Skip to main content

Systematics and Evolution of the Conoidea

  • Reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

The highly diverse toxins of cone snails have been known since the 1970s; however, the evolutionary processes that led to both the species and toxin diversity in the group are only recently being explored. Furthermore, their closely related, also venomous but much more diversified, allies in the superfamily Conoidea remain largely unknown, with most species still undescribed and only few toxins characterized for a handful of conoideans other than cone snails. This chapter is a review of the literature dealing with systematics and evolution of the Conoidea. In particular, it will be shown how new hypotheses on the evolutionary processes have emerged from interdisciplinarity between ecology, taxonomy, phylogeny, anatomical study, and toxinology. It is becoming increasingly well documented that conoidean diversification is actually linked to toxin diversification: recent results tend to show that the venom apparatus played a major role in the evolution of the group by offering sets of unique molecular adaptations for efficient interactions with other taxa of marine animals. These, in turn, enhanced capacities of conoideans to efficiently compete for new ecological niches, a remarkable example of which is the appearance of fish hunting in cone snails. Speciation in conoideans was also promoted by other factors, e.g., episodic losses of planktotrophy that led to reduced dispersal abilities and intensive allopatric differentiation. Testing such hypotheses remains primarily based on the accumulation of data on the diversification patterns (in particular on the systematics), and there is still a long road ahead to achieving a full understanding the evolutionary success of these remarkable mollusks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar MB, de la Rosa RA C, Falcon A, Olivera BM, de la Cotera EP H. Peptide pal9a from the venom of the turrid snail Polystira albida from the Gulf of Mexico: purification, characterization, and comparison with P-conotoxin-like (framework IX) conoidean peptides. Peptides. 2009;30:467–76.

    Article  CAS  PubMed  Google Scholar 

  • Aman JW, Imperial JS, Ueberheide B, Zhang M-M, Aguilar M, Taylor D, et al. Insights into the origins of fish hunting in venomous cone snails from studies of Conus tessulatus. Proc Natl Acad Sci. 2015;112(16):5087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay PK, Garrett JE, Shetty RP, Keate T, Walker CS, Olivera BM. γ-Glutamyl carboxylation: an extracellular posttranslational modification that antedates the divergence of molluscs, arthropods, and chordates. Proc Natl Acad Sci. 2002;99(3):1264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay PK, Stevenson BJ, Cady MT, Olivera BM, Wolstenholme DR. Complete mitochondrial DNA sequence of a conoidean gastropod, Lophiotoma (Xenuroturris) cerithiformis: gene order and gastropod phylogeny. Toxicon. 2006;48(1):29–43.

    Google Scholar 

  • Barghi N, Concepcion GP, Olivera BM, Lluisma AO. Structural features of conopeptide genes inferred from partial sequences of the Conus tribblei genome. Mol Genet Genomics. 2015a;29:411–22.

    Google Scholar 

  • Barghi N, Concepcion GP, Olivera BM, Lluisma AO. High conopeptide diversity in Conus tribblei revealed through analysis of venom duct transcriptome using two high-throughput sequencing platforms. Mar Biotechnol. 2015b;17(1):81–98.

    Article  CAS  PubMed  Google Scholar 

  • Barghi N, Concepcion GP, Olivera BM, Lluisma AO. Comparison of the venom peptides and their expression in closely related Conus species: insights into adaptive post-speciation evolution of Conus exogenomes. Genome Biol Evol. 2015c;7(6):1797–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behera S, Tripathy B, Sivakumar K, Choudhury B. Stomach contents of olive ridley turtles (Lepidochelys Olivacea) Occurring in Gahirmatha, Odisha Coast of India. Springer; 2015. p. 91–5.

    Google Scholar 

  • Biggs JS, Olivera BM, Kantor Y. Alpha-conopeptides specifically expressed in the salivary gland of Conus pulicarius. Toxicon. 2008;52:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggs JS, Watkins M, Puillandre N, Ownby JP, Lopez-Vera E, Christensen S, et al. Evolution of Conus peptide toxins: analysis of Conus californicus Reeve, 1844. Mol Phylogenet Evol. 2010;56:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchet P. Turrid genera and mode of development: the use and abuse of protoconch morphology. Malacologia. 1990;32(1):69–77.

    Google Scholar 

  • Bouchet P, Waren A. Revision of the north-east Atlantic bathyal and abyssal Turridae (Mollusca, Gastropoda). J Molluscan Stud. 1980;Suppl 8:1–19.

