Skip to main content

Parasitoid Wasps and Their Venoms

  • Reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Parasitoid wasps are a unique group among venomous organisms. In contrast to the common venom functions of predation and defense, female parasitoid wasps use venom to manipulate the metabolism, development, and behavior of other arthropods for reproductive purposes. This provides a safe environment and nutrition for the next generation of wasps to feed and develop. Parasitoid wasp species diversity is estimated to be between 150,000 and 600,000 species, likely making them the largest group of venomous organisms. They parasitize all orders of Insecta and several taxa from Arachnida. Parasitoids display highly diverse morphologies and parasitic lifestyles. This diversity likely plays a strong role in the adaptive evolution of venom apparatus structures, venom genes, and venom functions. However, parasitoid wasps are underexplored and little represented in toxinology.

This chapter provides a background into evolution of parasitoid wasps and their parasitic lifestyle. The evolution of parasitoid venoms and their functions are discussed, and a comparison of venom functions in two major ecological categories, ectoparasitoids and endoparasitoids, is provided. Expanding on the standard gene duplication and recruitment model of toxin gene evolution, additional mechanisms are proposed. These include co-option, multifunctionalization, alternate splicing, and origins from lateral gene transfers or noncoding DNA. Novel tools such as RNA interference (RNAi) knockdown of parasitoid venom genes, combined with RNA sequencing of envenomated hosts, are proposed for venom function hypothesis testing and hypothesis generation. This chapter also addresses key questions concerning the future directions of parasitoid venom research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abt M, Rivers DB. Characterization of phenoloxidase activity in venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). J Invertebr Pathol. 2007;94:108–18.

    Article  CAS  PubMed  Google Scholar 

  • Asgari S, Rivers DB. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu Rev Entomol. 2011;56:313–35.

    Article  CAS  PubMed  Google Scholar 

  • Asgari S, Zhang GM, Zareie R, Schmidt O. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem Mol Biol. 2003;33:1017–24.

    Article  CAS  PubMed  Google Scholar 

  • Basio NA, Kim Y. A short review of teratocytes and their characters in Cotesia plutellae (Braconidae: Hymenoptera). J Asia-Pac Entomol. 2005;8:211–7.

    Article  Google Scholar 

  • Beckage NE, Gelman DB. Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu Rev Entomol. 2004;49:299–330.

    Article  CAS  PubMed  Google Scholar 

  • Belle E, Beckage NE, Rousselet J, Poirie M, Lemeunier F, Drezen JM. Visualization of polydnavirus sequences in a parasitoid wasp chromosome. J Virol. 2002;76:5793–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodeur J, McNeil JN. Seasonal microhabitat selection by an endoparasitoid through adaptive modification of host behavior. Science. 1989;244:226–8.

    Article  CAS  PubMed  Google Scholar 

  • Burke GR, Strand MR. Systematic analysis of a wasp parasitism arsenal. Mol Ecol. 2014;23:890–901.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casewell NR, Wuster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28:219–29.

    Article  PubMed  Google Scholar 

  • Casewell NR, Wagstaff SC, Wuster W, Cook DAN, Bolton FMS, King SI, Pla D, Sanz L, Calvete JJ, Harrison RA. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci U S A. 2014;111:9205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazier MA, Mortenson MA. Bionomical observations on tarantula-hawks and their prey (Hymenoptera: Pompilidae: Pepsis. Ann Entomol Soc Am. 1964;57:533–41.

    Article  Google Scholar 

  • Colinet D, Schmitz A, Cazes D, Gatti JL, Poirie M. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. Plos Pathog. 2010;6:e1001206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colinet D, Deleury E, Anselme C, Cazes D, Poulain J, Azema-Dossat C, Belghazi M, Gatti JL, Poirie M. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem Mol Biol. 2013;43:601–11.

    Article  CAS  PubMed  Google Scholar 

  • Colinet D, Anselme C, Deleury E, Mancini D, Poulain J, Azema-Dossat C, Belghazi M, Tares S, Pennacchio F, Poirie M, Gatti JL. Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum. BMC Genomics. 2014a;15:342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colinet D, Kremmer L, Lemauf S, Rebuf C, Gatti JL, Poirie M. Development of RNAi in a Drosophila endoparasitoid wasp and demonstration of its efficiency in impairing venom protein production. J Insect Physiol. 2014b;63:56–61.

