Skip to main content

Independent Origins of Scorpion Toxins Affecting Potassium and Sodium Channels

  • Reference work entry
  • First Online:

Part of the book series: Toxinology ((TOXI))

Abstract

Peptide neurotoxins targeting sodium (Na+) and potassium (K+) channels are two major components of scorpion venom for capturing prey (e.g., insects) and deterring competitors (e.g., small mammals). Although a great amount of information in terms of their sequences, structures and pharmacological functions is available currently, the origin of these toxins remains unsolved. Based on the genomic organization and three-dimensional structure similarities together with close functional relatedness, it has been proposed that these two types of molecules could arise from a common ancestor. However, recent studies have provided convincing experimental evidence in favor of their independent origins, in which an ancestral K+ channel toxin firstly evolved from an antibacterial insect defensin-like molecule via a small deletion of the amino-terminal loop (n-loop) to remove steric hindrance between peptide-channel interaction whereas scorpion Na+ channel toxins originated from an antifungal drosomycin-like ancestor through the insertion of a small amino-terminal turn and the extension of a carboxyl-terminal tail to reach a new receptor region on the channels, in line with the discovery that drosomycin can bind to the Drosophila’s own Na+ channels. These studies highlight the importance of insertion/deletion (indel) mutations in toxic origin from ancestral scaffolds of physiological functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Mlttaleb Y, Corzo G, Martin-Eauclaire MF, Satake H, Ceard B, Peigneur S, Nambaru P, Bougis PE, Possani LD, Tytgat J. A common “hot spot” confers hERG blockade activity to a-scorpion toxins affecting K+ channels. Biochem Pharmacol. 2008;76(6):805–15.

    Article  Google Scholar 

  • Aminetzach YT, Srouji JR, Kong CY, Hoekstra HE. Convergent evolution of novel protein function in shrew and lizard venom. Curr Biol. 2009;19(22):1925–31.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Lee A, Campbell E, Mackinnon R. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. eLife. 2013;2:e00594.

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker T, Loch G, Beyer M, Zinke I, Aschenbrenner AC, Carrera P, Inhester T, Schultze JL, Hoch M. FOXO-dependent regulation of innate immune homeostasis. Nature. 2010;463(7279):369–73.

    Article  CAS  PubMed  Google Scholar 

  • Bosmans F, Tytgat J. Voltage-gated sodium channel modulation by scorpion α-toxins. Toxicon. 2007;49(2):142–58.

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Chtarbanova S, Petersen AJ, Ganetzky B. Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proc Natl Acad Sci U S A. 2013a;110(19):E1752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, Chen Z, Yang W, Shen Z, He X, Sheng J, Xu X, Pan B, Feng J, Yang X, Hong W, Zhao W, Li Z, Huang K, Li T, Kong Y, Liu H, Jiang D, Zhang B, Hu J, Hu Y, Wang B, Dai J, Yuan B, Feng Y, Huang W, Xing X, Zhao G, Li X, Li Y, Li W. The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat Commun. 2013b;4:2602.

    PubMed  PubMed Central  Google Scholar 

  • Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57(4):397–409.

    Article  CAS  PubMed  Google Scholar 

  • Céard B, Martin-Eauclaire MF, Bougis PE. Evidence for a position-specific deletion as an evolutionary link between long- and short-chain scorpion toxins. FEBS Lett. 2001;494(3):246–8.

    Article  PubMed  Google Scholar 

  • Chagot B, Pimentel C, Dai L, Pil J, Tytgat J, Nakajima T, Corzo G, Darbon H, Ferrat G. An unusual fold for potassium channel blockers: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis. Biochem J. 2005;388(Pt 1):263–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang Q, Ni F, Ma J. Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc Natl Acad Sci U S A. 2010;107(25):11352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Hu Y, Yang W, He Y, Feng J, Wang B, Zhao R, Ding J, Cao Z, Li W, Wu Y. Hg1, novel peptide inhibitor specific for Kv1.3 channels from first scorpion Kunitz-type potassium channel toxin family. J Biol Chem. 2012;287(17):13813–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chugunov AO, Koromyslova AD, Berkut AA, Peigneur S, Tytgat J, Polyansky AA, Vladimir Pentkovsky M, Vassilevski AA, Grishin EV, Efremov RG. Modular organization of α-toxins from scorpion venom mirrors domain structure of their targets, sodium channels. J Biol Chem. 2013;288(26):19014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen L, Moran Y, Sharon A, Segal D, Gordon D, Gurevitz M. Drosomycin, an innate immunity peptide of Drosophila melanogaster, interacts with the fly voltage-gated sodium channel. J Biol Chem. 2009;284(35):23558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauplais M, Lecoq A, Song J, Cotton J, Jamin N, Gilquin B, Roumestand C, Vita C, de Medeiros CL, Rowan EG, Harvey AL, Menez A. On the convergent evolution of animal toxins. Conservation of a dyad of functional residues in potassium channel-blocking toxins with unrelated structures. J Biol Chem. 1997;272(7):4302–9.