    Article  Google Scholar 

  • Bouchet P, Lozouet P, Maestrati P, Héros VB. Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonian site. Biol J Linn Soc. 2002;75(4):421–36.

    Article  Google Scholar 

  • Bouchet P, Lozouet P, Sysoev AV. An inordinate fondness for turrids. Deep-Sea Res II. 2009;56:1724–31.

    Article  Google Scholar 

  • Bouchet P, Kantor Y, Sysoev A, Puillandre N. A new operational classification of the Conoidea (Gastropoda). J Molluscan Stud. 2011;77:273–308.

    Article  Google Scholar 

  • Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28:219–29.

    Article  PubMed  Google Scholar 

  • Castelin M, Puillandre N, Kantor Y, Modica MV, Terryn Y, Cruaud C, et al. Macroevolution of venom apparatus innovations in auger snails (Gastropoda; Conoidea; Terebridae). Mol Phylogenet Evol. 2012;64(1):21–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang D, Duda TF. Application of community phylogenetic approaches to understand gene expression: differential exploration of venom gene space in predatory marine gastropods. BMC Evol Biol. 2014;14(1):123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang D, Duda TF. Age-related association of venom gene expression and diet of predatory gastropods. BMC Evol Biol. 2016;16(1):1.

    Article  Google Scholar 

  • Chang D, Olenzek AM, Duda TF. Effects of geographical heterogeneity in species interactions on the evolution of venom genes. Proc R Soc Lond B Biol Sci [Internet]. 2015;282(1805). Disponible sur: http://rspb.royalsocietypublishing.org/content/282/1805/20141984.abstract

  • Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M. Mechanisms for evolving hypervariability: the case of conopeptides. Mol Biol Evol. 2001;18:120–31.

    Article  CAS  PubMed  Google Scholar 

  • Cunha RL, Castilho R, Ruber L, Zardoya R. Patterns of cladogenesis in the venomous marine gastropod genus Conus from the Cape Verde Islands. Syst Biol. 2005;54(4):634–50.

    Article  PubMed  Google Scholar 

  • Cunha RL, Tenorio MJ, Afonso C, Castilho R, Zardoya R. Replaying the tape: recurring biogeographical patterns in Cape Verde Conus after 12 million years. Mol Ecol. 2008;17(3):885–901.

    Article  PubMed  Google Scholar 

  • Cunha RL, Lima FP, Tenorio MJ, Ramos AA, Castilho R, Williams ST. Evolution at a different pace: distinctive phylogenetic patterns of cone snails from two ancient oceanic archipelagos. Syst Biol. 2014;63(6):971–87.

    Article  PubMed  Google Scholar 

  • Dalet JT, Saloma CP, Olivera BM, Heralde FM. Karyological analysis and FISH physical mapping of 18S rDNA genes, (GATA)n centromeric and (TTAGGG)n telomeric sequences in Conus magus Linnaeus, 1758. J Molluscan Stud. 2015;81(2):274–89.

    Article  Google Scholar 

  • Duda Jr TF. Differentiation of venoms of predatory marine gastropods: divergence of orthologous toxin genes of closely related Conus species with different dietary specializations. J Mol Evol. 2008;67:315–21.

    Article  CAS  PubMed  Google Scholar 

  • Duda Jr TF, Kohn AJ. Species-level phylogeography and evolutionary history of the hyperdiverse marine gastropod genus Conus. Mol Phylogenet Evol. 2005;34:257–72.

    Article  PubMed  Google Scholar 

  • Duda Jr TF, Lee T. Isolation and population divergence of a widespread Indo-West Pacific marine gastropod at Easter Island. Mar Biol. 2009a;156:1193–202.

    Article  Google Scholar 

  • Duda Jr TF, Lee T. Ecological release and venom evolution of a predatory marine Snail at Easter Island. PLoS One. 2009b;4:e5558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duda Jr TF, Palumbi SR. Developmental shifts and species selection in gastropods. Proc Natl Acad Sci. 1999;96:10272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda Jr TF, Palumbi SR. Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus Conus. Proc R Soc B. 2004;271:1165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda Jr TF, Remigio A. Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails. Mol Ecol. 2008;17:3018–32.

    Article  CAS  PubMed  Google Scholar 

  • Duda Jr TF, Rolan E. Explosive radiation of Cape Verde Conus, a marine species flock. Mol Ecol. 2005;14:267–72.

    Google Scholar 

  • Duda Jr TF, Kohn AJ, Palumbi SR. Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biol J Linn Soc. 2001;73(4):391–409.