    Article  CAS  PubMed  Google Scholar 

  • Coudron TA, Brandt SL. Characteristics of a developmental arrestant in the venom of the ectoparasitoid wasp Euplectrus comstockii. Toxicon. 1996;34:1431–41.

    Article  CAS  PubMed  Google Scholar 

  • Dahlman DL, Rana RL, Schepers EJ, Schepers T, DiLuna FA, Webb BA. A teratocyte gene from a parasitic wasp that is associated with inhibition of insect growth and development inhibits host protein synthesis. Insect Mol Biol. 2003;12:527–34.

    Article  CAS  PubMed  Google Scholar 

  • Danneels EL, Rivers DB, de Graaf DC. Venom proteins of the parasitoid wasp Nasonia vitripennis: recent discovery of an untapped pharmacopee. Toxins. 2010;2:494–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danneels EL, Formesyn EM, Hahn DA, Denlinger DL, Cardoen D, Wenseleers T, Schoofs L, de Graaf DC. Early changes in the pupal transcriptome of the flesh fly Sarcophagha crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. Insect Biochem Mol Biol. 2013;43:1189–200.

    Article  CAS  PubMed  Google Scholar 

  • Danneels EL, Gerlo S, Heyninck K, Van Craenenbroeck K, De Bosscher K, Haegeman G, de Graaf DC. How the venom from the ectoparasitoid wasp Nasonia vitripennis exhibits anti-inflammatory properties on mammalian cell lines. PLoS One. 2014;9:e96825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Graaf DC, Aerts M, Brunain M, Desjardins CA, Jacobs FJ, Werren JH, Devreese B. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol Biol. 2010;19:11–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dowton M, Austin AD. Simultaneous analysis of 16S, 28S, COI and morphology in the Hymenoptera: Apocrita – evolutionary transitions among parasitic wasps. Biol J Linn Soc. 2001;74:87–111.

    Google Scholar 

  • Drezen JM, Chevignon G, Louis F, Huguet E. Origin and evolution of symbiotic viruses associated with parasitoid wasps. Curr Opin Insect Sci. 2014;6:35–43.

    Article  Google Scholar 

  • Dunning Hotopp JC. Lateral gene transfer in multicellular organisms. In: Gophna U, editor. Lateral gene transfer in evolution. New York: Springer Science; 2013. p. 161–79.

    Chapter  Google Scholar 

  • Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Munoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science. 2007;317:1753–6.

    Article  CAS  PubMed  Google Scholar 

  • Durban J, Perez A, Sanz L, Gomez A, Bonilla F, Rodriguez S, Chacon D, Sasa M, Angulo Y, Gutierrez JM, Calvete JJ. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics. 2013;14:234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhard WG. Spider manipulation by a wasp larva. Nature. 2000;406:255–6.

    Article  CAS  PubMed  Google Scholar 

  • Eberhard WG. New types of behavioral manipulation of host spiders by a parasitoid wasp. Psyche 2010; 4, doi:10.1155/2010/950614. 2010a.

    Google Scholar 

  • Eberhard WG. Recovery of spiders from the effects of parasitic wasps: implications for fine-tuned mechanisms of manipulation. Anim Behav. 2010b;79:375–83.

    Google Scholar 

  • Ellers J, Kiers ET, Currie CR, McDonald BR, Visser B. Ecological interactions drive evolutionary loss of traits. Ecol Lett. 2012;15:1071–82.

    Article  PubMed  Google Scholar 

  • Er A, Sak O, Ergin E, Uçkan F, Rivers DB. Venom-induced immunosuppression: an overview of hemocyte-mediated responses. Psyche. 2011;2011:14.

    Google Scholar 

  • Fellowes MD, Kraaijeveld AR, Godfray HC. Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster. Proc Biol Sci R Soc. 1998;265:1553–8.

    Article  CAS  Google Scholar 

  • Ferrarese R, Morales J, Fimiarz D, Webb BA, Govind S. A supracellular system of actin-lined canals controls biogenesis and release of virulence factors in parasitoid venom glands. J Exp Biol. 2009;212:2261–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Formesyn EM, Daneels EL, de Graaf DC. Proteomics of the venom of the parasitoid Nasonia vitripennis. In: Beckage NE, Drezen J, editors. Parasitoid viruses: symbionts and pathogens. London: Elsevier; 2012. p. 233–46.

