Skip to main content

Evolution of the Snake Venom Delivery System

  • Reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

There are over 3,000 species of snakes known to man. These limbless predators have been divided into two groups, the basal snakes (Henophidia) and the advanced snakes (Caenophidia). Venom evolved prior to the advanced snake radiation and, consequently, many use venom to subdue their prey. To do so, venom is injected via the use of a venom delivery system. The venom delivery system includes a postorbital venom gland on each side of the upper jaw that is associated with specialized venom-conducting fangs or teeth. Both the venom gland and fangs are considered to have originated from a common ancestor and are thought to be developmentally linked to one another. Even though the venom gland has a common ancestral origin, it can exhibit considerable morphological variation among the main snake families. Similarly, the fangs can occupy various positions on the upper jaw but are always found on the maxilla. Caenophidians are often referred to by the position of their fangs as either rear- or front-fanged snakes. The vast majority of snakes that are medically important to humans are front-fanged, and this character has evolved independently on at least three occasions. In addition, some front-fanged snakes have evolved a secondary gland associated with the venom system, known as the accessory gland. The venom glands, accessory glands, and fangs of different caenophidian snake families exhibit substantial morphological differences reflecting their evolutionary history. However, further studies are required to fully elucidate the ecological significance of differences in fang position, the function of the accessory gland, and the driving forces underpinning the convergent evolution observed in the snake venom delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bogert CM. Dentitional phenomena in cobras and other elapids, with notes on adaptive modifications of fangs. Bulletin of the American Museum of Natural History. New York. 1943;81(3):285–360.

    Google Scholar 

  • Carneiro SM, Pinto VR, Jared C, Lula LA, Faria FP, Sesso A. Morphometric studies on venom secretory cells from Bothrops jararacussu (Jararacuçu) before and after venom extraction. Toxicon. 1991;29(6):569–80.

    Article  CAS  PubMed  Google Scholar 

  • Casewell NR, Wagstaff SC, Harrison RA, Renjifo C, Wüster W. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol Biol Evol. 2011;28(9):2637–49.

    Article  CAS  PubMed  Google Scholar 

  • Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219–29.

    Article  PubMed  Google Scholar 

  • Casewell NR, Wagstaff SC, Wüster W, Cook DA, Bolton FM, King SI, Pla D, Sanz L, Calvete JJ, Harrison RA. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci U S A. 2014;111(25):9205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castoe TA, de Koning AP, Hall KT, Card DC, Schield DR, Fujita MK, Ruggiero RP, Degner JF, Daza JM, Gu W, Reyes-Velasco J, Shaney KJ, Castoe JM, Fox SE, Poole AW, Polanco D, Dobry J, Vandewege MW, Li Q, Schott RK, Kapusta A, Minx P, Feschotte C, Uetz P, Ray DA, Hoffmann FG, Bogden R, Smith EN, Chang BS, Vonk FJ, Casewell NR, Henkel CV, Richardson MK, Mackessy SP, Bronikowski AM, Yandell M, Warren WC, Secor SM, Pollock DD. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci U S A. 2013;110(51):20645–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chipman AD. On making a snake. Evol Dev. 2009;11(1):3–5.

    Article  PubMed  Google Scholar 

  • Di-Poï N, Montoya-Burgos JI, Miller H, Pourquié O, Milinkovitch MC, Duboule D. Changes in Hox genes’ structure and function during the evolution of the squamate body plan. Nature. 2010;464(7285):99–103.

    Article  PubMed  Google Scholar 

  • Fry BG. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005;15(3):403–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry BG, Scheib H, van der Weerd L, Young B, McNaughtan J, Ramjan SF, Vidal N, Poelmann RE, Norman JA. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol Cell Proteomics. 2008;7(2):215–46.

    Article  CAS  PubMed  Google Scholar 

  • Gans C, Elliott WB. Snake venoms: production, injection, action. Adv Oral Biol. 1968;3:45–81.

    Article  CAS  PubMed  Google Scholar 

  • Gans C, Kochva E. The accessory gland in the venom apparatus of viperid snakes. Toxicon. 1965;3:61–3.

    Article  CAS  PubMed  Google Scholar 

  • Gennaro JF, Hall HP, Casey ER, Hayes WK. Neurotropic effects of venoms and other factors that promote prey acquisition. J Exp Zool. 2007;307A:488–99.

