Skip to main content

Synthetic Peptides and Drug Discovery

  • Reference work entry
  • First Online:
  • 1037 Accesses

Part of the book series: Toxinology ((TOXI))

Abstract

Venomous glands of cone snails, scorpions, and so on contain many peptide neurotoxins. They mostly act on ion channels and neurotransmitter receptors with high specificity and are promising tools for developing novel peptide drugs. For this purpose, structure-function relationship of the peptides should be studied in detail. In this chapter, the relationships will be described for several peptide neurotoxins studied in the author’s laboratory such as conotoxins from cone snails and hefutoxins from scorpions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, et al. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev. 2014;114:5815–47.

    Article  CAS  PubMed  Google Scholar 

  • Balaji RA, Ohtake A, Sato K, Gopalakrishnakone P, Kini RM, Tong S-K, et al. λ-conotoxins, a new family of conotoxins with unusual disulfide pattern and protein folding: isolation and characterization from the venom of Conus marmoreus. J Biol Chem. 2000;275:39516–22.

    Article  CAS  PubMed  Google Scholar 

  • Barhanin J, Hugues M, Schweitz H, Vincent J-P, Lazdunski M. Structure-function relationships of sea anemone toxin II from Anemonia sulcata. J Biol Chem. 1981;256:5764–9.

    CAS  PubMed  Google Scholar 

  • Basus VJ, Nadasdi L, Ramachandran J, Miljanich GP. Solution structure of ω-conotoxin MVIIA using 2D NMR spectroscopy. FEBS Lett. 1995;370:163–9.

    Article  CAS  PubMed  Google Scholar 

  • Becker S, Atherton E, Gordon RD. Synthesis and characterization of μ-conotoxin IIIa. Eur J Biochem. 1989;185:79–84.

    Article  CAS  PubMed  Google Scholar 

  • Becker S, Prusak-Sochaczewski E, Zamponi G, Beck-Sickinger AG, Gordon RD, French RJ. Action of derivatives of μ-conotoxin GIIIA on sodium channels. Single amino acid substitution in the toxin separately affect association and dissociation rates. Biochemistry. 1992;31:8229–38.

    Article  CAS  PubMed  Google Scholar 

  • Bergeron ZL, Bingham J-P. Scorpion toxins specific for potassium (K+) channels: a historical overview of peptide bioengineering. Toxins. 2012;4:1082–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catterall WA. Structure and function of voltage-sensitive ion channels. Science. 1988;242:50–61.

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, Swanson TM. Structural basis for pharmacology of voltage-gated sodium and calcium channels. Mol Pharmacol. Published on April 6, 2015 as doi:10.1124/mol.114.097659.

    Google Scholar 

  • Chahine M, Chen L-Q, Fotouchi N, Walsky R, Fry D, Santarelli V, et al. Characterizing the μ-conotoxin binding site on voltage-sensitive sodium channels with toxin analogs and channel mutations. Recept Channels. 1995;3:161–74.

    CAS  PubMed  Google Scholar 

  • Chang NS, French RJ, Lipkind GM, Fozzard HA, Dudley Jr S. Predominant interactions between μ-conotoxin Arg-13 and the skeletal muscle Na+ channel localized by mutant cycle analysis. Biochemistry. 1998;37:4407–19.

    Article  CAS  PubMed  Google Scholar 

  • Cruz LJ, Gray WR, Olivera BM, Zeikus RD, Kerr L, Yoshikami D, et al. Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol Chem. 1985;260:9280–8.

    CAS  PubMed  Google Scholar 

  • Cruz LJ, Kupryszewski G, LeCheminant GW, Gray WR, Olivera BM, Rivier J. μ-conotoxin GIIIA, a peptide ligand for muscle sodium channels: chemical synthesis, radiolabeling, and receptor characterization. Biochemistry. 1989;28:3437–42.

    Article  CAS  PubMed  Google Scholar 

  • Davis JH, Bradley EK, Miljanich GP, Nadasdi L, Ramachandran J, Basus VJ. Solution structure of ω-conotoxin GVIA using 2-D NMR spectroscopy and relaxation matrix analysis. Biochemistry. 1993;32:7396–405.

