Skip to main content

Toxicity in Cephalopods

  • Reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Cephalopods are a morphologically diverse molluscan class that includes octopuses, cuttlefishes, squids, and nautiluses. The behavior, morphology, and sometimes aposematic appearance of coleoid cephalopods (octopuses, cuttlefishes, and squids) are highly suggestive of the widespread use of toxins for predation and/or defense. Many cephalopods use a combination of their parrot-like beak and/or toothed radula to inject venomous saliva, thought to be produced in the posterior salivary gland, into prey through a bite wound or a hole drilled into the shell. However, relatively few toxins have been studied to date from only a narrow range of cephalopods. Active components that have been identified from cephalopod posterior salivary gland extracts (or saliva) include neurotoxins such as tetrodotoxin (also found in body tissues), tachykinins and cephalotoxins, biogenic amines such as serotonin and octopamine, and a diverse range of enzymes including serine proteases, phospholipase A2, hyaluronidases, and chitinases. Coleoid cephalopods represent excellent candidates for biodiscovery, being taxonomically distinct from heavily studied venom-producing organisms, and because their venoms appear to be complex mixtures of proteins and small molecules. Understanding the evolutionary history of toxicity in cephalopods remains a challenge, with many major taxa remaining unstudied and very little specific functional information available on most cephalopod toxins. The application of “omics” technologies to research on venoms and other toxic secretions (“venomics”) is an important and powerful way of characterizing entire suites of proteinaceous toxins from pure venom or gland extracts in cephalopods and is likely to yield future insights into the evolution of toxicity in this class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastasi A, Erspamer V. Occurrence and some properties of eledoisin in extracts of posterior salivary glands of Eledone. Br J Pharmacol Chemother. 1962;19(2):326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballering RB, Jalving MA, VenTresca DA, Hallacher LE, Tomlinson JT, Wobber DR. Octopus evenomation through a plastic bag via a salivary proboscis. Toxicon. 1972;10:245–8.

    Article  CAS  PubMed  Google Scholar 

  • Buczek O, Bulaj G, Olivera BM. Conotoxins and the posttranslational modification of secreted gene products. Cell Mol Life Sci. 2005;62(24):3067–79.

    Article  CAS  PubMed  Google Scholar 

  • Cariello L, Zanetti L. α-and β-cephalotoxin: two paralysing proteins from posterior salivary glands of Octopus vulgaris. Comp Biochem Physiol C: Comp Pharmacol. 1977;57(2):169–73.

    Article  CAS  Google Scholar 

  • Chau R, Kalaitzis JA, Neilan BA. On the origins and biosynthesis of tetrodotoxin. Aquat Toxicol. 2011;104(1):61–72.

    Article  CAS  PubMed  Google Scholar 

  • Chichery MP, Chichery R. Manipulative motor activity of the cuttlefish Sepia officinalis during prey-capture. Behav Process. 1988;17(1):45–56.

    Article  CAS  Google Scholar 

  • Collins AJ, Schleicher TR, Rader BA, Nyholm SV. Understanding the role of host hemocytes in a squid/Vibrio symbiosis using transcriptomics and proteomics. Front. Immunol. 2012;3:1–14.

    Article  Google Scholar 

  • Cornet V, Henry J, Corre E, Le Corguille G, Zanuttini B, Zatylny-Gaudin C. Dual role of the cuttlefish salivary proteome in defense and predation. J Proteome. 2014;108(C):209–22.

    Article  CAS  Google Scholar 

  • Corrêa-Netto C, Junqueira-de-Azevedo Ide L, Silva DA, Ho PL, Leitão-de-Araújo M, Alves ML, Sanz L, Foguel D, Zingali RB, Calvete JJ. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus. J Proteome. 2011;74(9):1795–809.

    Article  Google Scholar 

  • Crone HD, Leake B, Jarvis MW, Freeman SE. On the nature of “Maculotoxin”, a toxin from the blue-ringed octopus (Hapalochlaena maculosa). Toxicon. 1976;14(6):423–6.