    Article  Google Scholar 

  • Hargreaves AD, Swain MT, Hegarty MJ, Logan DW, Mulley JF. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins. Genome Biol Evol. 2014;6(8):2088–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hattingh I, Wright PG, Menkin DJ. Ultrastructure of the accessory venom gland of the puffadder and effects of nerve stimulation on duct perfusate. S Afr J Zool. 1984;19:57–60.

    Article  Google Scholar 

  • Isbell LA. Snakes as agents of evolutionary change in primate brains. J Hum Evol. 2006;51(1):1–35.

    Article  PubMed  Google Scholar 

  • Jackson K. How tubular venom conducting fangs are formed. J Morphol. 2002;252:291–7.

    Article  PubMed  Google Scholar 

  • Jackson K. The evolution of venom-conducting fangs: insights from developmental biology. Toxicon. 2007;49:975–81.

    Article  CAS  PubMed  Google Scholar 

  • Junqueira-de-Azevedo IL, Bastos CM, Ho PL, Luna MS, Yamanouye N, Casewell NR. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom. Mol Biol Evol. 2015;32(3):754–66.

    Article  CAS  PubMed  Google Scholar 

  • Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11):e218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerchove CM, Carneiro SM, Markus RP, Yamanouye N. Stimulation of the alpha-adrenoceptor triggers the venom production cycle in the venom gland of Bothrops jararaca. J Exp Biol. 2004;207(Pt 3):411–6.

    Article  CAS  PubMed  Google Scholar 

  • Kochva E. The development of the venom gland in the opisthoglyph snake Telescopus fallax with remarks on Thamnophis sirtalis (Colubridae, Reptilia). Copeia. 1965;2:147–54.

    Article  Google Scholar 

  • Kochva E. The origin of snakes and evolution of the venom apparatus. Toxicon. 1987;25(1):65–106.

    Article  CAS  PubMed  Google Scholar 

  • Kochva E, Gans C. The venom gland of Vipera palestinae with comments on the glands of some other viperines. Acta Anat. 1965;62:365–401.

    Article  Google Scholar 

  • Kochva E, Gans C. Salivary glands of snakes. Clin Toxicol. 1970;3(3):363–87.

    Article  CAS  PubMed  Google Scholar 

  • Kochva E, Oron U, Bdolah A, Allon N. Regulation of venom secretion and injection in viperid snakes. Toxicon. 1975;13:104.

    Google Scholar 

  • Kochva E, Oron U, Ovadia M, Simon T, Bdolah A. Venom glands, venom synthesis, venom secretion and evolution. In: Eaker D, Wadstrom T, editors. Natural toxins. Oxford: Pergamon Press; 1980.

    Google Scholar 

  • Lawson R, Slowinski JB, Crother BI, Burbrink FT. Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Mol Phylogenet Evol. 2005;37(2):581–601.

    Article  CAS  PubMed  Google Scholar 

  • Mackessy SP. Morphology and ultrastructure of the venom gland of the Northern Pacific rattlesnake Crotalus viridis oreganus. J Morphol. 1991;208:109–28.

    Article  Google Scholar 

  • Mackessy SP, Baxter LM. Bioweapons synthesis and storage: the venom gland of front-fanged snakes. Zool Anz. 2006;245:147–59.

    Article  Google Scholar 

  • Phisalix M. Animaux Venimeux et Venins, vol. II. Paris: Masson; 1922.

    Google Scholar 

  • Reyes-Velasco J, Card DC, Andrew AL, Shaney KJ, Adams RH, Schield DR, Casewell NR, Mackessy SP, Castoe TA. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol Biol Evol. 2015;32(1):173–83.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg HI. Histology, histochemistry, and emptying mechanism of the venom glands of some elapid snakes. J Morphol. 1967;123(2):133–55.

    Article  CAS  PubMed  Google Scholar 

  • Rotenberg D, Bamberger ES, Kochva E. Studies on ribonucleic acid synthesis in the venom glands of Vipera palaestinae (Ophidia, Reptilia). Biochem J. 1971;121(4):609–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai F, Carneiro SM, Yamanouye N. Morphological study of accessory gland of Bothrops jararaca and its secretory cycle. Toxicon. 2012;59(3):393–401.

