Skip to main content

Entomotoxic Plant Proteins: Potential Molecules to Develop Genetically Modified Plants Resistant to Insect-Pests

  • Reference work entry
  • First Online:
Plant Toxins

Abstract

Insect-pests are detrimental to several crops worldwide and cause significant economic losses in global agriculture. The effective control of insect-pests in agriculture demands different strategies, which vary from preventive cultural practices, mechanical control, chemical control, biological control, and the use of resistant plant varieties. When there is no natural plant genotype genetically resistant to insect-pests, development of genetically modified (GM) resistant plants is an option. The expression of bacterial Bacillus thuringiensis (Bt) entomotoxins in GM plants has been successfully applied in field conditions over the past few decades. Nevertheless, there are alternative entomotoxic proteins from plant sources, which may be synergistically used in the GM plant Bt strategy for the control of insect-pests. This review presents the biochemical properties and mechanisms of action of the most commonly described plant protein entomotoxins, including lectins, enzymes (ribosome-inactivating proteins (RIPs), ureases and urease-derived encrypted peptides, chitinases and proteases/peptidases/proteinases), inhibitors of insect digestive enzymes (protease inhibitors and α-amylase inhibitors), and peptides (defensins and cyclotides). In addition, this review discusses the potential application of plant entomotoxic proteins to develop durable control of insect-pests via GM plant strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbehenn RV, Constabel CP. Tannins in plant–herbivore interactions. Phytochemistry. 2011;72:1551–65.

    Article  CAS  PubMed  Google Scholar 

  • Barbeta BL, Marshall AT, Gillon AD, Craik DJ, Anderson MA. Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proc Natl Acad Sci U S A. 2008;105(4):1221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barros PR, Stassen H, Freitas MS, Carlini CR, Nascimento MAC, Follmer C. Membrane-disruptive properties of the bioinsecticide Jaburetox-2Ec: implications to the mechanism of the action of insecticidal peptides derived from ureases. Biochim Biophys Acta. 2009;1794:1848–54.

    Article  CAS  PubMed  Google Scholar 

  • Bell HA, Fitches EC, Down RE, Ford L, Marris GC, Edwards JP, Gatehouse JA, Gatehouse AMR. Effect of dietary cowpea trypsin inhibitor (CpTI) on the growth and development of the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae) and on the success of the gregarious ectoparasitoid, Eulophus pennicornis (Hymenoptera: Eulophidae). Pest Manag Sci. 2001;57(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  • Birkett M, Pickett J. Prospects of genetic engineering for robust insect resistance. Curr Opin Plant Biol. 2014;19C:59–67.

    Article  Google Scholar 

  • Bloch Jr C, Richardson M. A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolor L. Moench) have sequence homologies with wheat gamma-purothionins. FEBS Lett. 1991;279:101–4.

    Article  CAS  PubMed  Google Scholar 

  • Boulter D, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA. Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Prot. 1990;9:351–4.

    Article  Google Scholar 

  • Carlini CR, Grossi-de-Sá MF. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon. 2002;40(11):1515–39.

    Article  CAS  PubMed  Google Scholar 

  • Carlini CR, Guimarães JA. Isolation and characterization of a toxic protein from Canavalia ensiformis (jack bean) seeds, distinct from concanavalin A. Toxicon. 1981;19:667–75.

    Article  CAS  PubMed  Google Scholar 

  • Carlini CR, Oliveira AEA, Azambuja P, Xavier J, Wells MA. Biological effects of canatoxin in different insect models: evidence for a proteolytic activation of the toxin by insect cathepsin-like enzymes. J Econ Entomol. 1997;90:340–8.

    Article  CAS  PubMed  Google Scholar 

  • Chagolla-Lopez A, Blanco-Labra A, Patthy A, Sánchez R, Pongor S. A novel alpha-amylase inhibitor from amaranth (Amaranthus hypochondriacus) seeds. J Biol Chem. 1994;269:23675–80.

    CAS  PubMed  Google Scholar 

  • Chen Jr J, Chen G-H, Hsu H-C, Li S-S, Chen C-S. Cloning and functional expression of a mung bean defensin VrD1 in Pichia pastoris. J Agric Food Chem. 2004;52(8):2256–61.

