Skip to main content

Plant Cyanotoxins: Molecular Methods and Current Applications

  • Reference work entry
  • First Online:
Plant Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Though not being considered plants per se, cyanobacteria are photosynthetic microorganisms commonly inhabiting several aquatic systems worldwide. Proliferation of cyanobacteria on the water surface leads to the production of secondary metabolites with a high level of toxicity, known as cyanotoxins. Due to their impacts to humans, animals, and plants, these compounds have been extensively studied and are classified according to their mode of action in hepatotoxins (microcystins and nodularins), cytotoxins (cylindrospermopsin), and neurotoxins (anatoxins and saxitoxins). The so-called molecular methods are nowadays the most extensively applied methods in detecting, characterizing, and quantifying both cyanobacteria and cyanotoxins in any given sample. In this review are described the molecular methods currently used in cyanotoxin detection including PCR and non-PCR based techniques. In vitro studies, analytical methods, and immunoassays are the most used methods in the screening of these toxins, but recently proteomic studies have been proposed to study these cyanotoxins when affecting plants. The main impact of these molecules in plants includes the areas of agriculture, environment, health, and economy. Microcystins and cylindrospermopsin were shown to have negative effects in plants, both at the aquatic and terrestrial level. Being involved in the food chain, plants constitute an important nutrition and oxygen source, which requires a constant monitoring and attention in relation to cyanotoxins contaminations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aráoz R, Molgó J, Marsac NT. Neurotoxic cyanobacterial toxins. Toxicon. 2010;56(5):813–28.

    Article  PubMed  Google Scholar 

  • Azevedo CC, Azevedo J, Osório H, Vasconcelos V, Campos A. Early physiological and biochemical responses of rice seedlings to low concentration of microcystin-LR. Ecotoxicology. 2014;23:107–21.

    Article  CAS  PubMed  Google Scholar 

  • Baker L, Sendall BC, Gasser RB, Menjivar T, Neilan BA, Jex AR. Rapid, multiplex-tandem PCR assay for automated detections and differentiation of toxigenic cyanobacterial blooms. Mol Cell Probes. 2013;27:208–14.

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt-Oliveira MC. Detection of potential microcystin-producing cyanobacteria in Brazilian reservoirs with a mcyB molecular marker. Harmful Algae. 2003;2:51–60.

    Article  Google Scholar 

  • Bittencourt-Oliveira MC, Hereman TC, Cordeiro-Araújo MK, Macedo-Silva I, Dias CT, Sasaki FF, Moura AN. Phytotoxicity associated to microcystins: a review. Braz J Biol. 2014;74(4):753–60. doi:10.1590/1519-6984.06213.

    Article  CAS  PubMed  Google Scholar 

  • Burch MD. Effective doses, guidelines & regulations. In: Kenneth Hudnell H. editor. Proceedings of the interagency, international symposium on cyanobacterial harmful algal blooms (ISOC-HAB): state of the science and research needs; 2006; http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.363.7517&rep=rep1&type=pd

    Google Scholar 

  • Byth S. Palm island mystery disease. Med J Aust. 1980;2:40–2.

    CAS  PubMed  Google Scholar 

  • Carmichael W. Cyanobacteria secondary metabolites – the cyanotoxins. J Appl Bacteriol. 1992;72:445–59.

    Article  CAS  PubMed  Google Scholar 

  • Carmichael WW, Liu RH. Cyanobacterial toxins in the Salton Sea. Saline Syst. 2006;2:5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Song L, Dai J, Gan N, Liu Z. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon. 2004;43:393–400.

    Article  CAS  PubMed  Google Scholar 

  • Corbel S, Mougin C, Bouaïcha N. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere. 2014;96:1–15. doi:10.1016/j.chemosphere.2013.07.056.

    Article  CAS  PubMed  Google Scholar 

  • Falconer IR, Humpage AR. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int J Environ Res Public Health. 2005;2:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson KM, Saint PC. Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrosermopsin-producing Cyanobacteria. Environ Toxicol. 2003;18(2):120–5.