    Article  CAS  PubMed  Google Scholar 

  • Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C, Hoffmann JA. Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem. 1994;269(52):33159–63.

    CAS  PubMed  Google Scholar 

  • Frenal K, Xu CQ, Wolff N, Wecker K, Gurrola GB, Zhu SY, Chi CW, Possani LD, Tytgat J, Delepierre M. Exploring structural features of the interaction between the scorpion ToxinCnErg1 and ERG K+ channels. Proteins. 2004;56(2):367–75.

    Article  CAS  PubMed  Google Scholar 

  • Froy O, Gurevitz M. New insight on scorpion divergence inferred from comparative analysis of toxin structure, pharmacology and distribution. Toxicon. 2003;42(5):549–55.

    Article  CAS  PubMed  Google Scholar 

  • Froy O, Sagiv T, Poreh M, Urbach D, Zilberberg N, Gurevitz M. Dynamic diversification from a putative common ancestor of scorpion toxins affecting sodium, potassium, and chloride channels. J Mol Evol. 1999;48(2):187–96.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005;15(3):403–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao B, Harvey PJ, Craik DJ, Ronjat M, De Waard M, Zhu S. Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold. Biosci Rep. 2013;33(3):513.

    Article  CAS  Google Scholar 

  • Garber G, Smith LA, Reenan RA, Rogina B. Effect of sodium channel abundance on Drosophila development, reproductive capacity and aging. Fly (Austin). 2012;6(1):57–67.

    Article  CAS  Google Scholar 

  • Gurevitz M. Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon. 2012;60(4):502–11.

    Article  CAS  PubMed  Google Scholar 

  • Huys I, Xu CQ, Wang CZ, Vacher H, Martin-Eauclaire MF, Chi CW, Tytgat J. BmTx3, a scorpion toxin with two putative functional faces separately active on A-type K+ and HERG currents. Biochem J. 2004;378(Pt 3):745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Vargas JM, Restano-Cassulini R, Possani LD. Interacting sites of scorpion toxin ErgTx1 with hERG1 K+ channels. Toxicon. 2012;59(6):633–41.

    Article  CAS  PubMed  Google Scholar 

  • Jouiaei M, Sunagar K, Federman Gross A, Scheib H, Alewood PF, Moran Y, Fry BG. Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone. Mol Biol Evol. 2015;32(6):1598–610.

    Article  CAS  PubMed  Google Scholar 

  • Karbat I, Turkov M, Cohen L, Kahn R, Gordon D, Gurevitz M, Frolow F. X-ray structure and mutagenesis of the scorpion depressant toxin LqhIT2 reveals key determinants crucial for activity and anti-insect selectivity. J Mol Biol. 2007;366(2):586–601.

    Article  CAS  PubMed  Google Scholar 

  • Korolkova YV, Bocharov EV, Angelo K, Maslennikov IV, Grinenko OV, Lipkin AV, Nosyreva ED, Pluzhnikov KA, Olesen SP, Arseniev AS, Grishin EV. New binding site on common molecular scaffold provides HERG channel specificity of scorpion toxin BeKm-1. J Biol Chem. 2002;277(45):43104–9.

    Article  CAS  PubMed  Google Scholar 

  • Kubrak OI, Kučerová L, Theopold U, Nässel DR. The sleeping beauty: how reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. PLoS One. 2014;9(11):e113051.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landon C, Sodano P, Hetru C, Hoffmann J, Ptak M. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci. 1997;6(9):1878–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature. 2006;440(7086):959–62.

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–83.

    Article  CAS  PubMed  Google Scholar 

  • Mouhat S, Mosbah A, Visan V, Wulff H, Delepierre M, Darbon H, Grissmer S, De Waard M, Sabatier JM. The’functional’ dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels. Biochem J. 2004;377(Pt 1):25–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage-gated sodium channel. Nature. 2011;475(7356):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+-channels. Eur J Biochem. 1999;264(2):287–300.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Dominguez ME, Olamendi-Portugal T, Garcia U, Garcia C, Arechiga H, Possani LD. Cn11, the first example of a scorpion toxin that is a true blocker of Na+ currents in crayfish neurons. J Exp Biol. 2002;205(Pt 6):869–76.