    Article  CAS  PubMed  Google Scholar 

  • El-Hayek R, Lokuta AJ, Arevalo C, Valdivia HH. Peptide probe of ryanodine receptor function. J Biol Chem. 1995;270:28696–704.

    Article  CAS  PubMed  Google Scholar 

  • Fainzilber M, Lodder JC, van der Schors RC, Li KW, Yu Z, Burlingame AL, et al. A novel hydrophobic ω-conotoxin blocks molluscan dihydropyridine-sensitive calcium channels. Biochemistry. 1996;35:8748–52.

    Article  CAS  PubMed  Google Scholar 

  • Farr-Jones S, Miljanich GP, Nadasdi L, Ramachandran J, Basus VJ. Solution structure of ω-conotoxin MVIIC, a high affinity ligand of P-type calcium channels, using 1H NMR spectroscopy and complete relaxation matrix analysis. J Mol Biol. 1995;248:106–24.

    Article  CAS  PubMed  Google Scholar 

  • Flinn JP, Pallaghy PK, Lew MJ, Murphy R, Angus JA, Norton RS. Roles of key functional groups in ω-conotoxin GVIA synthesis, structure and functional assay of selected peptide analogues. Eur J Biochem. 1999a;262:447–55.

    Article  CAS  PubMed  Google Scholar 

  • Flinn JP, Pallaghy PK, Lew MJ, Murphy R, Angus JA, Norton RS. Role of disulfide bridges in the folding, structure and biological activity of ω-conotoxin GVIA. Biochim Biophys Acta. 1999b;1434:177–90.

    Article  CAS  PubMed  Google Scholar 

  • Gray WR, Olivera BM, Cruz LJ. Peptide toxins from venomous Conus snails. Annu Rev Biochem. 1988;57:665–700.

    Article  CAS  PubMed  Google Scholar 

  • Grizel AV, Glukhov GS, Sokolova OS. Mechanisms of activation of voltage-gated potassium channels. Acta naturae. 2014;6:10–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasson A, Fainzilber M, Gordon D, Zlotkin E, Spira M. Alteration of sodium currents by new peptide toxins from the venom of a molluscivorous Conus snail. Eur J Neurosci. 1993;5:56–64.

    Article  CAS  PubMed  Google Scholar 

  • Hidaka Y, Sato K, Nakamura H, Ohizumi Y, Kobayashi J, Shimonishi Y. Disulfide pairings in geographutoxin I, a peptide neurotoxin from Conus geographus. FEBS Lett. 1990;264:29–32.

    Article  CAS  PubMed  Google Scholar 

  • Hillyard DR, Olivera BM, Woodward S, Corpuz GP, Gray WR, Ramilo CA, et al. A molluskivorous Conus toxin: conserved frameworks in conotoxins. Biochemistry. 1989;28:358–61.

    Article  CAS  PubMed  Google Scholar 

  • Hillyard DR, Monje VD, Mintz IM, Bean BP, Nadasdi L, Ramachandran J, et al. A new conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron. 1992;9:69–77.

    Article  CAS  PubMed  Google Scholar 

  • Kim J-I, Takahashi M, Ogura A, Kohno T, Kudo Y, Sato K. Hydroxyl group of Tyr13 is essential for the activity of ω-conotoxin GVIA, a peptide toxin for N-type calcium channel. J Biol Chem. 1994;269:23876–8.

    CAS  PubMed  Google Scholar 

  • Kim J-I, Takahashi M, Ohtake A, Wakamiya A, Sato K. Tyr13 is essential for the activity of ω-conotoxin MVIIA and GVIA, specific N-type calcium channel blockers. Biochem Biophys Res Commun. 1995a;206:449–54.

    Article  CAS  PubMed  Google Scholar 

  • Kim J-I, Takahashi M, Martin-Moutot N, Seagar MJ, Ohtake A, Sato K. Tyr13 is essential for the binding of ω-conotoxin MVIIC to the P/Q-type calcium channel. Biochem Biophys Res Commun. 1995b;214:305–9.