    Article  CAS  PubMed  Google Scholar 

  • David JC, Coulon JF. Octopamine in invertebrates and vertebrates. A review. Prog. Neurobiol. 1985;24:141–85.

    Article  CAS  PubMed  Google Scholar 

  • Derby C. Cephalopod ink: production, chemistry, functions and applications. Mar. Drugs. 2014;12:2700–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derby CD. Escape by inking and secreting: marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol. Bull. 2007;213(3):274–89.

    Article  CAS  PubMed  Google Scholar 

  • Erspamer V. Active substances in the posterior salivary glands of Octopoda. II. Tyramine Octopamine. 1948;4:224–47.

    CAS  Google Scholar 

  • Erspamer V, Asero B. Isolation of enteramine from extracts of posterior salivary glands of Octopus vulgaris and of Discoglossus pictus skin J. Biol. Chem. 1953;200:311–8.

    CAS  Google Scholar 

  • Erspamer V. Identification of octopamine as lp-hydroxyphenylethanolamine. Nature. 1952;169(4296):375–6.

    Article  CAS  PubMed  Google Scholar 

  • Erspamer V, Anastasi A. Structure and pharmacological actions of eledoisin, the active endecapeptide of the posterior salivary glands of Eledone. Experientia. 1962;18(2):58–9.

    Article  CAS  PubMed  Google Scholar 

  • Escoubas P, King GF. Venomics as a drug discovery platform. Expert Rev Proteome. 2009;6(3):221–4.

    Article  CAS  Google Scholar 

  • Euler US, Gaddum JH. An unidentified depressor substance in certain tissue extracts. J Physiol. 1931;72(1):74–87.

    Article  Google Scholar 

  • Fiorito G, Gherardi F. Prey-handling behaviour of Octopus vulgaris (Mollusca Cephalopoda) on Bivalve preys. Behav. Processes. 1999;46:75–88

    Article  CAS  PubMed  Google Scholar 

  • Flachsenberger W, Kerr D. Lack of effect of tetrodotoxin and of an extract from the posterior salivary gland of the blue-ringed octopus following injection into the octopus and following application to its brachial nerve. Toxicon. 1985;23(6):997–9.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Roelants K, Norman JA. Tentacles of venom: toxic protein convergence in the Kingdom Animalia. J Mol Evol. 2009;68(4):311–21.

    Article  CAS  PubMed  Google Scholar 

  • Ghiretti F. Cephalotoxin: the crab-paralysing agent of the posterior salivary glands of cephalopods. Nature. 1959;183(4669):1192–3.

    Article  Google Scholar 

  • Ghiretti F. Toxicity of octopus saliva against crustacea. Ann N Y Acad Sci. 1960;90(3):726–41.

    Article  CAS  PubMed  Google Scholar 

  • Grace RCR, Chandrashekar IR, Cowsik SM. Solution structure of the Tachykinin peptide Eledoisin. Biophys. J. 2003;84:655–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisley MS. Separation and partial characterization of salivary enzymes expressed during prey handling in the octopus Eledone cirrhosa. Comp Biochem Physiol B: Comp Biochem. 1993;105(1):183–92.

    Article  Google Scholar 

  • Grisley MS, Boyle PR. Bioassay and proteolytic activity of digestive enzymes from octopus saliva. Comp Biochem Physiol B: Comp Biochem. 1987;88(4):1117–23.

    Google Scholar 

  • Grisley MS, Boyle PR, Key LN. Eye puncture as a route of entry for saliva during predation on crabs by the octopus Eledone cirrhosa (Lamarck). J Exp Mar Biol Ecol. 1996;202(2):225–37.

    Article  Google Scholar 

  • Gutierrez JM, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000;82:841–50.