    Article  Google Scholar 

  • Francis G. Poisonous Australian lake. Nature. 1878;18:11–2.

    Article  Google Scholar 

  • Freitas M, Azevedo J, Pinto E, Neves J, Campos A, Vasconcelos V. Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.). Ecotoxicol Environ Saf. 2015a;116:59–67. doi:10.1016/j.ecoenv.2015.02.002.

    Article  CAS  PubMed  Google Scholar 

  • Freitas M, Campos A, Azevedo J, Barreiro A, Planchon S, Renaut J, Vasconcelos V. Lettuce (Lactuca sativa L.) leaf-proteome profiles after exposure to cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture: a concentration-dependent response. Phytochemistry. 2015b;110:91–103. doi:10.1016/j.phytochem.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F. Molecular ecology and environmental genomics of cyanobacteria. In: The cyanobacteria: molecular biology, genetics and evolution. 2008.

    Google Scholar 

  • Gillings M, Holley M. Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Lett Appl Microbiol. 1997;25:17–21.

    Article  CAS  PubMed  Google Scholar 

  • Hisbergues M, Christiansen G, Ruhiainen L, Sivonen K, Börner T. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch Microbiol. 2003;180:402–10.

    Article  CAS  PubMed  Google Scholar 

  • Jochimsen EM, Carmichael WW, An J, Denise MC, Cookson ST, Holmes CEM, Antunes MBC, Melo FDA, Lyra TM, Barreto VST, Azevedo SM, Jarvis WR. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med. 1998;338(13):873–8.

    Article  CAS  PubMed  Google Scholar 

  • Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol. 2005;7(4):519–29.

    Article  CAS  PubMed  Google Scholar 

  • Kellmann R, Mills T, Neilan BA. Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes. J Mol Evol. 2006;62:267–80.

    Article  CAS  PubMed  Google Scholar 

  • Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, Neilan BA. Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol. 2008;74(13):4044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinnear S, Fabbro L, Duivenvoorden L. Variable growth responses of water thyme (Hydrilla verticillata); to whole-cell extracts of Cylindrospermopsis raciborskii. Arch Environ Contam Toxicol. 2008;54:187–94.

    Article  CAS  PubMed  Google Scholar 

  • Kleinteich J, Wood SA, Puddick J, Schleheck D, Küpper FC, Dietrich D. Potent toxins in Arctic environments-presence of saxitoxins and an unusual microcystin variant in Arctic freshwater ecosystems. Chem Biol Interact. 2013;206(2):423–31.

    Article  CAS  PubMed  Google Scholar 

  • Kleinteich J, Hildebrand F, Wood SA, Cirés S, Agha R, Quesada A, Pearce DA, Convey P, Küpper FC, Dietrich DR. Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: a pyrosequencing approach. Antarct Sci. 2014;26(5):521–32.

    Article  Google Scholar 

  • Kurmayer R, Dittmann E, Fastner J, Chorus I. Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb Ecol. 2002;43:107–18. doi:10.1007/s00248-001-0039-3.

    Article  CAS  PubMed  Google Scholar 

  • Laughinghouse IV HD, Prá D, Silva-Stenico ME, Rieger A, Frescura VD, Fiore MF, Tedesco SB. Biomonitoring genotoxicity and cytotoxicity of Microcystis aeruginosa (Chroococcales, Cyanobacteria) using the Allium cepa test. Sci Total Environ. 2012;432:180–8. doi:10.1016/j.scitotenv.2012.05.093.

    Article  CAS  PubMed  Google Scholar 

  • Lopes VR, Ramos V, Martins A, Sousa M, Welker M, Antunes A, Vasconcelos V. Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Mar Environ Res. 2012;73:7–16.