    Article  CAS  PubMed  Google Scholar 

  • Chougule NP, Bonning BC. Toxins for transgenic resistance to hemipteran pests. Toxins. 2012;4:405–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cletus J, Balasubramanian V, Vashisht D, Sakthivel N. Transgenic expression of plant chitinases to enhance disease resistance. Biotechnol Lett. 2013;35(11):1719–32.

    Article  CAS  PubMed  Google Scholar 

  • Cohen E. Chitin synthesis and degradation as targets for pesticide action. Arch Insect Biochem Physiol. 1993;22:245–61.

    Article  CAS  PubMed  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K. Plant chitinases. Plant J. 1993;3:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Conlan BF, Colgrave ML, Gillon AD, Guarino R, Craik DJ, Anderson MA. Insights into processing and cyclization events associated with biosynthesis of the cyclic peptide kalata B1. J Biol Chem. 2012;287(33):28037–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consiglio A, Grillo G, Licciulli F, Ceci LR, Liuni S, Losito N, Volpicella M, Gallerani R, De Leo F. PlantPIs – an interactive web resource on plant protease inhibitors. Curr Protein Pept Sci. 2011;12:448–54.

    Article  CAS  PubMed  Google Scholar 

  • Czapla TH, Lang BA. Effect of plant lectins on the larval development of the European corn borer (Lepidoptera: Pyralidae) and the Southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol. 1990;83:2480–5.

    Article  Google Scholar 

  • Dang L, Van Damme EJM. Toxic proteins in plants. Phytochemistry. 2015;117:51–64.

    Article  CAS  PubMed  Google Scholar 

  • Dayler CSA, Mendes PAM, Prates MV, Block Jr C, Franco OL, Grossi-de-Sá MF. Identification of a novel bean α-amylase inhibitor with chitinolytic activity. FEBS Lett. 2005;579(25):5616–20.

    Google Scholar 

  • Defferrari MS, Demartini DR, Marcelino TB, Pinto PM, Carlini CR. Insecticidal effect of Canavalia ensiformis major urease on nymphs of the milkweed bug Oncopeltus fasciatus and characterization of digestive peptidases. Insect Biochem Mol Biol. 2011;41:388–99.

    Article  CAS  PubMed  Google Scholar 

  • Dias SC, Franco OL, Magalhães CP, de Oliveira-Neto OB, Laumann RA, Figueira EL, Melo FR, Grossi-de-Sá MF. Molecular cloning and expression of an alpha-amylase inhibitor from rye with potential for controlling insect-pests. Protein J. 2005;24(2):113–23.

    Article  CAS  PubMed  Google Scholar 

  • Down RE, Ford L, Woodhouse SD, Davison GM, Majerus ME, Gatehouse JA, Gatehouse AM. Tritrophic interactions between transgenic potato expressing snowdrop lectin (GNA), an aphid pest (peach-potato aphid; Myzus persicae (Sulz.) and a beneficial predator (2-spot ladybird; Adalia bipunctata L.). Transgenic Res. 2003;12(2):229–41.

    Article  CAS  PubMed  Google Scholar 

  • Down RE, Fitches EC, Wiles DP, Corti P, Bell HA, Gatehouse JA, Edwards JP. Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pest Manag Sci. 2006;61(1):77–85.

    Article  Google Scholar 

  • Farias LR, Costa FT, Souza LA, Pelegrini PB, Grossi-de-Sá MF, Maria Neto S, Bloch Jr C, Laumann RA, Noronha EF, Franco OL. Isolation of a novel Carica papaya alpha-amylase inhibitor with deleterious activity toward Callosobruchus maculatus. Pestic Biochem Physiol. 2007;87:255–60.

    Article  CAS  Google Scholar 

  • Feng GH, Richardson M, Chen MS, Kramer KJ, Morgan TD, Reeck GR. Alpha-Amylase inhibitors from wheat: a sequences and patterns of inhibition of insect and human alpha-amylase. Insect Biochem Mol Biol. 1996;26:419–26.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-da-Silva CT, Gombarovits ME, Masuda H, Oliveira CM, Carlini CR. Proteolytic activation of canatoxin, a plant toxic protein, by insect cathepsin-like enzymes. Arch Insect Biochem Physiol. 2000;44:162–71.