    Article  Google Scholar 

  • Duda TF, Bingham J-P, Livett BG, Kohn AJ, Raybaudi Massilia G, Schultz JR, et al. How much at risk are cone snails? Science. 2004;303(5660):955–7.

    Article  CAS  PubMed  Google Scholar 

  • Duda Jr TF, Bolin MB, Meyer C, Kohn AJ. Hidden diversity in a hyperdiverse gastropod genus: discovery of previously unidentified members of a Conus species complex. Mol Phylogenet Evol. 2008;49:867–76.

    Article  CAS  PubMed  Google Scholar 

  • Duda Jr TF, Chang D, Lewis BD, Lee T. Geographic variation in venom allelic composition and diets of the widespread predatory marine gastropod Conus ebraeus. PLoS One. 2009a;4:e6245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duda Jr TF, Kohn AJ, Matheny AM. Cryptic species differentiated in Conus ebraeus, a widespread tropical marine gastropod. Biol Bull. 2009b;217:292–305.

    Article  CAS  PubMed  Google Scholar 

  • Duda Jr TF, Terbio M, Chen G, Phillips S, Olenzek AM, Chang D, et al. Patterns of population structure and historical demography of Conus species in the tropical Pacific. Am Malacol Bull. 2012;30:175–87.

    Article  Google Scholar 

  • Dutertre S, Biass D, Stöcklin R, Favreau P. Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. Toxicon. 2010;55:1453–62.

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Jin AH, Kaas Q, Jones A, Alewood PF, Lewis RJ. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteomics. 2013;12:312–29.

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Jin A-H, Vetter I, Hamilton B, Sunagar K, Lavergne V, et al. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun. 2014a;5:3521.

    PubMed  PubMed Central  Google Scholar 

  • Dutertre S, Jin A-H, Alewood PF, Lewis RJ. Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon. 2014b;91:135–44.

    Article  CAS  PubMed  Google Scholar 

  • Espiritu DJD, Watkins M, Dia-Monje V, Cartier GE, Cruz LE, Olivera BM. Venomous cone snails: molecular phylogeny and the generation of toxin diversity. Toxicon. 2001;39:1899–916.

    Article  CAS  PubMed  Google Scholar 

  • Fedosov A, Kantor Y. Toxoglossan gastropods of the subfamily Crassispirinae (Turridae) lacking a radula, and a discussion of the status of the subfamily Zemaciinae. J Molluscan Stud. 2008;74:27–35.

    Article  Google Scholar 

  • Fedosov AE, Puillandre N. Phylogeny and taxonomy of the Kermia–Pseudodaphnella (Mollusca: Gastropoda: Raphitomidae) genus complex: a remarkable radiation via diversification of larval development. Syst Biodivers. 2012;10(4):447–77.

    Article  Google Scholar 

  • Fedosov A, Watkins M, Heralde III FM, Showers Corneli P, Concepcion GP, Olivera BM. Phylogeny of the genus Turris: correlating molecular data with radular anatomy and shell morphology. Mol Phylogenet Evol. 2011;59:263–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fedosov A, Tiunov A, Kiyashko S, Kantor YI. Trophic diversification in the evolution of predatory marine gastropods of the family Terebridae as inferred from stable isotope data. Mar Ecol Prog Ser. 2014;497:143–56.

    Article  Google Scholar 

  • Fischer P. Manuel de conchyliologie et de paléontologie conchyliologique. Paris: F. Savy; 1887.

    Google Scholar 

  • Fry BG, Koludarov I, Jackson TN, Holford M, Terrat Y, Casewell NR, et al. Seeing the woods for the trees: understanding venom evolution as a guide for biodiscovery. In: Venoms to drugs: venom as a source for the development of human therapeutics. 2015. pp. 1–36.

    Google Scholar 

  • Fujikura K, Sasaki T, Yamanaka T, Yoshida T. Turrids whelk, Phymorhynchus buccinoides feeds on Bathymodiolus mussels at a seep site in Sagami Bay, Japan. Plankton Benthos Res. 2009;4:23–30.

    Article  Google Scholar 

  • Gerdol M, Puillandre N, De Moro G, Guarnaccia C, Lucafò M, Benincasa M, et al. Identification and characterization of a novel family of cysteine-rich peptides (MgCRP-I) from Mytilus galloprovincialis. Genome Biol Evol. 2015;7(8):2203–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales DTT, Saloma CP. A bioinformatics survey for conotoxin-like sequences in three turrid snail venom duct transcriptomes. Toxicon. 2014;92:66–74.