    CAS  PubMed  Google Scholar 

  • Rodriguez de la Vega RC, Possani LD. Current views on scorpion toxins specific for K+ channels. Toxicon. 2004;43(8):865–75.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez de la Vega RC, Merino E, Becerril B, Possani LD. Novel interactions between K+ channels and scorpion toxins. Trends Pharmacol Sci. 2003;24(5):222–7.

    Article  CAS  PubMed  Google Scholar 

  • Saucedo AL, Flores-Solis D, de la Vega RC R, Ramirez-Cordero B, Hernandez-Lopez R, Cano-Sanchez P, Noriega Navarro R, Garcia-Valdes J, Coronas-Valderrama F, DeRoodt A, Brieba LG, Domingos L, Possani L, del Rio-Portila F. New tricks of an old pattern: structural versatility of scorpion toxins with common cysteine spacing. J Biol Chem. 2012;287(15):12321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C, Gao B, Rodriguez Mdel C, Lanz-Mendoza H, Ma B, Zhu S. Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Mol Immunol. 2008;45(15):3909–16.

    Article  CAS  PubMed  Google Scholar 

  • Tytgat J, Chandy KG, Garcia ML, Gutman GA, Martin-Eauclaire MF, van der Walt JJ, Possani LD. A unified nomenclature for short-chain peptides isolated from scorpion venoms: a-KTx molecular subfamilies. Trends Pharmacol Sci. 1999;20(11):444–7.

    Article  CAS  PubMed  Google Scholar 

  • Undheim EA, Grimm LL, Low CF, Morgenstern D, Herzig V, Zobel-Thropp P, Pineda SS, Habib R, Dziemborowicz S, Fry BG, Nicholson GM, Binford GJ, Mobli M, King GF. Weaponization of a hormone: convergent recruitment of hyperglycemic hormone into the venom of arthropod predators. Structure. 2015;S0969–2126(15):00181–1.

    Google Scholar 

  • Wang J, Yarov-Yarovoy V, Kahn R, Gordon D, Gurevitz M, Scheuer T, Catterall WA. Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci U S A. 2011;108(37):15426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JJ, He LL, Zhou Z, Chi CW. Gene expression, mutation, and structure-function relationship of scorpion toxin BmP05 active on SKCa channels. Biochemistry. 2002;41(8):2844–9.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Dib-Hajj SD, Zhang J, Zhang Y, Tyrrell L, Estacion M, Waxman SG. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Nav1.7 mutant channel. Nat Commun. 2012;3:1186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M, Catterall WA. Structure-function map of the receptor site for β-scorpion toxins in domain II of voltage-gated sodium channels. J Biol Chem. 2011;286(38):33641–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M, Catterall WA. Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na+ channels. J Biol Chem. 2012;287(36):30719–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Gao B. Nematode-derived drosomycin-type antifungal peptides provide evidence for plant-to-ecdysozoan horizontal transfer of a disease resistance gene. Nat Commun. 2014;5:3154.

    PubMed  Google Scholar 

  • Zhu S, Gao B, Aumelas A, del Carmen RM, Lanz-Mendoza H, Peigneur S, Diego-Garcia E, Martin-Eauclaire M-F, Tytgat J, Possani LD. MeuTXKβ1, a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolytic activity. Biochim Biophys Acta. 2010a;1804(4):872–83.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Gao B, Deng M, Yuan Y, Luo L, Peigneur S, Xiao Y, Liang S, Tytgat J. Drosotoxin, a selective inhibitor of tetrodotoxin-resistant sodium channels. Biochem Pharmacol. 2010b;80(8):1296–302.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Gao B, Tytgat J. Phylogenetic distribution, functional epitopes and evolution of the CSαβ superfamily. Cell Mol Life Sci. 2005;62(19–20):2257–69.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Peigneur S, Gao B, Umetsu Y, Ohki S, Tytgat J. Experimental conversion of a defensin into a neurotoxin: implications for origin of toxic function. Mol Biol Evol. 2014;31(3):546–59.

    Article  CAS  PubMed  Google Scholar 

  • Zlotkin E. The insect voltage-gated sodium channel as target of insecticides. Annu Rev Entomol. 1999;44:429–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunyi Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Zhang, S., Gao, B., Zhu, S. (2017). Independent Origins of Scorpion Toxins Affecting Potassium and Sodium Channels. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_12

Download citation

Publish with us

Policies and ethics