    Chapter  Google Scholar 

  • Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10:483–511.

    Article  CAS  PubMed  Google Scholar 

  • Gal R, Kaiser M, Haspel G, Libersat F. Sensory arsenal on the stinger of the parasitoid jewel wasp and its possible role in identifying cockroach brains. PLoS One. 2014;9:e89683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauld I, Godoy LC, Sithole R, Ugalde Gomez J. The Ichneumonidae of Costa Rica. Mem Am Entomol Inst. 2002;66:1–768.

    Google Scholar 

  • Goecks J, Mortimer NT, Mobley JA, Bowersock GJ, Taylor J, Schlenke TA. Integrative approach reveals composition of endoparasitoid wasp venoms. PLoS One. 2013;8:e64125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzaga MO, Sobczak JF. Behavioral manipulation of the orb-weaver spider Argiope argentata (Araneae: Araneidae) by Acrotaphus chedelae (Hymenoptera: Ichneumonidae). Entomol Sci. 2011;14:220–3.

    Article  Google Scholar 

  • Grosman AH, Janssen A, de Brito EF, Cordeiro EG, Colares F, Fonseca JO, Lima ER, Pallini A, Sabelis MW. Parasitoid increases survival of its pupae by inducing hosts to fight predators. PLoS One. 2008;3:e2276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey JA. Dynamic effects of parasitism by an endoparasitoid wasp on the development of two host species: implications for host quality and parasitoid fitness. Ecol Entomol. 2000;25:267–78.

    Article  Google Scholar 

  • Harvey JA, Kos M, Nakamatsu Y, Tanaka T, Dicke M, Vet LEM, Brodeur J, Bezemer TM. Do parasitized caterpillars protect their parasitoids from hyperparasitoids? A test of the ‘usurpation hypothesis’. Anim Behav. 2008;76:701–8.

    Article  Google Scholar 

  • Heavner ME, Gueguen G, Rajwani R, Pagan PE, Small C, Govind S. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera. Gene. 2013;526:195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heavner ME, Hudgins AD, Rajwani R, Morales J, Govind S. Harnessing the natural Drosophila-parasitoid model for integrating insect immunity with functional venomics. Curr Opin Insect Sci. 2014;6:61–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heraty JM. Parasitoid biodiversity and insect pest management. In: Foottit B, Adler P, editors. Insect biodiversity: science and society. Hague: Springer-Verlag Press; 2009. p. 445–62.

    Chapter  Google Scholar 

  • Heraty JM, Gates ME. Biodiversity of Chalcidoidea of the El Edén Ecological Reserve, Mexico. In: Gómez-Pompa A, Allen MF, Fedick SL, Jiménez-Osornio JJ, editors. Proceedings of the 21st symposium in plant biology, lowland Maya area: three millenia at the human-wildland interface. New York: Haworth Press; 2003. p. 277–92.

    Google Scholar 

  • Heraty J, Ronquist F, Carpenter JM, Hawks D, Schulmeister S, Dowling AP, Murray D, Munro J, Wheeler WC, Schiff N, Sharkey M. Evolution of the hymenopteran megaradiation. Mol Phylogenet Evol. 2011;60:73–88.

    Article  PubMed  Google Scholar 

  • Holldobler B, Wilson EO. The super-organism: the beauty, elegance and strangeness of insect societies. New York: W.W. Norton; 2008. 522 pp.

    Google Scholar 

  • Hu R, Hyland KE, Oliver JH. A review on the use of Ixodiphagus wasps (Hymenoptera: Encyrtidae) as natural enemies for the control of ticks (Acari: Ixodidae). Syst Appl Acarol. 1998;3:19–28.

    Article  Google Scholar 

  • Jones TS, Bilton AR, Mak L, Sait SM. Host switching in a generalist parasitoid: contrasting transient and transgenerational costs associated with novel and original host species. Ecol Evol. 2015;5:459–465.

