Skip to main content

Plant Compounds with Antiophidic Activities, Their Discovery History, and Current and Proposed Applications

  • Reference work entry
  • First Online:
Plant Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Snakebite is a complex neglected health problem for which the best treatment is the – not always available – antivenom, posing a challenge to health care systems worldwide. It affects different countries and cultures which employ particular approaches for the treatment and expertise apart from the officially recommended. Ancient folk knowledge on the use of plants against snake-related accidents is well established, especially in Asia, where healers or specialists on ethnobotany propose plants for the treatment of the snake envenoming. Although folk medicine traditionally employed plants against snakebites, this is not well established in developed countries, in part due to competition with powerful pharmaceutical companies. Even so, numerous plants with antiophydic properties have been investigated, with a vast number yet to be explored. Scientists studying snake envenoming treatment over the past decades have proposed promising compounds such as coumestans from Eclipta sp. and triterpenes from Hemidesmus sp. and Combretum sp. The aim of this chapter is to review relevant publications on antiophydic plants, some with known active molecules already isolated and explored, yet with no intention of exhausting the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A Barefoot Doctor’s Manual: The American Translation of the Official Chinese Paramedical Manual. Philadelphia: Running Press; 1977.

    Google Scholar 

  • Bickoff EM, Loper GM, Hanson CH, Graham JH, Witt SC, Spencer RR. Effect of common leafspot on coumestans and flavones in alfalfa. Crop Sci. 1967;7(3):259–61.

    Article  CAS  Google Scholar 

  • Butt MA, Ahmad M, Fatima A, Sultana S, Zafar M, Yaseen G, Ashraf MA, Shinwari ZK, Kayani S. Ethnomedicinal uses of plants for the treatment of snake and scorpion bite in Northern Pakistan. J Ethnopharmacol. 2015;168:164–81.

    Article  CAS  PubMed  Google Scholar 

  • Carneiro AS, Ribeiro OG, Cabrera WH, Vorraro F, De FM, Ibanez OM, Starobinas N. Bothrops jararaca venom (BjV) induces differential leukocyte accumulation in mice genetically selected for acute inflammatory reaction: the role of host genetic background on expression of adhesion molecules and release of endogenous mediators. Toxicon. 2008;52(5):619–27.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee I, Chakravarty AK, Gomes A. Daboia russellii and Naja kaouthia venom neutralization by lupeol acetate isolated from the root extract of Indian sarsaparilla Hemidesmus indicus R.Br. J Ethnopharmacol. 2006;106(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  • Chifundera K. Antivenomous plants used in the zairean pharmacopoeia. Afr Stud Monogr. 1987;7:21–35.

    Google Scholar 

  • Coe FG, Anderson GJ. Snakebite ethnopharmacopoeia of eastern Nicaragua. J Ethnopharmacol. 2005;96(1–2):303–23.

    Article  PubMed  Google Scholar 

  • Costa EP, Clissa PB, Teixeira CFP, Moura-da-Silva AM. Importance of metalloproteinases and macrophages in viper snake envenomation-induced local inflammation. Inflammation. 2002;26(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  • da Silva AJ, Melo PA, Silva NM, Brito FV, Buarque CD, de Souza DV, Rodrigues VP, Pocas ES, Noel F, Albuquerque EX, Costa PR. Synthesis and preliminary pharmacological evaluation of coumestans with different patterns of oxygenation. Bioorg Med Chem Lett. 2001;11(3):283–6.

    Article  PubMed  Google Scholar 

  • da Silva AJ, Buarque CD, Brito FV, Aurelian L, Macedo LF, Malkas LH, Hickey RJ, Lopes DV, Noel F, Murakami YL, Silva NM, Melo PA, Caruso RR, Castro NG, Costa PR. Synthesis and preliminary pharmacological evaluation of new (+/−) 1,4-naphthoquinones structurally related to lapachol. Bioorg Med Chem. 2002;10(8):2731–8.

    Article  PubMed  Google Scholar 

  • da Silva AJ, Coelho AL, Simas AB, Moraes RA, Pinheiro DA, Fernandes FF, Arruda EZ, Costa PR, Melo PA. Synthesis and pharmacological evaluation of prenylated and benzylated pterocarpans against snake venom. Bioorg Med Chem Lett. 2004;14(2):431–5.