    Article  CAS  PubMed  Google Scholar 

  • Sunagar K, Jackson TN, Undheim EA, Ali SA, Antunes A, Fry BG. Three-fingered RAVERs: rapid accumulation of variations in exposed residues of snake venom toxins. Toxins (Basel). 2013;5(11):2172–208.

    Article  CAS  Google Scholar 

  • Taub AM. Ophidian cephalic glands. J Morphol. 1966;118(4):529–42.

    Article  CAS  PubMed  Google Scholar 

  • Vidal N, Delmas AS, David P, Cruaud C, Couloux A, Hedges SB. The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C R Biol. 2007;330(2):182–7.

    Article  CAS  PubMed  Google Scholar 

  • Vidal N, Rage JC, Couloux A, Hedges SB. Snakes (Serpentes). In: Hedges SB, Kumar S, editors. The timetree of life. New York: Oxford University Press; 2009.

    Google Scholar 

  • Vonk FJ, Richardson MK. Developmental biology: serpent clocks tick faster. Nature. 2008;454(7202):282–3.

    Article  CAS  PubMed  Google Scholar 

  • Vonk FJ, Admiraal JF, Jackson K, Reshef R, de Bakker MA, Vanderschoot K, van den Berge I, van Atten M, Burgerhout E, Beck A, Mirtschin PJ, Kochva E, Witte F, Fry BG, Woods AE, Richardson MK. Evolutionary origin and development of snake fangs. Nature. 2008;454(7204):630–3.

    Article  CAS  PubMed  Google Scholar 

  • Vonk FJ, Jackson K, Doley R, Madaras F, Mirtschin PJ, Vidal N. Snake venom: from fieldwork to the clinic: recent insights into snake biology, together with new technology allowing high-throughput screening of venom, bring new hope for drug discovery. Bioessays. 2011;33(4):269–79.

    Article  CAS  PubMed  Google Scholar 

  • Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, Kerkkamp HM, Vos RA, Guerreiro I, Calvete JJ, Wüster W, Woods AE, Logan JM, Harrison RA, Castoe TA, de Koning AP, Pollock DD, Yandell M, Calderon D, Renjifo C, Currier RB, Salgado D, Pla D, Sanz L, Hyder AS, Ribeiro JM, Arntzen JW, van den Thillart GE, Boetzer M, Pirovano W, Dirks RP, Spaink HP, Duboule D, McGlinn E, Kini RM, Richardson MK. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110(51):20651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warrell DA. Snake bite. Lancet. 2010;375(9708):77–88.

    Article  PubMed  Google Scholar 

  • Warshawsky H, Haddad A, Goncalves RP, Valeri V, De Lucca FL. Fine structure of the venom gland epithelium of the South American rattlesnake and radioautographic studies of protein formation by the secretory cells. Am J Anat. 1973;138(1):79–119.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein SA, Smith TL, Kardong KV. Reptile venom glands: form, function and future. In: Mackessy S.P. editor. CRC handbook of Reptile Venoms and Toxins. Boca Raton: Taylor Francis; 2010 p. 65–91

    Google Scholar 

  • Westhoff G, Tzschätzsch K, Bleckmann H. The spitting behavior of two species of spitting cobras. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005;191(10):873–81.

    Article  CAS  PubMed  Google Scholar 

  • Wüster W, Crookes S, Ineich I, Mané Y, Pook CE, Trape JF, Broadley DG. The phylogeny of cobras inferred from mitochondrial DNA sequences: evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Mol Phylogenet Evov. 2007;45(2):437–53.

    Article  Google Scholar 

  • Yamanouye N, Britto LR, Carneiro SM, Markus RP. Control of venom production and secretion by sympathetic outflow in the snake Bothrops jararaca. J Exp Biol. 1997;200(Pt 19):2547–56.

    CAS  PubMed  Google Scholar 

  • Young BA, Dunlap K, Koenig K, Singer M. The buccal buckle: the functional morphology of venom spitting in cobras. J Exp Biol. 2004;207(Pt 20):3483–94.

    Article  PubMed  Google Scholar 

  • Zahradnicek O, Horacek I, Tucker AS. Viperous fangs: development and evolution of the venom canal. Mech Dev. 2008;125(9–10):786–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald M. I. Kerkkamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kerkkamp, H.M.I., Casewell, N.R., Vonk, F.J. (2017). Evolution of the Snake Venom Delivery System. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_11

Download citation

Publish with us

Policies and ethics