    Article  CAS  PubMed  Google Scholar 

  • Gorson J, Ramrattan G, Verdes A, Wright EM, Kantor Y, Rajaram Srinivasan R, et al. Molecular diversity and gene evolution of the venom arsenal of Terebridae predatory marine snails. Genome Biol Evol. 2015;7(6):1761–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad Junior V, Coltro M, Simone LRL. Report of a human accident caused by Conus regius (Gastropoda, Conidae). Rev Soc Bras Med Trop. 2009;42:446–8.

    Article  Google Scholar 

  • Hedley C. A revision of the Australian Turridae. Rec Aust Mus. 1922;13(6):213–359.

    Article  Google Scholar 

  • Hendricks JR. Glowing seashells: diversity of fossilized coloration patterns on coral reef-associated cone snail (Gastropoda: Conidae) shells from the neogene of the Dominican Republic. PLoS One. 2015;10(4):e0120924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hendricks JR. Fossil records, evolutionary history, and paleobiology of plio-pleistocene Conus from the Southeastern United States. Ithaca: Cornell University; 2005.

    Google Scholar 

  • Heralde FM, Watkins M, Ownby J-P, Bandyopadhyay PK, Santos AD, Concepcion GP, et al. Molecular phylogeny of some Indo-Pacific genera in the subfamily Turrinae H. Adams and A. Adams, 1853 (1838) (Gastropoda: Neogastropoda). Nautilus. 2007;121:131–8.

    Google Scholar 

  • Heralde FM, Imperial J, Bandyopadhyay P, Olivera BM, Concepcion GP, Santos AD. A rapidly diverging superfamily of peptide toxins in venomous Gemmula species. Toxicon. 2008;51:890–7.

    Article  CAS  PubMed  Google Scholar 

  • Heralde FM, Kantor Y, Astilla MAQ, Lluisma AO, Geronimo R, Alino PM, et al. The Indo-Pacific Gemmula species in the subfamily Turrinae: aspects of field distribution, molecular phylogeny, radular anatomy and feeding ecology. Philipp Sci Lett. 2010;3:21–34.

    Google Scholar 

  • Holford M, Puillandre N, Modica MV, Watkins M, Collin R, Bermingham E, et al. Correlating molecular phylogeny with venom apparatus occurrence in Panamic Auger snails (Terebridae). PLoS One. 2009a;4:e7667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holford M, Puillandre N, Terryn Y, Cruaud C, Olivera BM, Bouchet P. Evolution of the Toxoglossa venom apparatus as inferred by molecular phylogeny of the Terebridae. Mol Biol Evol. 2009b;26:15–25.

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Bandyopadhyay PK, Olivera BM, Yandell M. Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genomics. 2011;12:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imperial JS, Kantor Y, Watkins M, Heralde FM, Stevenson B, Chen P, et al. Venomous auger snail Hastula (Impages) hectica (Linnaeus, 1758): molecular phylogeny, foregut anatomy and comparative toxinology. J Exp Zool. 2007a;308B:744–56.

    Article  CAS  Google Scholar 

  • Imperial JS, Silverton N, Olivera BM, Bandyopadhyay P, Sporning A, Ferber M, et al. Using chemistry to reconstruct evolution: on the origins of fish-hunting in venomous cone snails. Proc Am Philos Soc. 2007b;151:185–200.

    Google Scholar 

  • Jablonski D, Lutz RA. Molluscan larval shell morphology – ecological and paleontological applications. In: Rhoads DC, Lutz RA, editors. Skeletal growth of aquatic organisms. New York: Plenum Press; 1980. p. 323–77.

    Chapter  Google Scholar 

  • Jacobsen R, Yoshikami D, Ellison M, Martinez J, Gray WE, Cartier GE, et al. Differential targeting of nicotinic acetylcholine receptors by novel alpha-conotoxins. J Biol Chem. 1997;272:22531–7.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski JA, Kelley WP, Sweedler JV, Gilly WF, Schulz JR. Intraspecific variation of venom injected by fish-hunting Conus snails. J Exp Biol. 2005;208(15):2873–83.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski JA, Kelley WP, Sweedler JV. Screening for post-translational modifications in conotoxins using liquid chromatography/mass spectrometry: an important component of conotoxin discovery. Toxicon. 2006;47(6):688–99.

    Article  CAS  PubMed  Google Scholar 

  • Janssen AW, Janssen R, Tracey S, Vaessen LM, van der Voort J. History of a marine, Cainozoic gastropod taxon, Conus antidiluvianus Bruguière, 1792 and its nomenclatural implications. Cainozoic Res. 2014;14:73–92.