    Article  CAS  PubMed  Google Scholar 

  • Máthé C, M-Hamvas M, Vasas G. Microcystin-LR and cylindrospermopsin induced alterations in chromatin organization of plant cells. Mar Drugs. 2013;11(10):3689–717. doi:10.3390/md11103689.

    Article  PubMed  PubMed Central  Google Scholar 

  • McElhiney J, Lawton LA. Detection of the cyanobacterial hepatotoxins microcystins. Toxicol Appl Pharmacol. 2005;203(3):219–30.

    Article  CAS  PubMed  Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int. 2013;59:303–27.

    Article  CAS  PubMed  Google Scholar 

  • Mihali TK, Kellmann R, Muenchoff JKD, Barrow KD, Neilan BA. Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol. 2008;74:716–22.

    Article  CAS  PubMed  Google Scholar 

  • Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol. 2003;185(9):2774–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffitt MC, Neilan BA. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol. 2004;70:6353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira C, Martins A, Azevedo J, Freitas M, Regueiras A, Vale M, Antunes A, Vasconcelos V. Application of real-time PCR in the assessment of the toxic cyanobacterium Cylindrospermopsis raciborskii abundance and toxicological potential. Appl Microbiol Biotechnol. 2011;92:189–97.

    Article  CAS  PubMed  Google Scholar 

  • Moreira C, Vasconcelos V, Antunes A. Phylogeny and biogeography of cyanobacteria and their produced toxins. Mar Drugs. 2013;11(11):4350–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreira C, Ramos V, Azevedo J, Vasconcelos V. Methods to detect cyanobacteria and their toxins in the environment. Appl Microbiol Biotechnol. 2014;98(19):8073–82.

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol. 1999;2(3):317–22.

    Article  CAS  PubMed  Google Scholar 

  • Neilan BA, Jacobs D, Del Dot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE. rRNA sequences and evolutionary relationships among toxic and non-toxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol. 1997;47:693–7.

    Article  CAS  PubMed  Google Scholar 

  • Nelissen B, van de Peer Y, Wilmotte A, de Wachter R. An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol. 1995;12:1166–73.

    CAS  PubMed  Google Scholar 

  • Osswald J, Rellán S, Gago A, Vasconcelos V. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ Int. 2007;33:1070–89.

    Article  CAS  PubMed  Google Scholar 

  • Ouahid Y, Pérez-Silva G, del Campo FF. Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions. Environ Toxicol. 2005;20:235–42.

    Article  CAS  PubMed  Google Scholar 

  • Pearson LA, Neilan BA. The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public risk health. Curr Opin Biotechnol. 2008;19:281–8.

    Article  CAS  PubMed  Google Scholar 

  • Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan BA. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine Drugs. 2010;8:1650–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto A, Campos A, Cameán A, Vasconcelos V. Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa). Ecotoxicol Environ Saf. 2011;74(7):1973–80. doi:10.1016/j.ecoenv.2011.06.009.

    Article  CAS  PubMed  Google Scholar 

  • Rantala A, Rizzi E, Castiglioni B, de Bellis G, Sivonen K. Identification of hepatotoxin-producing cyanobacteria by DNA-chip. Environ Microbiol. 2008;10(3):653–64. doi:10.1111/j.1462-2920.2007.01488.x.

    Article  CAS  PubMed  Google Scholar 

  • Rantala-Ylinen A, Känä S, Wang H, Rouhiainen L, Wahlsten M, Rizzi E, Berg K, Gugger M, Sivonnen K. Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl Environ Microbiol. 2011;77(20):7271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen JP, Giglio S, Monis PT, Campbell RJ, Saint CP. Development and field testing of a real-time PCR assay for cylindrospermopsin-producing cyanobacteria. J Appl Microbiol. 2008;104(5):1503–15. doi:10.1111/j.1365-2672.2007.03676.x.

    Article  CAS  PubMed  Google Scholar 

  • Rinta-Kanto JM, Ouellette AJA, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW. Quantification of toxic Microcystis spp. during the, 2003 and 2004 blooms in Western Lake Erie using quantitative real-time PCR. Environ Sci Technol. 2005;39(11):4198–205.