    Article  CAS  Google Scholar 

  • Fitches E, Edwards MG, Mee C, Grishin E, Gatehouse AM, Edwards JP. Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol. 2004;50:61–71.

    Article  CAS  PubMed  Google Scholar 

  • Follmer C, Real-Guerra R, Wasserman GE, Oliveira-Severo D, Carlini CR. Jackbean, soybean and Bacillus pasteurii ureases – biological effects unrelated to ureolytic activity. Eur J Biochem. 2004;271:1357–63.

    Article  CAS  PubMed  Google Scholar 

  • Franco OL, Riggen DJ, Melo FR, Bloch C, Silva C, Grossi-de-Sá MF. Activity of wheat α-amylase inhibitors towards bruchid α-amylases and structural explanation of observed specificities. Eur J Biochem. 2000;267:1466–73.

    Article  Google Scholar 

  • Franco OL, Rigden DJ, Melo FR, Grossi-de-Sá MF. Plant α-amylase inhibitors and their interaction with insect α-amylases – structure, function and potential for crop protection. Eur J Biochem. 2002;269:397–412.

    Article  CAS  PubMed  Google Scholar 

  • Galvani GL, Frutteroc LL, Coronel MF, Nowicki S, Demartini DR, Defferrari MS, Postal M, Canavoso LE, Carlini CR, Settembrini BP. Effect of the urease-derived peptide Jaburetox on the central nervous system of Triatoma infestans (Insecta: Heteroptera). Biochim Biophys Acta. 2015;1850:255–62.

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse AM, Gatehouse JA, Bharathi M, Spence J, Powell KS. Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectinon the rice brown planthopper Nilaparvata lugens (Stal). J Insect Physiol. 1998;44:529–39.

    Article  PubMed  Google Scholar 

  • Grossi-de-Sá MF, Mirkov TE, Ishimoto M, Colucci G, Bateman KS, Chrispeels MJ. Molecular characterization of a bean alpha-amylase inhibitor that inhibits the alpha-amylase of the Mexican bean weevil Zabrotes subfasciatus. Planta. 1997;203:295–303.

    Article  PubMed  Google Scholar 

  • Harrison RL, Bonning BC. Proteases as insecticidal agents. Toxins. 2010;2:935–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y-H, Colgrave ML, Daly NL, Keleshian A, Martinac B, Craik DJ. The biological activity of the prototypic cyclotide kalata B1 is modulated by the formation of multimeric pores. J Biol Chem. 2009;284:20699–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimoto M, Kitamura K. Growth inhibitory effects of an alpha-amylase from kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Appl Entomol Zool. 1989;24:281–6.

    Google Scholar 

  • James C. Global Status of Commercialized Biotech/GM Crops: 2014. ISAAA brief, no. 49. Ithaca: International Service for the Acquisition of Agri-Biotech Applications-ISAAA; 2014.

    Google Scholar 

  • Jennings C, West J, Waine C, Craik D, Anderson M. Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci U S A. 2001;98(19):10614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings CV, Rosengren KJ, Daly NL, Plan M, Stevens J, Scanlon MJ, Waine C, Norman DG, Anderson MA, Craik DJ. Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: do Möbius strips exist in nature? Biochemistry. 2005;44:851–60.

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Siregar U, Willeford KO, Luthe DS, Williams WP. Association of a 33-kilodalton cysteine proteinase found in corn callus with the inhibition of fall armyworm larval growth. Plant Physiol. 1995;108:1631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q-L, Zhang S, Tian M, Zhang SY, Xie T, Chen DY, Chen Y-J, He J, Liu J, Ouyang L, Jiang X. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Prolif. 2015;48:17–28.

    Article  CAS  PubMed  Google Scholar 

  • Jongsma MA, Beekwilder J. Co-evolution of insect proteases and plant protease inhibitors. Curr Protein Pept Sci. 2011;12:437–47.

    Article  CAS  PubMed  Google Scholar 

  • Kamimori H, Hall K, Craik DJ, Aguilar MI. Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. Anal Biochem. 2005;337:149–53.

    Article  CAS  PubMed  Google Scholar 

  • Kaur I, Gupta RC, Puri M. Ribosome inactivating proteins from plants inhibiting viruses. Virol Sin. 2011;26(6):357–65.

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Kaur N, Gupta AK. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors. Pestic Biochem Physiol. 2014;116:83–93.