    Google Scholar 

  • Jin A-H, Israel MR, Inserra MC, Smith JJ, Lewis RJ, Alewood PF, et al. δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails. Proc R Soc Lond B Biol Sci [Internet]. 2015;282(1811). Disponible sur: http://rspb.royalsocietypublishing.org/content/282/1811/20150817.abstract

  • Kaas Q, Craik DJ. Bioinformatics-aided venomics. Toxins. 2015;7(6):2159–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaas Q, Yu R, Jin A-H, Dutertre S, Craik DJ. ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res. 2012;40:D325–30.

    Article  CAS  PubMed  Google Scholar 

  • Kantor YI. How much can Conus swallow? Observations on molluscivorous species. J Molluscan Stud. 2007;73(2):123–7.

    Article  Google Scholar 

  • Kantor YI, Puillandre N. Evolution of the radular apparatus in Conoidea (Gastropoda: Neogastropoda) as inferred from a molecular phylogeny. Malacologia. 2012;55:55–90.

    Article  Google Scholar 

  • Kantor YI, Sysoev AV. The morphology of toxoglossan gastropods lacking a radula, with a description of new species and genus of Turridae. J Molluscan Stud. 1989;55:537–49.

    Article  Google Scholar 

  • Kantor YI, Sysoev A. Mollusks of the genus Antiplanes (Gastropoda: Turridae) of the northwestern Pacific Ocean. Nautilus. 1991a;105(4):119–46.

    Google Scholar 

  • Kantor Y, Sysoev A. Sexual dimorphism in the apertural notch of a new species of Gemmula (Gastropoda: Turridae). J Molluscan Stud. 1991b;57:205–9.

    Article  Google Scholar 

  • Kantor YI, Taylor JD. Evolution of the toxoglossan feeding mechanism: new information of the use of radula. J Molluscan Stud. 1991;57:129–34.

    Article  Google Scholar 

  • Kantor YI, Taylor JD. The foregut anatomy of Strictispira paxillus (Reeve, 1845) (Conoidea: Strictispiridae). J Molluscan Stud. 1994;60:343–6.

    Article  Google Scholar 

  • Kantor Y, Taylor JD. Formation of marginal radular teeth in Conoidea (Neogastropoda) and the evolution of the hypodermic envenomation mechanism. J Zool. 2000;252:251–62.

    Article  Google Scholar 

  • Kantor YI, Taylor JD. Foregut anatomy and relationships of raphitomine gastropods (Gastropoda: Conoidea: Raphitominae). Boll Malacol. 2002;38 Suppl 4:83–110.

    Google Scholar 

  • Kantor YI, Puillandre N, Olivera BM, Bouchet P. Morphological proxies for taxonomic decision in turrids (Mollusca, Neogastropoda): a test of the value of shell and radula characters using molecular data. Zoolog Sci. 2008;25:1156–70.

    Article  PubMed  Google Scholar 

  • Kantor YI, Strong EE, Puillandre N. A new lineage of Conoidea (Gastropoda: Neogastropoda) revealed by morphological and molecular data. J Molluscan Stud. 2012a;78:246–55.

    Article  Google Scholar 

  • Kantor YI, Fedosov AE, Marin IN. An unusually high abundance and diversity of the Terebridae (Gastropoda: Conoidea) in Nha Trang Bay, Vietnam. Zool Stud. 2012b;51:663–70.

    Google Scholar 

  • Kilburn RN. Turridae (Mollusca: Gastropoda) of southern Africa and Mozambique. Part 1. Subfamily Turrinae. Ann Natal Mus. 1983;25(2):549–85.

    Google Scholar 

  • Kilburn RN. Turridae (Mollusca: Gastropoda) of southern Africa and Mozambique. Part 2. Subfamily Clavatulinae. Ann Natal Mus. 1985;26(2):417–70.

    Google Scholar 

  • Kohn AJ. Piscivorous gastropods of the genus Conus. Proc Natl Acad Sci. 1956;42:168–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohn AJ. The ecology of Conus in Hawaii. Ecol Monogr. 1959;29:47–90.

    Article  Google Scholar 

  • Kohn AJ. Abundance, diversity, and resource use in an assemblage of Conus species in Enewetak Lagoon. Pac Sci. 1980;34:359–69.

    Google Scholar 

  • Kohn AJ. Tempo and mode of evolution in Conidae. Malacologia. 1990;32:55–67.

