–188

    PubMed  CAS  Google Scholar 

  • Petri A, Anfelt-Ronne J, Fredericksen RS, Edwards DG, Madsen D, Serup P, Fleckner J, Heller RS (2006) The effect of neurogenin3 deficiency on pancreatic gene expression in embryonic mice. J Mol Endocrinol 37:301–316

    PubMed  CAS  Google Scholar 

  • Ruchat SM et al (2009) Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies. Acta Diabetol. 46:217–226

    Google Scholar 

  • Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat Genet 22:44–52

    PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J (2006) The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20:1915–1924

    PubMed  CAS  Google Scholar 

  • Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabet Med 22:359–370

    PubMed  CAS  Google Scholar 

  • Riggs AC, Bernal-Mizrachi E, Ohsugi M et al (2005) Mice conditionally lacking the Wolfram gene in pancreatic islet β cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 48:2313–2321

    PubMed  CAS  Google Scholar 

  • Rulifson JC, Karnik SK, ten Heiser PW, Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebrok M, Kim SK (2007) Wnt signaling regulates pancreatic β cell proliferation. Proc Natl Acad Sci USA 104:6247–6252

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sakaguchi Y, Inaba M, Kusafuka K, Okazaki K, Ikehara S (2006) Establishment of animal models for three types of pancreatic and analyses of regeneration mechanisms. Pancreas 33:371–381

    PubMed  Google Scholar 

  • Savic D, Ye H, Aneas I, Park SY, Bell GI, Nobrega MA (2011) Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. Genome Res 21(9):1417–1425

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saxena R et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1332–1336

    Google Scholar 

  • Schafer SA, Tschritter O, Machicao F, Thamer C, Stefan N, Gallwitz B, Holst JJ, Dekker JM, ‘t Hart LM, Nipeis G, van Haeften TW, Haring HU, Fritsche A (2007) Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia 59:2443–2450

    Google Scholar 

  • Schinner S, Ulgen F, Papewalis C, Schott M, Woelk A, Vidal-Puig A, Scherbaurm WA (2008) Regulation of insulin secretion, glucokinase gene transcription and β cell proliferation by adipocyte-derived Wnt signalling molecules. Diabetologia 51:147–154

    PubMed  CAS  Google Scholar 

  • Scott LJ et al (2007) A genome-wide association study of type 2 diabetes in France detects multiple susceptibility variants. Science 316:1341–1345

    PubMed  CAS  PubMed Central  Google Scholar 

  • Semenov MV, Habas R, Macdonald BT, He X (2007) SnapShot: Noncanonical Wnt signaling pathways. Cell 131:1738

    Google Scholar 

  • Serafimidis I, Rakatzi I, Episkopou V, Gouti M, Gavalas A (2008) Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors. Stem Cells 26:3–16

    PubMed  CAS  Google Scholar 

  • Shu L, Sauter NS, Schulthess FT, Matvevenko AV, Oberholzer J, Maedler K (2008) Transcription factor 7-like 2 regulates β cell survival and function in human pancreatic islets. Diabetes 57:645–653

    PubMed  CAS  Google Scholar 

  • Shu L, Matveyenko AV, Kerr-Conte J, Cho JH, McIntosh CH, Maedler K (2009) Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired β-cell function. Hum Mol Genet 18:2388–2399

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shu L, Zien K, Gutjahr G, Oberholzer J, Pattou F, Kerr-Conte J, Maedler K (2012) TCF7L2 promotes β cell regeneration in human and mouse pancreas. Diabetologia 55:3296–3307

    PubMed  CAS  Google Scholar 

  • Sladek R et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885

    PubMed  CAS  Google Scholar 

  • Smith U (2007) TCF7L2 and diabetes – what we Wnt to know. Diabetologia 50:5–7

    PubMed  CAS  Google Scholar 

  • Steinthorsdottir V et al (2007) CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genet 39:770–775

    PubMed  CAS  Google Scholar 

  • Takeda K, Inoue H, Tanizawa Y et al (2001) WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 10:477–484

    PubMed  CAS  Google Scholar 

  • Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150:1223–1234

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ubeda M, Rukstalis JM, Habener JF (2006) Inhibition of cyclin-dependent kinase 5 activity protects pancreatic β cells from glucotoxicity. J Biol Chem 281:28858–28864

    PubMed  CAS  Google Scholar 

  • Van Hoek M, Dehghan A, Witteman JC, Van Dulin CM, Utterfinden AG, Oostra BA, Hofman A, Sijbrands BA, Janssens AC (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128