    Google Scholar 

  • Kaeslin M, Wehrle I, Grossniklaus-Burgin C, Wyler T, Guggisberg U, Schittny JC, Lanzrein B. Stage-dependent strategies of host invasion in the egg-larval parasitoid Chelonus inanitus. J Insect Physiol. 2005;51:287–96.

    Article  CAS  PubMed  Google Scholar 

  • Keebaugh ES, Schlenke TA. Adaptive evolution of a novel Drosophila lectin induced by parasitic wasp attack. Mol Biol Evol. 2012;29:565–77.

    Article  CAS  PubMed  Google Scholar 

  • King PE, Rafai J. Host discrimination in a gregarious parasitoid Nasonia vitripennis (Walker) (Hymenoptera-Pteromalidae). J Exp Biol. 1970;53:245–254.

    Google Scholar 

  • Konno K, Palma MS, Hitara IY, Juliano MA, Juliano L, Yasuhara T. Identification of bradykinins in solitary wasp venoms. Toxicon. 2002;40:309–12.

    Article  CAS  PubMed  Google Scholar 

  • Korenko S, Pekar S. A parasitoid wasp induces overwintering behaviour in its spider host. PLoS One. 2011;6:e24628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korenko S, Schmidt S, Schwarz M, Gibson GA, Pekar S. Hymenopteran parasitoids of the ant-eating spider Zodarion styliferum (Simon) (Araneae, Zodariidae). Zookeys. 2013;262:1–15.

    Article  Google Scholar 

  • Korenko S, Isaia M, Satrapova J, Pekar S. Parasitoid genus-specific manipulation of orb-web host spiders (Araneae, Araneidae). Ecol Entomol. 2014;39:30–8.

    Article  Google Scholar 

  • Kraaijeveld AR, Godfray HC. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature. 1997;389:278–80.

    Article  CAS  PubMed  Google Scholar 

  • Lenteren JC, Isidoro N, Bin F. Functional anatomy of the ovipositor clip in the parasitoid Leptopilina heterotoma (Thompson) (Hymenoptera: Eucoilidae), a structure to grip escaping host larvae. Int J Insect Morphol Embryol. 1998;27:263–8.

    Article  Google Scholar 

  • LeRalec A, Rabasse JM, Wajnberg E. Comparative morphology of the ovipositor of some parasitic hymenoptera in relation to characteristics of their hosts. Can Entomol. 1996;128:413–33.

    Article  Google Scholar 

  • Libersat F, Gal R. Wasp voodoo rituals, venom-cocktails, and the zombification of cockroach hosts. Integr Comp Biol. 2014;54:129–42.

    Article  CAS  PubMed  Google Scholar 

  • Lynch JA, Desplan C. A method for parental RNA interference in the wasp Nasonia vitripennis. Nat Protoc. 2006;1:486–94.

    Article  CAS  PubMed  Google Scholar 

  • Martinson EO, Wheeler D, Wright J, Mrinalini, Siebert AL, Werren JH. Nasonia vitripennis venom causes targeted gene expression changes in its fly host. Mol Ecol. 2014;23:5918–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinson EO, Martinson VG, Edwards R, Mrinalini, Werren JH. Laterally transferred gene recruited as a venom in parasitoid wasps. Mol Biol Evol. 2016;33:1042–52.

    Google Scholar 

  • Maure F, Brodeur J, Ponlet N, Doyon J, Firlej A, Elguero E, Thomas F. The cost of a bodyguard. Biol Lett. 2011;7:843–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspock U, Aspock H, Bartel D, Blanke A, Berger S, Bohm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schutte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7.

    Article  CAS  PubMed  Google Scholar 

  • Moreau SJM. “It stings a bit but it cleans well”: venoms of Hymenoptera and their antimicrobial potential. J Insect Physiol. 2013;59:186–204.

    Article  CAS  PubMed  Google Scholar 

  • Mrinalini, Siebert AL, Wright J, Martinson E, Wheeler D, Werren JH. Parasitoid venom induces metabolic cascades in fly hosts. Metabolomics. 2014;11:350–366.

    Google Scholar 

  • Munro JB, Heraty JM, Burks RA, Hawks D, Mottern J, Cruaud A, Rasplus JY, Jansta P. A molecular phylogeny of the Chalcidoidea (Hymenoptera). PLoS One. 2011;6:e27023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamatsu Y, Tanaka T. Venom of ectoparasitoid, Euplectrus sp near plathypenae (Hymenoptera: Eulophidae) regulates the physiological state of Pseudaletia separata (Lepidoptera: Noctuidae) host as a food resource. J Insect Physiol. 2003;49:149–59.