    Article  CAS  PubMed  Google Scholar 

  • Kelemu S, Cardona C, Segura G. Antimicrobial and insecticidal protein isolated from seeds of Clitoria ternatea, a tropical forage legume. Plant Physiol Biochem. 2004;42(11):867–73.

    Article  CAS  PubMed  Google Scholar 

  • Kitajima S, Kamei K, Taketani S, Yamaguchu M, Kaeai F. Two chitinase-like proteins abundantly accumulated in latex of mulberry show insecticidal activity. BMC Biochem. 2010;11:6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K. Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J. 2004;37:370–8.

    Article  CAS  PubMed  Google Scholar 

  • Lacerda AF, Vasconcelos EA, Pelegrini PB, Grossi-de-Sá MF. Antifungal defensins and their role in plant defense. Front Microbiol. 2014;5:116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lay FT, Brugliera F, Anderson MA. Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol. 2003;131(3):1283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez L, Camas A, Shivaji R, Ankala A, Williams P, Luthe D. Mir1-CP, a novel defense cysteine protease accumulates in maize vascular tissues in response to herbivory. Planta. 2007;226:517–27.

    Article  CAS  PubMed  Google Scholar 

  • Lucena WA, Pelegrini PB, Martins-de-Sa D, Fonseca FC, Gomes Jr JE, de Macedo LL, da Silva MC, Oliveira RS, Grossi-de-Sá MF. Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins. Toxins. 2014;6(8):2393–423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macedo MLR, Oliveira CFR, Costa PM, Castellano EC, Silva-Filho MC. Adaptive mechanisms of insect-pests against plant protease inhibitors and future prospects related to crop protection: a review. Protein Pept Lett. 2015a;22(2):149–63.

    Article  CAS  PubMed  Google Scholar 

  • Macedo MLR, Oliveira CFR, Oliveira CT. Insecticidal activity of plant lectins and potential application in crop protection. Molecules. 2015b;20:2014–33.

    Article  PubMed  Google Scholar 

  • Martinelli AHS, Kappaun K, Ligabue-Braun R, Piovesan AR, Defferrari MS, Stanisçuaski F, Demartini DR, Dal Belo CA, Almeida CGM, Follmer C, Verli H, Carlini CR, Pasquali G. Structure-function studies on jaburetox, a recombinant insecticidal peptide derived from jack bean (Canavalia ensiformis) urease. Biochim Biophys Acta. 2014;1840:935–44.

    Article  CAS  PubMed  Google Scholar 

  • McManus MT, Burgess EPJ, Philip B, Watson LM, Laing WA, Voisey CR, White DWR. Expression of the soybean (Kunitz) trypsin inhibitor in transgenic tobacco: effects on larval development of Spodoptera litura. Transgenic Res. 1999;8:383–95.

    Article  CAS  Google Scholar 

  • Mohan S, Ma PW, Pechan T, Bassford ER, Williams WP, Luthe DS. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J Insect Physiol. 2006;52:21–8.

    Article  CAS  PubMed  Google Scholar 

  • Mohan S, Ma PW, Williams WP, Luthe DS. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect-pests and synergizes Bacillus thuringiensis toxin. PLoS One. 2008;3(3):e1786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondal HA, Chakraborti D, Majumder P, Roy P, Roy A, Bhattacharya SG, Das S. Allergenicity assessment of Allium sativum leaf agglutinin, a potential candidate protein for developing sap-sucking insect resistant food crops. PLoS One. 2011;6(11):e27716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulinari F, Stanisçuaski F, Bertholdo-Vargas LR, Postal M, Oliveira-Neto OB, Rigden DJ, Grossi-de-Sá MF, Carlini CR. Jaburetox-2Ec: an insecticidal peptide derived from an isoform of urease from the plant Canavalia ensiformis. Peptides. 2007;28:2042–50.

    Article  CAS  PubMed  Google Scholar 

  • Mulinari F, Becker-Ritt AB, Demartini DR, Ligabue-Braun R, Stanisçuaski F, Verli H, Fragoso RR, Schroeder EK, Carlini CR, Grossi-de-Sá MF. Characterization of JBURE-IIb isoform of Canavalia ensiformis (L) DC urease. Biochem Biophysic Acta. 2011;1814:1758–68.