    Article  PubMed  Google Scholar 

  • da Silva NM, Arruda EZ, Murakami YL, Moraes RA, El-Kik CZ, Tomaz MA, Fernandes FF, Oliveira CZ, Soares AM, Giglio JR, Melo PA. Evaluation of three Brazilian antivenom ability to antagonize myonecrosis and hemorrhage induced by Bothrops snake venoms in a mouse model. Toxicon. 2007;50(2):196–205.

    Article  PubMed  Google Scholar 

  • Driscoll JS, Hazard Jr GF, Wood Jr HB, Goldin A. Structure-antitumor activity relationships among quinone derivatives. Cancer Chemother Rep 2. 1974;4(2):1–362.

    CAS  PubMed  Google Scholar 

  • Farsky SHP, Walber J, CostaCruz M, Curry Y, Teixeira CFP. Leukocyte response induced by Bothrops jararaca crude venom: in vivo and in vitro studies. Toxicon. 1997;35(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes FF, Tomaz MA, El-Kik CZ, Monteiro-Machado M, Strauch MA, Cons BL, Tavares-Henriques MS, Cintra AC, Facundo VA, Melo PA. Counteraction of Bothrops snake venoms by Combretum leprosum root extract and arjunolic acid. J Ethnopharmacol. 2014;155(1):552–62.

    Article  CAS  PubMed  Google Scholar 

  • Fuly AL, Calil-Elias S, Martinez AM, Melo PA, Guimaraes JA. Myotoxicity induced by an acidic Asp-49 phospholipase A(2) isolated from Lachesis muta snake venom. Comparison with lysophosphatidylcholine. Int J Biochem Cell Biol. 2003;35(10):1470–81.

    Article  CAS  PubMed  Google Scholar 

  • Gomes A, Saha A, Chatterjee I, Chakravarty AK. Viper and cobra venom neutralization by beta-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae). Phytomedicine. 2007;14(9):637–43.

    Article  CAS  PubMed  Google Scholar 

  • Gupta YK, Peshin SS. Do herbal medicines have potential for managing snake bite envenomation? Toxicol Int. 2012;19(2):89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez JM, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000;82(9–10):841–50.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JM, Nunez J, Escalante T, Rucavado A. Blood flow is required for rapid endothelial cell damage induced by a snake venom hemorrhagic metalloproteinase. Microvasc Res. 2006;71(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JM, Williams D, Fan HW, Warrell DA. Snakebite envenoming from a global perspective: towards an integrated approach. Toxicon. 2010;56(7):1223–35.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JM, Warrell DA, Williams DJ, Jensen S, Brown N, Calvete JJ, Harrison RA. The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: the way forward. PLoS Negl Trop Dis. 2013;7(6):e2162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Lalloo DG. Snake envenoming: a disease of poverty. PLoS Negl Trop Dis. 2009;3(12):e569.

    Article  PubMed  PubMed Central  Google Scholar 

  • Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol. 1983;32(7):1141–8.

    Article  CAS  PubMed  Google Scholar 

  • Houghton PJ, Osibogun IM. Flowering plants used against snakebite. J Ethnopharmacol. 1993;39:1–29.

    Article  CAS  PubMed  Google Scholar 

  • Kadir MF, Karmoker JR, Alam MR, Jahan SR, Mahbub S, Mia MM. Ethnopharmacological survey of medicinal plants used by traditional healers and indigenous people in Chittagong Hill tracts, Bangladesh, for the treatment of snakebite. Evid Based Complement Altern Med. 2015;2015:871675.

    Article  Google Scholar 

  • Liu Y, Staerk D, Nielsen MN, Nyberg N, Jäger AK. High-resolution hyaluronidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of anti-necrosis constituents in Chinese plants used to treat snakebite. Phytochemistry. 2015;119:62–9.