    Google Scholar 

  • Kohn AJ. Egg size, life history, and tropical marine gastropod biogeography. Am Malacol Bull. 2012;30:163–74.

    Article  Google Scholar 

  • Kohn AJ, Nishi M, Pernet B. Snail spears and scimitars: a character analysis of Conus radular teeth. J Molluscan Stud. 1999;65(4):461–81.

    Article  Google Scholar 

  • Marshall B. New records of Conidae (Mollusca: Gastropoda) from the New Zealand region. N Z J Zool. 1981;8(4):493–501.

    Article  Google Scholar 

  • McLean JH. A revised classification of the family Turridae, with the proposal of new subfamilies, genera and subgenera from the Eastern Pacific. Veliger. 1971;14(1):114–30.

    Google Scholar 

  • Medinskaya AI, Sysoev A. The anatomy of Zemacies excelsa, with a description of a new subfamily of Turridae (Gastropoda, Conoidea). Ruthenica. 2003;13(1):81–7.

    Google Scholar 

  • Miller BA. Studies on the biology of Indo-Pacific Terebra. Durham: University of New Hampshire; 1970.

    Google Scholar 

  • Miller BA. The biology of Terebra gouldi Deshayes, 1859, and a discussion of life history similarities among other terebrids of similar proboscis type. Pac Sci. 1975;29:227–41.

    Google Scholar 

  • Miller JA, Morton B. The feeding and prey capture mechanism of Turricula nelliae spurius (Hedley)(Gastropoda: Turridae). Mar Flora Fauna Hong Kong South China II Behav Morphol Physiol Pollut. 1990;3:979.

    Google Scholar 

  • Morrison JPE. On the families of Turridae. In: The 31st Annual Meeting of the American Malacologcial Union; 1965. p. 1–2.

    Google Scholar 

  • Muttenthaler M, Dutertre S, Wingerd JS, Aini JW, Walton H, Alewood PF, et al. Abundance and diversity of Conus species (Gastropoda: Conidae) at the northern tip of New Ireland province of Papua New Guinea. Naut-Sanibel. 2012;126(2):47.

    Google Scholar 

  • Nielsen KJ, Adams DA, Alewood PF, Lewis RJ, Thomas L, Schroeder T, et al. Effects of chirality at Tyr13 on the structure-activity relationships of ω-conotoxins from Conus magus. Biochemistry (Mosc). 1999;38(21):6741–51.

    Article  CAS  Google Scholar 

  • Nybakken J. Ontogenic change in the Conus radula, its form, distribution among the radula types, and significance in systematics and ecology. Malacologia. 1990;32(1):35–54.

    Google Scholar 

  • Nybakken J, Perron F. Ontogenetic change in the radula of Conus magus (Gastropoda). Mar Biol. 1988;98(2):239–42.

    Article  Google Scholar 

  • Olivera BM. Conus venom peptides: reflections from the biology of clades and species. Annu Rev Ecol Syst. 2002;33:25–47.

    Article  Google Scholar 

  • Olivera BM. Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem. 2006;281:31173–7.

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM, Walker C, Cartier GE, Hooper D, Santos AD, Schoenfeld R, et al. Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Potential evolutionary significance of introns. Ann N Y Acad Sci. 1999;870:223–37.

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM, Showers Corneli P, Watkins M, Fedosov A. Biodiversity of cone snails and other venomous marine gastropods: evolutionary success through neuropharmacology. Annu Rev Anim Biosci. 2014;2(1):487–513.

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM, Seger J, Horvath MP, Fedosov AE. Prey-capture strategies of fish-hunting cone snails: behavior, neurobiology and evolution. Brain Behav Evol. 2015;86(1):58–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Page LR. Developmental modularity and phenotypic novelty within a biphasic life cycle: morphogenesis of a cone snail venom gland. Proc R Soc B. 2012;279:77–83.

    Article  PubMed  Google Scholar 

  • Peters H, O’Leary BC, Hawkins JP, Carpenter KE, Roberts CM. Conus: first comprehensive conservation red list assessment of a marine gastropod mollusc genus. PLoS One. 2013;8:e83353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters H, O’Leary BC, Hawkins JP, Roberts CM. Identifying species at extinction risk using global models of anthropogenic impact. Glob Change Biol. 2015;21(2):618–28.

    Article  Google Scholar 

  • Phuong MA, Mahardika GN, Alfaro ME. Dietary breadth is positively correlated with venom complexity in cone snails. bioRxiv. 2015;028860.