    CAS  Google Scholar 

  • Murdock LL, Huesing JÁ, Nielsen SS, Pratt RC, Shade RE. Biological effects of plant lectins on the cowpea weevil. Phytochemistry. 1990;29(1):85–9.

    Article  CAS  Google Scholar 

  • Nagpure A, Choudhary B, Gupta RK. Chitinases: in agriculture and human healthcare. Crit Rev Biotechnol. 2014;34(3):215–32.

    Article  CAS  PubMed  Google Scholar 

  • Nahoum V, Roux G, Anton V, Rougé P, Puigserver A, Bischoff H, Henrissat B, Payan F. Crystal structures of human pancreatic alpha-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochem J. 2000;346:201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira-Neto OB, Batista JA, Rigden DJ, Franco OL, Falcão R, Fragoso RR, Mello LV, dos Santos RC, Grossi-de-Sá MF. Molecular cloning of alpha-amylases from cotton boll weevil, Anthonomus grandis and structural relations to plant inhibitors: an approach to insect resistance. J Protein Chem. 2003;22(1):77–87.

    Article  CAS  PubMed  Google Scholar 

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins. 2014;6:3296–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pechan T, Jiang B, Steckler D, Ye L, Lin L, Luthe DS, Williams WP. Characterization of three distinct cDNA clones encoding cysteine proteinases from maize (Zea mays L.) callus. Plant Mol Biol. 1999;40:111–9.

    Article  CAS  PubMed  Google Scholar 

  • Pechan T, Ye L, Chang Y, Mitra A, Lin L, Davis FM, Williams WP, Luthe DS. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell. 2000;12:1031–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pechan T, Cohen A, Williams WP, Luthe DS. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc Natl Acad Sci U S A. 2002;99:13319–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelegrini PB, Quirino BF, Franco OL. Plant cyclotides: an unusual class of defense compounds. Peptides. 2007;28:1475–81.

    Article  CAS  PubMed  Google Scholar 

  • Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL. Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins. 2008;73(3):719–29.

    Article  CAS  PubMed  Google Scholar 

  • Pinto MF, Fensterseifer IC, Migliolo L, Sousa DA, de Capdfville G, Arboleda-Valencia JW, Colgrave ML, Craik DJ, Magalhães BS, Dias SC, Franco OL. Identification and structural characterization of novel cyclotide with activity against an insect pest of sugar cane. J Biol Chem. 2012;287(1):134–47.

    Article  CAS  PubMed  Google Scholar 

  • Piovesan AR, Martinelli AHS, Ligabue-Braun R, Schwartz J-L, Carlini CR. Canavalia ensiformis urease, Jaburetox and derived peptides form ion channels in planar lipid bilayers. Arch Biochem Biophys. 2014;547:6–17.

    Article  CAS  PubMed  Google Scholar 

  • Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA. Antimetabolic effects of plant lectins and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomologia Experimentalis et Applicata 1993;66(2):119–126.

    Article  CAS  Google Scholar 

  • Pusztai A. Plant lectins. Cambridge, MA: Cambridge University Press; 1991.

    Google Scholar 

  • Rosengren KJ, Daly NL, Harvey PJ, Craik DJ. The self-association of the cyclotide kalata B2 in solution is guided by hydrophobic interactions. Biopolymers. 2013;100(5):453–60.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Monge R, Gomez L, Garcia-Olmedo F, Salcedo G. New dimeric inhibitor of heterologous alpha-amylase encoded by a duplicated gene in the short armo f ahromosome 3B of wheat (Triticum aestivum L.). Eur J Biochem. 1989;183:37–40.

    Article  CAS  PubMed  Google Scholar 

  • Santos IS, Carvalho AO, Souza-Filho GA, Nascimento VV, Machado OL, Gomes VM. Purification of a defensin isolated from Vigna unguiculata seeds, its functional expression in Escherichia coli, and assessment of its insect α-amylase inhibitory activity. Protein Expr Purif. 2010;71:8–15.

    Article  PubMed  Google Scholar 

  • Sauvion N, Charles H, Febvay G, Rahbe Y. Effects of jack bean lectin (ConA) on the feeding behaviour and kinetics of intoxication of the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl. 2004a;110:31–44.