    Article  CAS  PubMed  Google Scholar 

  • Luiz AP, Moura JD, Meotti FC, Guginski G, Guimaraes CL, Azevedo MS, Rodrigues AL, Santos AR. Antinociceptive action of ethanolic extract obtained from roots of Humirianthera ampla Miers. J Ethnopharmacol. 2007;114(3):355–63.

    Article  CAS  PubMed  Google Scholar 

  • Martz W. Plants with a reputation against snakebite. Toxicon. 1992;30(10):1131–42.

    Article  CAS  PubMed  Google Scholar 

  • McGaw LJ, Rabe T, Sparg SG, Jager AK, Eloff JN, Van Staden J. An investigation on the biological activity of Combretum species. J Ethnopharmacol. 2001;75(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  • Mello LF, Barcelos MG, Meohas W, Pinto LW, Melo PA, Nogueira Neto NC, Smith J. Chronic ulceration of the leg following extensive scarring due to a snake bite complicated by squamous cell carcinoma. Skeletal Radiol. 2000;29(5):298–301.

    Article  CAS  PubMed  Google Scholar 

  • Melo PA, Ownby CL. Ability of wedelolactone, heparin, and para-bromophenacyl bromide to antagonize the myotoxic effects of two crotaline venoms and their PLA2 myotoxins. Toxicon. 1999;37(1):199–215.

    Article  CAS  PubMed  Google Scholar 

  • Melo PA, do Nascimento MC, Mors WB, Suarez-Kurtz G. Inhibition of the myotoxic and hemorrhagic activities of crotalid venoms by Eclipta prostrata (Asteraceae) extracts and constituents. Toxicon. 1994;32(5):595–603.

    Article  CAS  PubMed  Google Scholar 

  • Melo PA, Burns CF, Blankemeyer JT, Ownby CL. Membrane depolarization is the initial action of crotoxin on isolated murine skeletal muscle. Toxicon. 2004;43(2):111–9.

    Article  CAS  PubMed  Google Scholar 

  • Melo PA, Pinheiro DA, Ricardo HD, Fernandes FF, Tomaz MA, El-Kik CZ, Strauch MA, da Fonseca TF, Sifuentes DN, Calil-Elias S, Buarque CD, Brito FV, Costa PR, Da Silva AJ. Ability of a synthetic coumestan to antagonize Bothrops snake venom activities. Toxicon. 2010;55(2–3):488–96.

    Article  CAS  PubMed  Google Scholar 

  • Molander M, Saslis-Lagoudakis CH, Jäger AK, Rønsted N. Cross-cultural comparison of medicinal floras used against snakebites. J Ethnopharmacol. 2012;139(3):863–72.

    Article  PubMed  Google Scholar 

  • Mors WB. Planta active against snake bite. In: Wagner H, Hikino H, Farnsworth NR, editors. Economic and medicinal plant research, vol. 5. 1st ed. New York: Academic; 1991.

    Google Scholar 

  • Mors WB, do Nascimento MC, Parente JP, Da Silva MH, Melo PA, Suarez-Kurtz G. Neutralization of lethal and myotoxic activities of South American rattlesnake venom by extracts and constituents of the plant Eclipta prostrata (Asteraceae). Toxicon. 1989;27(9):1003–9.

    Article  CAS  PubMed  Google Scholar 

  • Mors WB, Nascimento MC, Pereira BM, Pereira NA. Plant natural products active against snake bite-the molecular approach. Phytochemistry. 2000;55(6):627–42.

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owuor BO, Kisangau DP. Kenyan medicinal plants used as antivenin: a comparison of plant usage. J Ethnobiol Ethnomed. 2006;2(7):1–8.

    Google Scholar 

  • Patrão-Neto FC, Tomaz MA, Strauch MA, Monteiro-Machado M, Rocha Jr JR, Borges PA, Calil-Elias S, Melo PA. Dexamethasone antagonizes the in vivo myotoxic and inflammatory effects of Bothrops venoms. Toxicon. 2013;69:55–64.

    Article  PubMed  Google Scholar 

  • Pereira NA, Pereira BM, do Nascimento MC, Parente JP, Mors WB. Pharmacological screening of plants recommended by folk medicine as snake venom antidotes; IV. Protection against jararaca venom by isolated constituents. Planta Med. 1994;60(2):99–100.