    Article  CAS  PubMed  Google Scholar 

  • Kim J-I, Takahashi M, Ogura A, Kohno T, Kudo Y, Sato K. Hydrogen bonds are essential for the folding and biological activities of ω-conotoxin, a specific blocker of the N-type calcium channel. In: Maia HL, editor. Peptides 1994. Leiden: ESCOM Science Publishers B.V; 1995c.

    Google Scholar 

  • Kobayashi K, Sasaki T, Sato K, Kohno T. Three-dimensional solution structure of ω-conotoxin TxVII, an L-type calcium channel blocker. Biochemistry. 2000;39:14761–7.

    Article  CAS  PubMed  Google Scholar 

  • Kohno T, Kim J-I, Kobayashi K, Kodera Y, Maeda T, Sato K. Three dimensional structure in solution of the calcium channel blocker ω-conotoxin MVIIA. Biochemistry. 1995;34:10256–65.

    Article  CAS  PubMed  Google Scholar 

  • Kohno T, Sasaki T, Kobayashi K, Fainzilber M, Sato K. Three-dimensional structure in solution of the sodium channel agonist/antagonist δ-conotoxin TxVIA. J Biol Chem. 2002;277:36387–91.

    Article  CAS  PubMed  Google Scholar 

  • Kubo S, Chino N, Kimura T, Sakakibara S. Oxidative folding of ω-conotoxin MVIIC: effects of temperature and salt. Biopolymers. 1996;38:733–44.

    Article  CAS  PubMed  Google Scholar 

  • Lancelin JM, Kohda D, Tate S, Yanagawa Y, Abe T, Satake M, et al. Tertiary structure of conotoxin GIIIA in aqueous solution. Biochemistry. 1991;30:6908–16.

    Article  CAS  PubMed  Google Scholar 

  • Lee C-W, Lee E-H, Takeuchi K, Takahashi H, Shimada I, Sato K, et al. Molecular basis of the high-affinity activation of type 1 ryanodine receptors by imperatoxin A. Biochem J. 2004;377:385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lew MJ, Flinn JP, Pallaghy PK, Murphy R, Whorlow SL, Wright CE, et al. Structure-function relationships of ω-conotoxin GVIA. Synthesis, structure, calcium channel binding, and functional assay of alanine-substituted analogues. J Biol Chem. 1997;272:12014–23.

    Article  CAS  PubMed  Google Scholar 

  • Miljanich GP. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem. 2004;11:3029–40.

    Article  CAS  PubMed  Google Scholar 

  • Minami K, Raymond C, Martin-Moutot N, Ohtake A, Renterghem CV, Takahashi M, et al. Role of Thr11 in the binding of ω-conotoxin MVIIC to N-Type Ca2+ channels. FEBS Lett. 2001;491:127–30.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Kobayashi J, Ohizumi Y, Hirata Y. Isolation and amino acid composition of geographutoxin I and II form the marine snail Conus Geographus. Experientia. 1983;39:590–1.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Ishida Y, Kohno T, Sato K, Nakamura H. Synthesis of [Cys5]μ-conotoxin GIIIA and its derivatives as a probe of Na+ channel analysis. Biochem Biophys Res Commun. 2001a;283:374–8.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Niwa Y, Ishida Y, Kohno T, Sato K, Oba Y, et al. Modification of Arg-13 of μ-conotoxin GIIIA with piperidinyl-Arg analogs and their relation to the inhibition of sodium channels. FEBS Lett. 2001b;503:107–10.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Oba Y, Mori T, Sato K, Ishida Y, Matsuda T, et al. Generation of polyclonal antibody against μ-Conotoxin GIIIA using an immunogen of [Cys5]μ-conotoxin GIIIA site-specifically conjugated with bovine serum albumin. Biochem Biophys Res Commun. 2002;290:1037–41.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Ishida Y, Kohno T, Sato K, Oba Y, Nakamura H. Effects of modification at the fifth residue of μ-conotoxin GIIIA with bulky tags in the electrically stimulated contraction of the rat diaphragm. J Peptide Res. 2004;64:110–7.