    Article  CAS  PubMed  Google Scholar 

  • Nakamatsu Y, Tanaka T. The function of a trypsin-like enzyme in the saliva of Euplectrus separatae larvae. J Insect Physiol. 2004;50:847–54.

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene families. Annu Rev Genet. 2005;39:121–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noyes JS. Encyrtidae of Costa Rica (Hymenoptera: Chalcidoidea), the subfamily Tetracneminae, parasitoids of mealybugs (Homoptera: Pseudococcidae). Mem Am Entomol Inst. 2000;62:1–355.

    Google Scholar 

  • Noyes JS. Universal Chalcidoidea database (Internet). 2014. (updated Aug 2014; Jan 2015). Available from: www.nhm.ac.uk/entomology/chalcidoids/index.html

  • Parkinson NM, Weaver RJ. Noxious components of venom from the pupa-specific parasitoid Pimpla hypochondriaca. J Invertebr Pathol. 1999;73:74–83.

    Article  CAS  PubMed  Google Scholar 

  • Parkinson N, Smith I, Weaver R, Edwards JP. A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Biochem Mol Biol. 2001;31:57–63.

    Article  CAS  PubMed  Google Scholar 

  • Parkinson N, Smith I, Audsley N, Edwards JP. Purification of pimplin, a paralytic heterodimeric polypeptide from venom of the parasitoid wasp Pimpla hypochondriaca, and cloning of the cDNA encoding one of the subunits. Insect Biochem Mol Biol. 2002;32:1769–73.

    Article  CAS  PubMed  Google Scholar 

  • Pennacchio F, Strand MR. Evolution of developmental strategies in parasitic hymenoptera. Annu Rev Entomol. 2006;51:233–58.

    Article  CAS  PubMed  Google Scholar 

  • Periquet G, Bigot Y, Doury G. Physiological and biochemical analysis of factors in the female venom gland and larval salivary secretions of the ectoparasitoid wasp Eupelmus orientalis. J Insect Physiol. 1997;43:69–81.

    Article  CAS  PubMed  Google Scholar 

  • Poirie M, Colinet D, Gatti JL. Insights into function and evolution of parasitoid wasp venoms. Curr Opin Insect Sci. 2014;6:52–60.

    Article  Google Scholar 

  • Price DR, Bell HA, Hinchliffe G, Fitches E, Weaver R, Gatehouse JA. A venom metalloproteinase from the parasitic wasp Eulophus pennicornis is toxic towards its host, tomato moth (Lacanobia oleracea). Insect Mol Biol. 2009;18:195–202.

    Article  CAS  PubMed  Google Scholar 

  • Quicke DLJ. Parasitic wasps. London: Chapman and Hall; 1997.

    Google Scholar 

  • Quicke DLJ, Fitton MG. Ovipositor steering mechanisms in parasitic wasps of the families Gasteruptiidae and Aulacidae (Hymenoptera). Proc R Soc B Biol Sci. 1995;261:99–103.

    Article  Google Scholar 

  • Quicke DLJ, Fitton MG, Tunstead JR, Ingram SN, Gaitens PV. Ovipositor structure and relationships within the Hymenoptera, with special reference to the Ichneumonoidea. J Nat Hist. 1994;24:635–82.

    Article  Google Scholar 

  • Quicke DLJ, Fitton MG, Harris J. Ovipositor steering mechanisms in braconid wasps. J Hymenopt Res. 1995;4:110–20.

    Google Scholar 

  • Ratcliffe NA, King PE. Morphological, ultrastructural, histochemical and electrophoretic studies on the venom system of Nasonia vitripennis walker (hymenoptera: Pteromalidae). Journal of Morphology. 1969;127:177–203.

    Article  Google Scholar 

  • Rendon-Anaya M, Delaye L, Possani LD, Herrera-Estrella A. Global transcriptome analysis of the scorpion Centruroides noxius: new toxin families and evolutionary insights from an ancestral scorpion species. PLoS One. 2012;7:e43331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards EH, Edwards JP. Larvae of the ectoparasitic wasp, Eulophus pennicornis, release factors which adversely affect haemocytes of their host, Lacanobia oleracea. J Insect Physiol. 2002;48:845–55.