    Article  CAS  Google Scholar 

  • Sauvion N, Nardon C, Febvay G, Gatehouse AMR, Rahbe Y. Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells. J Insect Physiol. 2004b;50:1137–50.

    Article  CAS  PubMed  Google Scholar 

  • Schimoler-O’Rourke R, Richardson M, Selitrennikoff CP. Zeamatin inhibits trypsin and α-amylase activities. Appl Environ Microbiol. 2001;67(5):2365–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva CP, Terra WR, Xavier-Filho J, Grossi-de-Sá MF, Isekima EM, Damatta RA, Miguens FC, Bifano TD. Digestion of legume starch granules by larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) and the induction of alpha-amylase in response to different diets. Insect Biochem Mol Biol. 2001;31:41–50.

    Article  CAS  PubMed  Google Scholar 

  • Stanisçuaski F, Carlini CR. Plant ureases and related peptides: understanding their entomotoxic properties. Toxins. 2012;4:55–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanisçuaski F, Brugge VT, Carlini CR, Orchard I. Jack bean urease alters serotonin-induced effects on Rhodnius prolixus anterior midgut. J Insect Physiol. 2010;56:1078–86.

    Article  PubMed  Google Scholar 

  • Stirpe F. Ribosome-inactivating proteins: from toxins to useful proteins. Toxicon. 2013;67:12–6.

    Article  CAS  PubMed  Google Scholar 

  • Sumner JB. The isolation and crystallization of the enzyme urease. J Biol Chem. 1926;69:435–41.

    CAS  Google Scholar 

  • Titarenko E, Chrispeels MJ. cDNA cloning, biochemical characterization and inhibition by plant inhibitors of the alpha-amylase of the Western corn rootworm, Diabrotica virgifera virgifera. Insect Biochem Mol Biol. 2000;30:979–90.

    Article  CAS  PubMed  Google Scholar 

  • Tomazetto G, Mulinari F, Stanisçuaski F, Settembrini B, Carlini CR, Zachia Ayub MA. Expression kinetics and plasmid stability of recombinant E. coli encoding urease-derived peptide with bioinsecticide activity. Enzyme Microb Technol. 2007;41:821–7.

    Article  CAS  Google Scholar 

  • Valencia A, Bustillo AE, Ossa GE, Chrispeels MJ. α-Amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochem Mol Biol. 2000;30:207–13.

    Article  CAS  PubMed  Google Scholar 

  • Valencia-Jiménez A, Arboleda-Valencia JW, Grossi-de-Sá MF. Activity of alpha-amylase inhibitors from Phaseolus coccineus on digestive alpha-amylases of the coffee berry borer. J Agric Food Chem. 2008;56(7):2315–20.

    Article  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006;44:135–62.

    Article  PubMed  Google Scholar 

  • Vandenborre G, Smagghe G, Gesquière B, Menschaert G, Rao RN, Gevaert K, Van Damme EJM. Diversity in protein glycosylation among insect species. PLoS One. 2011;6(2):e16682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayan S, Imani J, Tanneeru K, Guruprasad L, Kogel KH, Kirti PB. Enhanced antifungal and insect α-amylase inhibitory activities of Alpha-TvD1, a peptide variant of Tephrosia villosa defensin (TvD1) generated through in vitro mutagenesis. Peptides. 2012;33(2):220–9.

    Article  CAS  PubMed  Google Scholar 

  • Virgilio M, Lombardi A, Caliandro R, Fabbrini MS. Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins. 2010;2:2699–737.

    Article  PubMed  PubMed Central  Google Scholar 

  • Younis A, Siddique MI, Kim C-K, Lim K-B. RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Biol Sci. 2014;10:1150–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu-Salzman K, Zeng R. Insect response to plant defensive protease inhibitors. Annu Rev Entomol. 2015;60:233–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Fátima Grossi-de-Sá or Marilia S. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Grossi-de-Sá, M.F., Pelegrini, P.B., Vasconcelos, I.M., Carlini, C.R., Silva, M.S. (2017). Entomotoxic Plant Proteins: Potential Molecules to Develop Genetically Modified Plants Resistant to Insect-Pests. In: Carlini, C., Ligabue-Braun, R. (eds) Plant Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6464-4_13

Download citation

Publish with us

Policies and ethics