    Article  CAS  Google Scholar 

  • Nemoto N, Kubo S, Yoshida T, Chino N, Kimura T, Sakakibara S, et al. Solution structure of ω-conotoxin MVIIC determined by NMR. Biochem Biophys Res Commun. 1995;207:695–700.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KJ, Adams D, Thomas L, Bond T, Alewood PF, Craik DJ, et al. Structure-activity relationships of ω-conotoxins MVIIA, MVIIC and 14 loop splice hybrids at N and P/Q-type calcium channels. J Mol Biol. 1999;289:1405–21.

    Article  CAS  PubMed  Google Scholar 

  • Nirthanan S, Pil J, Abdel-Mottaleb Y, Sugahara Y, Gopalakrishnakone P, Joseph JS, et al. Assignment of voltage-gated potassium channel blocking activity to κ-KT × 1.3, a non-toxic homologue of κ-hefutoxin-1, from Heterometrus spinifer venom. Biochem Pharmacol. 2005;69:669–78.

    Article  CAS  PubMed  Google Scholar 

  • Nishiuch Y, Kumagaye K, Noda Y, Watanabe TX, Sakakibara S. Synthesis and secondary-structure determination of ω-conotoxin GVIA: a 27-peptide with three intramolecular disulfide bonds. Biopolymers. 1986;25:S61–8.

    Article  Google Scholar 

  • Olivera BM, McIntosh JM, Cruz LJ, Luque FA, Gray WR. Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry. 1984;23:5087–90.

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM, Gray WR, Zeikus R, McIntosh JM, Varga J, Rivier J, et al. Peptide neurotoxins from fish-hunting cone snails. Science. 1985;230:1338–43.

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM, Cruz LJ, de Santos V, LeCheminant GW, Griffin D, Zeikus R, et al. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using ω-conotoxin from Conus magus venom. Biochemistry. 1987;26:2086–90.

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM, Rivier J, Clark C, Ramilo CA, Corpuz GP, Abogadie FC, et al. Diversity of Conus neuropeptides. Science. 1990;249:257–63.

    Article  CAS  PubMed  Google Scholar 

  • Ott K-H, Becker S, Gordon RD, Rüterjans H. Solution structure of μ-conotoxin GIIIA analysed by 2D-NMR and distance geometry calculations. FEBS Lett. 1991;278:160–6.

    Article  CAS  PubMed  Google Scholar 

  • Pallaghy PK, Norton RS. Refined solution structure of ω-conotoxin GVIA: implications for calcium channel binding. J Pept Res. 1999;53:343–551.

    Article  CAS  PubMed  Google Scholar 

  • Pallaghy PK, Duggan BM, Pennington MW, Norton RS. Three-dimensional structure in solution of the calcium channel blocker ω-conotoxin. J Mol Biol. 1993;234:405–20.

    Article  CAS  PubMed  Google Scholar 

  • Peigneur S, Yamaguchi Y, Goto H, Srinivasan KN, Gopalakrishnakone P, Tytgat J, et al. Synthesis and characterization of amino acid deletion analogs of κ-hefutoxin 1, a scorpion toxin on potassium channels. Toxicon. 2013;71:25–30.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Feng Z-P, Scott R, Grigoriev N, Syed N-I, Fainzilber M, et al. Synthesis, bioactivity and cloning of the L-type calcium channel blocker ω-conotoxin TxVII. Biochemistry. 1999;38:12876–84.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Kobayashi K, Kohno T, Sato K. Combinatorial synthesis of ω-conotoxin MVIIC analogs and their binding with N and P/Q-type calcium channels. FEBS Lett. 2000;466:125–9.

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Nakamura H, Ohizumi Y, Kobayashi J, Hirata Y. The amino acid sequences of homologous hydroxyproline-containing myotoxin from the marine snail Conus Geographus venom. FEBS Lett. 1983;155:277–80.

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Ishida Y, Wakamatsu K, Kato R, Honda H, Ohizumi Y, et al. Active site of μ-conotoxin GIIIA, a peptide blocker of muscle sodium channels. J Biol Chem. 1991;266:16989–91.

    CAS  PubMed  Google Scholar 

  • Sato K, Park N-G, Kohno T, Maeda T, Kim J-I, Kato R, et al. Role of basic residues for the binding of ω-conotoxin GVIA to N-Type calcium channels. Biochem Biophys Res Commun. 1993;194:1292–6.