    Article  CAS  PubMed  Google Scholar 

  • Rivers DB, Denlinger DL. Developmental fate of the flesh fly, Sarcophaga bullata, envenomated by the pupal ectoparasitoid, Nasonia vitripennis. J Insect Physiol. 1994a;40:121–7.

    Article  Google Scholar 

  • Rivers DB, Denlinger DL. Redirection of metabolism in the flesh fly, Sarcophaga bullata, following envenomation by the ectoparasitoid Nasonia vitripennis and correlation of metabolic effects with the diapause status of the host. J Insect Physiol. 1994b;40:207–15.

    Article  CAS  Google Scholar 

  • Rivers DB, Denlinger DL. Venom-induced alterations in fly lipid metabolism and its impact on larval development of the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera, Pteromalidae). J Invertebr Pathol. 1995;66:104–10.

    Article  CAS  Google Scholar 

  • Rivers DB, Ruggiero L, Hayes M. The ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) differentially affects cells mediating the immune response of its flesh fly host, Sarcophaga bullata Parker (Diptera : Sarcophagidae). J Insect Physiol. 2002;48:1053–64.

    Article  CAS  PubMed  Google Scholar 

  • Rivers DB, Uckan F, Ergin E. Characterization and biochemical analyses of venom from the ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera : Pteromalidae). Arch Insect Biochem Physiol. 2006;61:24–41.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JJ, Fernandez-Triana MA, Smith MA, Janzen DH, Hallwachs W, Erwin TL, Whitfield JB. Extrapolations from field studies and known faunas converge on dramatically increased estimates of global microgastrine parasitoid wasp species richness (Hymenoptera: Braconidae). Insect Conserv Div. 2012;6:530–6.

    Article  Google Scholar 

  • Roossinck MJ. Changes in population dynamics in mutualistic versus pathogenic viruses. Viruses. 2011;3:12–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlenke TA, Morales J, Govind S, Clark AG. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 2007;3:1486–501.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JO. Hymenoptera venoms: striving toward the ultimate defense against vertebrates. In: Evans DL, Schmidt JO, editors. Insect defenses: adaptive mechanisms and strategies of prey and predators. Albany: State University of New York Press; 1990. p. 387–419.

    Google Scholar 

  • Schmidt JO. Venom and the good life in tarantula hawks (Hymenoptera: Pompilidae): how to eat, not be eaten, and live long. J Kans Entomol Soc. 2004;77:402–13.

    Article  Google Scholar 

  • Segoli M, Harari AR, Rosenheim JA, Bouskila A, Keasar T. The evolution of polyembryony in parasitoid wasps. J Evol Biol. 2010;23:1807–19.

    Article  CAS  PubMed  Google Scholar 

  • Shah ZA. Morphology, ultrastructure, and probable functions of the sense organs on the ovipositor stylets of the hymenoptran parasitoid, Venturia canescens (Gravenhorst). Microsc Res Tech. 2012;75:876–83.

    Article  PubMed  Google Scholar 

  • Siebert AL, Wheeler D, Werren JH. A new approach for investigating venom function applied to venom calreticulin in a parasitoid wasp. Toxicon. 2015. doi:10.1016/j.toxicon.2015.08.012.

    PubMed  PubMed Central  Google Scholar 

  • Strand MR. Teratocytes and their functions in parasitoids. Curr Opin Insect Sci. 2014; 6:68–73.

    Google Scholar 

  • Strand MR, Pech LL. Immunological basis for compatibility in parasitoid host relationships. Annu Rev Entomol. 1995;40:31–56.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Tanaka T. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis. J Insect Physiol. 2006;52:602–13.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Miura K, Tanaka T. The virus-like particles of a braconid endoparasitoid wasp, Meteorus pulchricornis, inhibit hemocyte spreading in its noctuid host, Pseudaletia separata. J Insect Physiol. 2008;54:1015–22.

    Article  CAS  PubMed  Google Scholar 

  • Tautz D, Domazet-Loso T. The evolutionary origin of orphan genes. Nat Rev Genet. 2011;12:692–702.