    Google Scholar 

  • Pi C, Liu J, Peng C, Liu Y, Jiang X, Zhao Y, et al. Diversity and evolution of conotoxins based on gene expression profiling of Conus litteratus. Genomics. 2006;88:809–19.

    Article  CAS  PubMed  Google Scholar 

  • Powell AWB. The family Turridae in the Indo-Pacific. Part I. The subfamily Turrinae. Indo-Pacific Mollusca. 1964;1:227–411.

    Google Scholar 

  • Powell AWB. The molluscan families Speightiidae and Turridae. An evaluation of the valid taxa, both recent and fossil, with lists of characteristics species. Bull Auckl Inst Mus. 1966;5:5–184.

    Google Scholar 

  • Prashanth JR, Brust A, Jin A-H, Alewood PF, Dutertre S, Lewis RJ. Cone snail venomics: from novel biology to novel therapeutics. Future Med Chem. 2014;6(15):1659–75.

    Article  CAS  PubMed  Google Scholar 

  • Prashanth J, Dutertre S, Jin A, Lavergne V, Hamilton B, Cardoso F, et al. The role of defensive ecological interactions in the evolution of conotoxins. Mol Ecol. 2016;25(2):598–615.

    Article  CAS  PubMed  Google Scholar 

  • Puillandre N, Holford M. The Terebridae and teretoxins: combining phylogeny and anatomy for concerted discovery of bioactive compounds. BMC Chem Biol. 2010;10:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puillandre N, Samadi S, Boisselier MC, Sysoev AV, Kantor YI, Cruaud C, et al. Starting to unravel the toxoglossan knot: molecular phylogeny of the “turrids” (Neogastropoda: Conoidea). Mol Phylogenet Evol. 2008;47:1122–34.

    Article  CAS  PubMed  Google Scholar 

  • Puillandre N, Baylac M, Boisselier MC, Cruaud C, Samadi S. An integrative approach of species delimitation in the genus Benthomangelia (Mollusca: Conoidea). Biol J Linn Soc. 2009;96:696–708.

    Article  Google Scholar 

  • Puillandre N, Sysoev A, Olivera BM, Couloux A, Bouchet P. Loss of planktotrophy and speciation: geographical fragmentation in the deep-water gastropod genus Bathytoma (Gastropoda, Conoidea) in the western Pacific. Syst Biodivers. 2010a;8:371–94.

    Article  Google Scholar 

  • Puillandre N, Watkins M, Olivera BM. Evolution of Conus peptide genes: duplication and positive selection in the A-superfamily. J Mol Evol. 2010b;70:190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puillandre N, Kantor Y, Sysoev A, Couloux A, Meyer C, Rawlings T, et al. The dragon tamed? A molecular phylogeny of the Conoidea (Mollusca, Gastropoda). J Molluscan Stud. 2011a;77:259–72.

    Article  Google Scholar 

  • Puillandre N, Meyer CP, Bouchet P, Olivera BM. Genetic divergence and geographical variation in the deep-water Conus orbignyi complex (Mollusca: Conoidea). Zool Scr. 2011b;40:350–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Puillandre N, Modica MV, Zhang Y, Sirovitch L, Boisselier M-C, Cruaud C, et al. Large scale species delimitation method for hyperdiverse groups. Mol Ecol. 2012a;21:2671–91.

    Article  CAS  PubMed  Google Scholar 

  • Puillandre N, Koua D, Favreau P, Olivera BM, Stöcklin R. Molecular phylogeny, classification and evolution of conopeptides. J Mol Evol. 2012b;74:297–309.

    Article  CAS  PubMed  Google Scholar 

  • Puillandre N, Bouchet P, Duda TF, Kauferstein S, Kohn AJ, Olivera BM, et al. Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Mol Phylogenet Evol. 2014a;78:290–303.

    Article  CAS  PubMed  Google Scholar 

  • Puillandre N, Stöcklin R, Favreau P, Bianchi E, Perret F, Rivasseau A, et al. When everything converges: Integrative taxonomy with shell, DNA and venomic data reveals Conus conco, a new species of cone snails (Gastropoda: Conoidea). Mol Phylogenet Evol. 2014b;80:186–92.

    Article  PubMed  Google Scholar 

  • Puillandre N, Duda JTF, Meyer CP, Olivera BM, Bouchet P. One, four or 100 genera? A new classification of the cone snails. J Molluscan Stud. 2015;81:1–23.

    Article  CAS  PubMed  Google Scholar 

  • Remigio EA, Duda Jr TF. Evolution of ecological specialization and venom of a predatory marine gastropod. Mol Ecol. 2008;17(4):1156–62.