    Article  CAS  PubMed  Google Scholar 

  • Saker ML, Metcalf JS, Codd GA, Vasconcelos VM. Accumulation and depuration of the cyanobacterial toxin cylindrospermopsin in the freshwater mussel Anodonta cygnea. Toxicon. 2004;43(2):185–94.

    Article  CAS  PubMed  Google Scholar 

  • Schembri MA, Neilan BA, Saint CP. Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environ Toxicol. 2001;16(5):413–21.

    Article  CAS  PubMed  Google Scholar 

  • Sciuto K, Moro I. Cyanobacteria: the bright and dark sides of a charming group. Biodivers Conserv. 2015;24(4):711–38.

    Article  Google Scholar 

  • Sivonen K, Jones G. Cyanobacteria toxins. In: Chorus I, Bartram J, editors. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London: WHO. E & FN Spon; 1999.

    Google Scholar 

  • Sivonen K, Kononen K, Carmichael WW, Dahlem AM, Rinehat KL, Kiviranta J, Niemela SI. Occurrence of the hepatotoxic cyanobaterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl Environ Microbiol. 1989;55:1990–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet. 2005;6(10):782–92.

    Article  CAS  PubMed  Google Scholar 

  • Vaitomaa J, Rantala A, Halinen K, Rouhiainen L, Tallberg P, Mokelke L, Sivonen K. Quantitative real-time PCR for determination of Microcystin Synthetase E copy numbers for Microcystis and Anabaena in Lakes. Appl Environ Microbiol. 2003;69(12):7289–97. doi:10.1128/AEM.69.12.7289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, van der Gucht K, Debeer A-E, Lacerot G, de Meester L, Vyverman W. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One. 2011;6:e19561.

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO. Guidelines for drinking-water quality. Addendum to volume 2, health criteria and other supporting information. 2nd ed. Geneva: World Health Organization; 1998.

    Google Scholar 

  • Wilson LA, Sharp PM. Enterobacterial Repetitive Intergenic Consensus (ERIC) sequences in Escherichia coli: evolution and implications for ERIC-PCR. Mol Biol Evol. 2006;23(6):1156–68. doi:10.1093/molbev/msj125.

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Xie P, Guo L, Li L, Miyabara Y, Park HD. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environ Toxicol. 2005;20:293–300.

    Article  CAS  PubMed  Google Scholar 

  • Yavasoglu A, Karaaslan MA, Uyanikgil Y, Sayim F, Ates U, Yavasoglu NUK. Toxic effects of anatoxin-a on tests and sperm counts of male mice. Exp Toxicol Pathol. 2008;60:391–6.

    Article  CAS  PubMed  Google Scholar 

  • Ye W, Liu X, Tan J, Li D, Yang H. Diversity and dynamics of microcystin – producing cyanobacteria in China’ s third largest lake, Lake Taihu. Harmful Algae. 2009;8(5):637–44. doi:10.1016/j.hal.2008.10.010.

    Article  CAS  Google Scholar 

  • Žegura B, Gajski G, Å traser A, Garaj-Vrhovac V. Cylindrospermopsin induced DNA damage and alteration in the expression of genes involved in the response to DNA damage, apoptosis and oxidative stress. Toxicon. 2011;58(6–7):471–9.

    PubMed  Google Scholar 

Download references

Acknowledgments

AA was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT and European Regional Development Fund (ERDF) in the framework of the program PT2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristiana Moreira , Ana Matos , Rita Mendes or Agostinho Antunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Moreira, C., Matos, A., Mendes, R., Antunes, A. (2017). Plant Cyanotoxins: Molecular Methods and Current Applications. In: Carlini, C., Ligabue-Braun, R. (eds) Plant Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6464-4_18

Download citation

Publish with us

Policies and ethics