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Wang L, Ye G, Zhu S. Inhibition of melanization by a Nasonia defensin-like peptide Implications for host immune suppression. J Insect Physiol. 2010;56:1857–62.

    Article  CAS  PubMed  Google Scholar 

  • Tschopp A, Riedel M, Kropf C, Nentwig W, Klopfstein S. The evolution of host associations in the parasitic wasp genus Ichneumon (Hymenoptera: Ichneumonidae): convergent adaptations to host pupation sites. BMC Evol Biol. 2013;13:1–13. doi: 10.1186/1471-2148-13-74.

    Google Scholar 

  • Uçkan F, Si̇nan S, Savaşçi Ş, Ergi̇n E. Determination of venom components from the endoparasitoid wasp Pimpla turionellae L. (Hymenoptera: Ichneumonidae). Ann Entomol Soc Am. 2004;97:775–80.

    Article  Google Scholar 

  • Vincent B, Kaeslin M, Roth T, Heller M, Poulain J, Cousserans F, Schaller J, Poirie M, Lanzrein B, Drezen JM, Moreau SJ. The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach. BMC Genomics. 2010;11:693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser B, Ellers J. Lack of lipogenesis in parasitoids: a review of physiological mechanisms and evolutionary implications. J Insect Physiol. 2008;54:1315–22.

    Article  CAS  PubMed  Google Scholar 

  • Visser B, Le Lann C, den Blanken FJ, Harvey JA, van Alphen JJM, Ellers J. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc Natl Acad Sci U S A. 2010;107:8677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser B, Roelofs D, Hahn DA, Teal PE, Marien J, Ellers J. Transcriptional changes associated with lack of lipid synthesis in parasitoids. Genome Biol Evol. 2012;4:752–62.

    Article  PubMed  CAS  Google Scholar 

  • Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, Kerkkamp HM, Vos RA, Guerreiro I, Calvete JJ, Wuster W, Woods AE, Logan JM, Harrison RA, Castoe TA, de Koning AP, Pollock DD, Yandell M, Calderon D, Renjifo C, Currier RB, Salgado D, Pla D, Sanz L, Hyder AS, Ribeiro JM, Arntzen JW, van den Thillart GE, Boetzer M, Pirovano W, Dirks RP, Spaink HP, Duboule D, McGlinn E, Kini RM, Richardson MK. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110:20651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb BA. Polydnavirus biology, genome structure, and evolution. In: Miller LK, Ball LA, editors. The insect viruses. New York: Plenum Publishing Corporation; 1998. p. 105–39.

    Chapter  Google Scholar 

  • Weisel-Eichler A, Haspel G, Libersat F. Venom of a parasitoid wasp induces prolonged grooming in the cockroach. J Exp Biol. 1999;202(Pt 8):957–64.

    CAS  PubMed  Google Scholar 

  • Werren JH. Brood size and sex ration regulation in the parasitic wasp (Nasonia vitripennis) (Walker) (Hymenoptera: Pteromalidae). Neth J Zool. 1984;34:123–43.

    Article  Google Scholar 

  • Werren JH, Loehlin DW. The parasitoid wasp Nasonia: an emerging model system with haploid male genetics. Cold Spring Harb Protoc. 2009a;2009:pdb.emo134-pdb.emo134.

    Google Scholar 

  • Werren JH, Loehlin DW. Rearing Sarcophaga bullata fly hosts for Nasonia (parasitoid wasp). Cold Spring Harb Protoc. 2009b;2009:pdb.prot5308-pdb.prot5308.

    Google Scholar 

  • Werren JH, Loehlin DW, Giebel JD. Larval RNAi in Nasonia (parasitoid wasp). Cold Spring Harb Protoc. 2009;2009:pdb prot5311.