    Article  CAS  PubMed  Google Scholar 

  • Robinson SD, Safavi-Hemami H, McIntosh LD, Purcell AW, Norton RS, Papenfuss AT. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS One. 2014;9(2):e87648.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Safavi-Hemami H, Siero WA, Kuang Z, Williamson BA, Karas JA, Page LR, et al. Embryonic toxin expression in the cone snail Conus victoriae – primed to kill or divergent function? J Biol Chem. 2011;286:22546–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safavi-Hemami H, Gajewiak J, Karanth S, Robinson SD, Ueberheide B, Douglass AD, et al. Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proc Natl Acad Sci. 2015;112(6):1743–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz JR, Norton AG, Gilly WF. The projectile tooth of a fish-hunting cone snail: Conus catus injects venom into fish prey using a high-speed ballistic mechanism. Biol Bull. 2004;207(2):77–9.

    Article  PubMed  Google Scholar 

  • Shimek RL. The morphology of the buccal apparatus of Oenopota levidensis (Gastropoda, Turridae). Z Morph Tiere. 1975;80(1):59–96.

    Article  Google Scholar 

  • Shimek RL, Kohn AJ. Functional morphology and evolution of the toxoglossan radula. Malacologia. 1981;20(2):423–38.

    Google Scholar 

  • Simpson MR, Sherwood GD, Mello LGS, Miri CM, Kulka DW. Feeding habits and trophic niche differentiation in three species of wolffish (Anarhichas sp.) inhabiting Newfoundland and Labrador waters. 2013. p. 2013/056.

    Google Scholar 

  • Smith EH. The proboscis and oesophagus of some British turrids. Trans R Soc Edinb. 1967;67(1):1–22.

    Article  Google Scholar 

  • Smith UE, Hendricks JR. Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells. Syst Biol. 2013;62:366–85.

    Article  PubMed  Google Scholar 

  • Sysoev A, Kantor YI. Deep-sea gastropods of the genus Aforia (Turridae) of the Pacific species composition, systematics, and functional morphology of the digestive system. Veliger. 1987;30(2):105–21.

    Google Scholar 

  • Taylor J, Morris N, Taylor C. Food specialization and the evolution of predatory prosobranch gastropods. Palaeontology. 1980;23(2):375–409.

    Google Scholar 

  • Taylor JD, Kantor YI, Sysoev AV. Foregut anatomy, feedings mechanisms and classification of the Conoidea (= Toxoglossa)(Gastropoda). Bull Nat Hist Mus Lond Zool. 1993;59(2):125–70.

    Google Scholar 

  • Thiele J. Handbuch der systematischen weichtierkunde. Jena: G. Fischer; 1929. p. 356–76.

    Google Scholar 

  • Todd JA, Johnson KG. Dissecting a marine snail species radiation (Conoidea: Turridae: Polystira) over 12 million years in the Southwestern Caribbean. Bull Mar Sci. 2013;89:877–904.

    Google Scholar 

  • Tryon GW. Manual of conchology; structural and systematic, with illustrations of the species. Vol. VI. Conidae, Pleurotomidae. Philadelphia: Tryon, G. W.; 1884.

    Google Scholar 

  • Tucker JK, Tenorio MJ. Systematic classification of recent and fossil conoidean gastropods. Hackenheim: Conchbooks; 2009.

    Google Scholar 

  • Vallejo Jr J. Inferring the mode of speciation in Indo-West Pacific Conus (Gastropoda: Conidae). J Biogeogr. 2005;32:1429–39.

    Article  Google Scholar 

  • von Reumont BM, Campbell LI, Richter S, Hering L, Sykes D, Hetmank J, et al. A polychaete’s powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs. Genome Biol Evol. 2014;6(9):2406–23.

    Article  CAS  Google Scholar 

  • Watkins M, Hillyard DR, Olivera BM. Genes expressed in a Turrid venom duct: divergence and similarity to conotoxins. J Mol Evol. 2006;62:247–56.

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Duda Jr TF. Did tectonic activity stimulate oligo-miocene speciation in the Indo-West Pacific? Evolution. 2008;62(7):1618–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This review benefitted from the project CONOTAX, funded by the French ANR (ANR-13-JSV7-0013-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicolas Puillandre , Alexander E. Fedosov or Yuri I. Kantor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Puillandre, N., Fedosov, A.E., Kantor, Y.I. (2017). Systematics and Evolution of the Conoidea. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_19

Download citation

Publish with us

Policies and ethics