    Article  CAS  PubMed  Google Scholar 

  • Hanifin CT, Brodie ED, Brodie ED. Tetrodotoxin levels of the rough-skin newt, Taricha granulosa, increase in long-term captivity. Toxicon. 2002;40(8):1149–53.

    Article  CAS  PubMed  Google Scholar 

  • Hanlon RT, Messenger B. Cephalopod behaviour. Cambridge: Cambridge University Press; 1996.

    Google Scholar 

  • Hwang DF, Arakawa O, Saito T, Noguchi T, Simidu U, Tsukamoto K, Shida Y, Hashimoto K. Tetrodotoxin-producing bacteria from the blue-ringed octopus Octopus maculosus. Mar Biol. 1989;100(3):327–32.

    Article  CAS  Google Scholar 

  • Ikeda T, Minakata H, Nomoto K. The importance of C-terminal residues of vertebrate and invertebrate tachykinins for their contractile activities in gut tissues. FEBS Lett. 1999;461(3):201–4.

    Article  CAS  PubMed  Google Scholar 

  • Jacups SP, Currie BJ. Blue-ringed octopuses: a brief review of their toxicology. North Territory Nat. 2008;20:50–7.

    Google Scholar 

  • Kanda A, Iwakoshi-Ukena E, Takuwa-Kuroda K. Isolation and characterization of novel tachykinins from the posterior salivary gland of the common octopus Octopus vulgaris. Peptides. 2003;24(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  • Kanda A, Takuwa-Kuroda K, Aoyama M, Satake H. A novel tachykinin-related peptide receptor of Octopus vulgaris- evolutionary aspects of invertebrate tachykinin and tachykinin-related peptide. FEBS J. 2007;274(9):2229–39.

    Article  CAS  PubMed  Google Scholar 

  • Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, Kumar RP, Kaur P, Kumar S, Dey S, Sharma S, Vrielink A, Betzel C, Takeda S, Arni RK, Singh TP, Kini RM. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 2011;278:4544–76.

    Article  CAS  PubMed  Google Scholar 

  • Kapono CA, Thapa P, Cabalteja CC, Guendisch D, Collier AC, Bingham J-P. Conotoxin truncation as a post-translational modification to increase the pharmacological diversity within the milked venom of Conus magus. Toxicon. 2013;70:170–8.

    Article  CAS  PubMed  Google Scholar 

  • Key LN, Boyle PR, Jaspars M. Novel activities of saliva from the octopus Eledone cirrhosa (Mollusca; Cephalopoda). Toxicon. 2002;40:677–83.

    Article  CAS  PubMed  Google Scholar 

  • Kasugai T, Shigeno S, Ikeda Y. Feeding and external digestion in the Japanese pygmy squid Idiosepius paradoxus (Cephalopoda: Idiosepiidae). J Molluscan Stud. 2004;70(3):231–6.

    Article  Google Scholar 

  • Karthigayan S, Balasubashini MR, Balasubramanian T, Somasundaram ST PGE from Octopus aegina induces apoptosis in Ehrich’s ascites carcinoma of mice. Toxicol. Mech. Methods. 2007;17:451–8.

    Article  CAS  PubMed  Google Scholar 

  • Khawaja AM, Rogers DF. Tachykinins: receptor to effector. Int J Biochem Cell Biol. 1996;28(7):721–38.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM. Excitement ahead: structure function and mechanism of snake venom phospholipase A2 enzymes. Toxicon. 2003;42(8):827–40.

    Article  CAS  PubMed  Google Scholar 

  • Krause, R. Ueber Bau und Function der hinteren Speicheldrusen der Octopoden. Acad. Wiss. 1897;51:1085–98.

    Google Scholar 

  • Livingstone MS, Harris-Warrick RM, Kravitz EA. Serotonin and Octopamine produce opposite postures in lobsters Science. 1980;208(4439):76–9.