    Google Scholar 

  • Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Beukeboom LW, Desplan C, Elsik CG, Grimmelikhuijzen CJP, Kitts P, Lynch JA, Murphy T, Oliveira DCSG, Smith CD, van de Zande L, Worley KC, Zdobnov EM, Aerts M, Albert S, Anaya VH, Anzola JM, Barchuk AR, Behura SK, Bera AN, Berenbaum MR, Bertossa RC, Bitondi MMG, Bordenstein SR, Bork P, Bornberg-Bauer E, Brunain M, Cazzamali G, Chaboub L, Chacko J, Chavez D, Childers CP, Choi J-H, Clark ME, Claudianos C, Clinton RA, Cree AG, Cristino AS, Dang PM, Darby AC, de Graaf DC, Devreese B, Dinh HH, Edwards R, Elango N, Elhaik E, Ermolaeva O, Evans JD, Foret S, Fowler GR, Gerlach D, Gibson JD, Gilbert DG, Graur D, Grunder S, Hagen DE, Han Y, Hauser F, Hultmark D, Hunter HC, Jhangian SN, Jiang H, Johnson RM, Jones AK, Junier T, Kadowaki T, Kamping A, Kapustin Y, Kechavarzi B, Kim J, Kim J, Kiryutin B, Koevoets T, Kovar CL, Kriventseva EV, Kucharski R, Lee H, Lee SL, Lees K, Lewis LR, Loehlin DW, Logsdon Jr JM, Lopez JA, Lozado RJ, Maglott D, Maleszka R, Mayampurath A, Mazur DJ, McClure MA, Moore AD, Morgan MB, Muller J, Munoz-Torres MC, Muzny DM, Nazareth LV, Neupert S, Nguyen NB, Nunes FMF, Oakeshott JG, Okwuonu GO, Pannebakker BA, Pejaver VR, Peng Z, Pratt SC, Predel R, Pu L-L, Ranson H, Raychoudhury R, Rechtsteiner A, Reese JT, Reid JG, Riddle M, Robertson IHM, Romero-Severson J, Rosenberg M, Sackton TB, Sattelle DB, Schluens H, Schmitt T, Schneider M, Schueler A, Schurko AM, Shuker DM, Simoes ZLP, Sinha S, Smith Z, Solovyev V, Souvorov A, Springauf A, Stafflinger E, Stage DE, Stanke M, Tanaka Y, Telschow A, Trent C, Vattathil S, Verhulst EC, Viljakainen L, Wanner KW, Waterhouse RM, Whitfield JB, Wilkes TE, Williamson M, Willis JH, Wolschin F, Wyder S, Yamada T, Yi SV, Zecher CN, Zhang L, Gibbs RA, Nasonia Genome Working Group. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science. 2010;327:343–8.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield JB. Phylogeny of the non-aculeate Apocrita and the evolution of parasitism in the Hymenoptera. J Hymenopt Res. 1992;1:3–14.

    Google Scholar 

  • Whitfield JB. Phylogeny and evolution of host-parasitoid interactions in hymenoptera. Annu Rev Entomol. 1998;43:129–51.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield JB. Estimating the age of the polydnavirus/braconid wasp symbiosis. Proc Natl Acad Sci U S A. 2002;99:7508–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield JB. Phylogenetic insights into the evolution of parasitism in hymenoptera. Adv Parasitol. 2003;54:69–100.

    Article  PubMed  Google Scholar 

  • Wyler T, Lanzrein B. Ovary development and polydnavirus morphogenesis in the parasitic wasp Chelonus inanitus. II. Ultrastructural analysis of calyx cell development, virion formation and release. J Gen Virol. 2003;84:1151–63.

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Zhao H, Wang H, Bian J, Zheng R. A defensin antimicrobial peptide from the venoms of Nasonia vitripennis. Toxicon. 2010;56:101–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhang GM, Lu ZQ, Jiang HB, Asgari S. Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochem Mol Biol. 2004;34:477–83.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ye GY, Cai J, Hu C. Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells. Toxicon. 2005;46:337–49.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Du Y, Ye G, Hu C. Development of venom apparatuses of two species of Pteromalid wasps and its relationship with egg development. J Biosci Med. 2013;3:64–70.

    Google Scholar 

  • Zhu JY, Fang Q, Wang L, Hu C, Ye GY. Proteomic analysis of the venom from the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Arch Insect Biochem Physiol. 2010;75:28–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the National University of Singapore, South East Asian Biodiversity Genomics (R-154-000-648-646), and the National Institutes of Health (RO1GM098667) for resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinalini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Mrinalini, Werren, J.H. (2017). Parasitoid Wasps and Their Venoms. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_2

Download citation

Publish with us

Policies and ethics