    Article  CAS  Google Scholar 

  • Pithayanukul P, Laovachirasuwan S, Bavovada R, Pakmanee N, Suttisri R. Anti-venom potential of butanolic extract of Eclipta prostrata against Malayan pit viper venom. J Ethnopharmacol. 2004;90(2–3):347–52.

    Article  PubMed  Google Scholar 

  • Reyes-Chilpa R, Gomez-Garibay F, Quijano L, Magos-Guerrero GA, Rios T. Preliminary results on the protective effect of (-)-edunol, a pterocarpan from Brongniartia podalyrioides (Leguminosae), against Bothrops atrox venom in mice. J Ethnopharmacol. 1994;42(3):199–203.

    Article  CAS  PubMed  Google Scholar 

  • Samy RP, Thwin MM, Gopalakrishnakone P, Ignacimuthu S. Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu, India. J Ethnopharmacol. 2008;115(2):302–12.

    Article  PubMed  Google Scholar 

  • Sanchez EF, Freitas TV, Ferreira-Alves DL, Velarde DT, Diniz MR, Cordeiro MN, Agostini-Cotta G, Diniz CR. Biological activities of venoms from South American snakes. Toxicon. 1992;30(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  • Shen BA. New golden age of natural products drug discovery. Cell. 2015;163(6):1297–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva GL, Matos FJA, Silveira ER. 4′-dehydroxycabenegrin A-I from roots of Harpalyce brasiliana. Phytochemistry. 1997;46(6):1059–62.

    Article  Google Scholar 

  • Strauch MA, Tomaz MA, Monteiro-Machado M, Ricardo HD, Cons BL, Fernandes FF, El-Kik CZ, Azevedo MS, Melo PA. Antiophidic activity of the extract of the Amazon plant Humirianthera ampla and constituents. J Ethnopharmacol. 2013;145(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira CF, Cury Y, Moreira V, Picolob G, Chaves F. Inflammation induced by Bothrops asper venom. Toxicon. 2009;54(7):988–97.

    Article  CAS  PubMed  Google Scholar 

  • Torres MC, Jorge RJ, Ximenes RM, Alves NT, Santos JV, Marinho AD, Monteiro HS, Toyama MH, Braz-Filho R, Silveira ER, Pessoa OD. Solanidane and iminosolanidane alkaloids from Solanum campaniforme. Phytochemistry. 2013;96:457–64.

    Article  CAS  PubMed  Google Scholar 

  • Veronese EL, Esmeraldino LE, Trombone AP, Santana AE, Bechara GH, Kettelhut I, Cintra AC, Giglio JR, Sampaio SV. Inhibition of the myotoxic activity of Bothrops jararacussu venom and its two major myotoxins, BthTX-I and BthTX-II, by the aqueous extract of Tabernaemontana catharinensis A. DC. (Apocynaceae). Phytomedicine. 2005;12(1–2):123–30.

    Article  CAS  PubMed  Google Scholar 

  • Williams D, Gutierrez JM, Harrison R, Warrell DA, White J, Winkel KD, Gopalakrishnakone P. The Global Snake Bite Initiative: an antidote for snake bite. Lancet. 2010;375(9708):89–91.

    Article  PubMed  Google Scholar 

  • World Health Organization. The WHO Media Center Fact sheet N°373: Animal Bites. 2013 [updated 2013 Feb]. Available from: http://www.who.int/mediacentre/factsheets/fs373/en/

  • Zamuner SR, Gutierrez JM, Muscara MN, Teixeira SA, Teixeira CF. Bothrops asper and Bothrops jararaca snake venoms trigger microbicidal functions of peritoneal leukocytes in vivo. Toxicon. 2001;39(10):1505–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo A. Melo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Tomaz, M.A., Patrão-Neto, F.C., Melo, P.A. (2017). Plant Compounds with Antiophidic Activities, Their Discovery History, and Current and Proposed Applications. In: Carlini, C., Ligabue-Braun, R. (eds) Plant Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6464-4_1

Download citation

Publish with us

Policies and ethics