    CAS  PubMed  Google Scholar 

  • Mather JA, Nixon M. Octopus vulgaris (Cephalopoda) drills the chelae of crabs in Bermuda. J Molluscan Stud. 1995;61(3):405–6.

    Article  Google Scholar 

  • McDonald NM, Cottrell GA. Purification and mode of action of toxin from Eledone cirrhosa. Comp Gen Pharmacol. 1972;3(10):243–8.

    Article  CAS  Google Scholar 

  • Nixon M. Is there external digestion by Octopus? J. Zool. Lond. 1984;202:441–7.

    Article  Google Scholar 

  • Noguchi T, Arakawa O, Takatani T. TTX accumulation in pufferfish. Comp Biochem Physiol D: Genomics Proteomics. 2006;1(1):145–52.

    PubMed  Google Scholar 

  • Norman M. Cephalopods. A world guide. Hackenheim: ConchBooks; 2000.

    Google Scholar 

  • Ogino T, Hirotaka T, Mana I, Hiromi K, Masahiro M. Purification of a chitinase from the posterior salivary gland of common octopus octopus vulgaris and its properties. J Chitin Chitosan Sci. 2014;2(2):135–42.

    Article  Google Scholar 

  • Pilson ME, Taylor PB. Hole drilling by octopus. New York: Science; 1961.

    Google Scholar 

  • Poels J, Birse RT, Nachman RJ, Fichna J, Janecka A, Vanden Broeck J, Nassel DR. Characterization and distribution of NKD, a receptor for Drosophila tachykinin-related peptide 6. Peptides. 2009;30(3):545–56.

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Silva P, Kaandorp J, Huisman L, Marie B, Zanella-Clon I, Guichard N, Miller DJ, Marin F. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol Biol Evol. 2013;30(9):2099–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruder T, Sunagar K, Undheim EAB, Ali SA, Wai TC, Low DH, Jackson TN, King GF, Antunes A, Fry BG. Molecular phylogeny and evolution of the proteins encoded by coleoid (cuttlefish, octopus, and squid) posterior venom glands. J Mol Evol. 2013;76(4):192–204.

    Article  CAS  PubMed  Google Scholar 

  • Runham NW, Bailey CJ, Carr M, Evans CA, Malham S. Hole drilling in crab and gastropod shells by Eledone cirrhosa (Lamarck, 1798). Sci Mar. 1997;61(2):67–76.

    Google Scholar 

  • Saunders WB, Knight RL, Bond PN. Octopus predation on nautilus: evidence from Papua New Guinea. Bull Mar Sci. 1991;49(1):280–7.

    Google Scholar 

  • Savage I, Howden M. Hapalotoxin, a second lethal toxin from the octopus Hapalochlaena maculosa. Toxicon. 1977;15(5):463–6.

    Article  CAS  PubMed  Google Scholar 

  • Sheumack DD, Howden ME, Spence I, Quinn RJ. Maculotoxin: a neurotoxin from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin. Science. 1978;199(4325):188–9.

    Article  CAS  PubMed  Google Scholar 

  • Songdahl JH, Shapiro BI. Purification and composition of a toxin from the posterior salivary gland of Octopus dofleini. Toxicon. 1974;12(2):109–12.

    Article  CAS  PubMed  Google Scholar 

  • Strugnell JS, Norman MD, Vecchione M, Guzik M, Allcock AL. The ink sac clouds octopod evolutionary history. Hydrobiologia. 2014;725(1):215–35.

    Article  Google Scholar 

  • Ueda A, Nagai H, Ishida M, Nagashima Y, Shiomi K. Purification and molecular cloning of SE-cephalotoxin, a novel proteinaceous toxin from the posterior salivary gland of cuttlefish Sepia esculenta. Toxicon. 2008;52(4):574–81.

    Article  CAS  PubMed  Google Scholar 

  • Undheim EAB, Geogieva DN, Thoen HH, Norman JA, Mork J, Betzel C, Fry BG. Venom on ice: first insights into Antarctic octopus venoms. Toxicon. 2010;56:897–913.