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Raymond C, Martin-Moutot N, Sasaki T, Omori A, Ohtake A, et al. Binding of chimeric analogs of ω-conotoxin MVIIA and MVIIC to the N- and P/Q-type calcium channels. FEBS Lett. 1997;414:480–4.

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Raymond C, Martin-Moutot N, Sasaki T, Ohtake A, Minami K, et al. Binding of six chimeric analogs of ω-conotoxin MVIIA and MVIIC to N- and P/Q-type calcium channels. Biochem Biophys Res Commun. 2000a;269:254–6.

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Raymond C, Martin-Moutot N, Sasaki T, Ohtake A, Minami K, et al. Binding of Ala-scanning analogs of ω-conotoxin MVIIC to N- and P/Q-type calcium channels. FEBS Lett. 2000b;469:147–50.

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Yamaguchi Y, Ishida Y. Roles of individual disulfide bridges in the conformation and activity of μ-conotoxin GIIIA, a peptide blocker of muscle sodium channels. Int J Pept Res Ther. 2014;20:253–8.

    Article  CAS  Google Scholar 

  • Sevilla P, Bruix M, Santoro J, Gago E, Garcia AG, Rico M. Three-dimensional structure of ω-conotoxin GVIA determined by 1H-NMR. Biochem Biophys Res Commum. 1993;192:1238–44.

    Article  CAS  Google Scholar 

  • Skalicky JJ, Metzler WJ, Ciesla DJ, Galdes A, Pardi A. Solution structure of the calcium channel antagonist ω-conotoxin GVIA. Protein Sci. 1993;2:1591–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan KN, Nirthanan S, Sasaki T, Sato K, Cheng B, Gwee MCE, et al. Functional site of bukatoxin, an α-type sodium channel neurotoxin from the Chinese scorpion (Buthus martensi Karsch) venom: probable role of the 52PDKVP56 loop. FEBS Lett. 2001;494:145–9.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan KN, Sivaraja V, Huys I, Sasaki T, Cheng B, Kumar TK, et al. κ-Hefutoxin 1, a novel toxin from the scorpion heterometrus fulvipes with unique structure and function: importance of the functional diad in potassium channel selectivity. J Biol Chem. 2002;277:30040–7.

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Zhu R, Zhu L, Qiu T, Cao Z, Kang T. Potassium channels: structures, diseases, and modulators. Chem Biol Drug Des. 2014;83:1–26.

    Article  CAS  PubMed  Google Scholar 

  • Torda AW, Mabbutt BC, van Gunsteren WF, Norton RS. Backbone folding of the polypeptide cardiac stimulant anthopleurin-A determined by nuclear magnetic resonance, distance geometry and molecular dynamics. FEBS Lett. 1988;239:266–70.

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Kohda D, Hatanaka H, Lancelin J-M, Ishida Y, Oya M, et al. Structure-activity relationships of μ-conotoxin GIIIA: structure determination of active and inactive sodium channel blocker peptides by NMR and simulated annealing calculations. Biochemistry. 1992;31:12577–84.

    Article  CAS  PubMed  Google Scholar 

  • Williams RJP. NMR studies of mobility within protein structure. Eur J Biochem. 1989;183:479–97.

    Article  CAS  PubMed  Google Scholar 

  • Zamudio FZ, Gurrola GB, Arevalo C, Sreekumar R, Walker JW, Valdivia HH, et al. Primary structure and synthesis of Imperatoxin A (IpTxa), a peptide activator of Ca2+ release channels/ryanodine receptors. FEBS Lett. 1997;405:385–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Peigneur S, Gao B, Luo L, Jin D, Zhao Y, et al. Molecular diversity and functional evolution of scorpion potassium channel toxins. Mol Cell Proteomics. 2011;10(2):M110.002832. doi:10.1074/mcp.M110.002832.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Sato, K. (2017). Synthetic Peptides and Drug Discovery. In: Cruz, L., Luo, S. (eds) Toxins and Drug Discovery. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6452-1_14

Download citation

Publish with us

Policies and ethics