    PubMed  PubMed Central  Google Scholar 

  • Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 5:367–377

    PubMed  CAS  Google Scholar 

  • Wada H, Okamoto H (2009) Roles of planar cell polarity pathway genes for neural migration and differentiation. Dev Growth Differ 51:233–240

    PubMed  Google Scholar 

  • Wang OM, Zhang Y, Yang KM, Zhou HY, Yano HJ (2006) Wnt/β-catenin signaling pathway is active in pancreatic development of rat embryo. World J Gastroenterol 12:2615–2619

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weedon MN (2007) The importance of TCF7L2. Diabet Med 24:1062–1066

    PubMed  CAS  Google Scholar 

  • Wells JM, Esni F, Bolvin GP, Aronow BJ, Stuart W, Combs C, Sklenka A, Leach SD, Lowy AM (2007) Wnt/β-catenin signaling is required for development of the exocrine pancreas. BMC Dev Biol 7:4

    PubMed  PubMed Central  Google Scholar 

  • Welters HJ, Kulkarni RN (2008) Wnt signaling: relevance to β cell biology and diabetes. Trends Endocrinol Metab 19:349–355

    PubMed  CAS  Google Scholar 

  • Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20:1394–1404

    PubMed  CAS  Google Scholar 

  • Xiong X, Shao W, Jin T (2012) New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic β-cells: the involvement of the Wnt signaling pathway effector β-catenin. Islets 4:359–365

    PubMed  PubMed Central  Google Scholar 

  • Xu X, D’Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H (2008) β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197–207

    PubMed  CAS  Google Scholar 

  • Yamada T, Ishihara H, Tamura A et al (2006) WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic β cells. Hum Mol Genet 15:1600–1609

    PubMed  CAS  Google Scholar 

  • Yan HX, Yang W, Zhang R, Chen L, Tang L, Zhai B, Liu SQ, Cao HF, Man XB, Wu HP, Wu MC, Wang HY (2006) Protein-tyrosine phosphatase PCP-2 inhibits β-catenin signaling and increases E-cadherin-dependent cell adhesion. J Biol Chem 281:15423–15433

    PubMed  CAS  Google Scholar 

  • Yang H, Li Q, Lee JH, Shu Y (2012) Reduction in Tcf7l2 expression decreases diabetic susceptibility in mice. Int J Biol Sci 8(6):791–801

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yano T, Liu Z, Donovan J, Thomas MK (2007) Habener JF (2007) Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic β cell survival by activation of the prosurvival kinase Akt. Diabetes 56:2946–2957

    PubMed  CAS  Google Scholar 

  • Yi F, Brubaker PL, Jin T (2005) TCF-4 mediates cell type-specific regulation of proglucagon gene expression by β-catenin and glycogen synthase kinase 3 β. J Biol Chem 280:1457–1464

    PubMed  CAS  Google Scholar 

  • Yi F, Sun J, Lim GE, Fantus IG, Brubaker PL, Jin T (2008) Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology 149:2341–2351

    PubMed  CAS  Google Scholar 

  • Zamparini AL, Watts T, Gardner CE, Tomlinson SR, Johnston GI, Brickman JM (2006) Hex acts with β-catenin to regulate anteroposterior patterning via a Groucho-related co-repressor and Nodal. Development 133:3709–3722

    PubMed  CAS  Google Scholar 

  • Zamparnini AL, Watts T, Gardner CE, Tomlinson SR, Johnston GI, Brickman JM (2006) Hex acts with β-catenin to regulate anteroposterior patterning via a Groucho-related co-repressor and Nodal. Development 133:3709–3722

    Google Scholar 

  • Zeggini et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao J, Schug J, Li M, Kaestner KH, Grant SF (2010) Disease-associated loci are significantly over-represented among genes bound by transcription factor 7-like 2 (TCF7L2) in vivo. Diabetologia 53:2340–2346

    PubMed  CAS  Google Scholar 

  • Zhou Y, Zhang E, Berggreen C, Jing X, Osmark P, Lang S, Cilio CM, Göransson O, Groop L, Renström E, Hansson O (2012) Survival of pancreatic β cells is partly controlled by a TCF7L2-p53-p53INP1-dependent pathway. Hum Mol Genet 21:196–207

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michael Rukstalis and Melissa Thomas for their helpful comments on this chapter and Sriya Avadhani, Violeta Stanojevic, and Karen McManus for their expert experimental assistance. Effort was supported in part by grants from the US Public Health Service, the American Diabetes Association, and the Juvenile Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel F. Habener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Habener, J.F., Liu, Z. (2015). Wnt Signaling in Pancreatic Islets. In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_13

Download citation

Publish with us

Policies and ethics