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, Ohta Y, Flajnik MF, Sutoh Y, Kasahara M, Hoon S, Gangu V, Roy SW, Irimia M, Korzh V, Kondrychyn I, Lim ZW, Tay B-H, Tohari S, Kong KW, Ho S, Lorente-Galdos B, Quilez J, Marques-Bonet T, Raney BJ, Ingham PW, Tay A, Hillier LW, Minx P, Boehm T, Wilson RK, Brenner S, Warren WC. Elephant shark genome provides unique insights into gnathostome evolution. Nature. 2014;505(7482):174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh JH. Composition and mode of action of some invertebrate venoms. Annu Rev Pharmacol. 1964;4:293–304.

    Article  CAS  Google Scholar 

  • Whitaker-Azmitia PM. The discovery of serotonin and its role in neuroscience. Neuropsycopathology. 1999;21:2S-8S

    CAS  Google Scholar 

  • Williams BL. Behavioural and chemical ecology of marine organisms with respect to tetrodotoxin. Mar. Drugs. 2010;8:381–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams BL, Caldwell RL. Intra-organismal distribution of tetrodotoxin in two species of blue-ringed octopuses (Hapalochlaena fasciata and H. lunulata). Toxicon. 2009;54(3):345–53.

    Article  CAS  PubMed  Google Scholar 

  • Williams BL, Lovenburg V, Huffard CL, Caldwell RL. Chemical defense in pelagic octopus paralarvae: Tetrodotoxin alone does not protect individual paralarvae of the greater blue-ringed octopus (Hapalochlaena lunulata) from common reef predators. Chemoecology. 2011;21(3):131–41.

    Article  CAS  Google Scholar 

  • Wodinsky J. Penetration of the shell and feeding on gastropods by Octopus. Am Zool. 1969;9(3):997–1010.

    Article  Google Scholar 

  • Wong ES, Morgenstern D, Mofiz E, Gombert S, Morris KM, Temple-Smith P, Renfree MB, Whittington CM, King GF, Warren WC, Papenfuss AT, Belov K. Proteomics and deep sequencing comparison of seasonally active venom glands in the platypus reveals novel venom peptides and distinct expression profiles. Mol Cell Proteomics. 2012;11(11):1354–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong ESW, Belov K. Venom evolution through gene duplications. Gene. 2012:1:1–7.

    Article  Google Scholar 

  • Wood JB, Pennoyer KE, Derby CD. Ink is a conspecific alarm cue in the caribbean reef squid, Sepioteuthis sepioidea. J. Exp. Mar. Biol. Ecol. 2008;367(1):11–6.

    Article  Google Scholar 

  • Wu Z, Yang Y, Xie L, Xia G, Hu J, Wang S, Zhang R. Toxicity and distribution of tetrodotoxin-producing bacteria in puffer fish Fugu rubripes collected from the Bohai Sea of China. Toxicon. 2005;46(4):471–6.

    Article  CAS  PubMed  Google Scholar 

  • Yotsu-Yamashita M, Mebs D, Flachsenberger W. Distribution of tetrodotoxin in the body of the blue-ringed octopus (Hapalochlaena maculosa). Toxicon. 2007;49(3):410–2.

    Article  CAS  PubMed  Google Scholar 

  • Yu CF, Yu P, Chan PL, Yan Q, Wong PK. Two novel species of tetrodotoxin-producing bacteria isolated from toxic marine puffer fishes. Toxicon. 2004;44(6):641–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira R. Cooke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Her Majesty the Queen in Right of Australia

About this entry

Cite this entry

Cooke, I.R., Whitelaw, B., Norman, M., Caruana, N., Strugnell, J.M. (2017). Toxicity in Cephalopods. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_7

Download citation

Publish with us

Policies and ethics