Skip to main content

Translocation of Toxins by Gram-Negative Pathogens Using the Type III Secretion System

  • Reference work entry
  • First Online:
Microbial Toxins

Part of the book series: Toxinology ((TOXI))

  • 1170 Accesses

Abstract

The type 3 secretion (T3S) system is a syringe-like proteinaceous apparatus used by several Gram-negative bacteria to inject toxic/effector proteins into eukaryotic cells. Three proteins are essential for protein translocation into the host cell. One of these proteins forms a tip complex at the end of a needle that extends from the bacterial surface and plays a role in regulating secretion in response to host cell contact. The other two proteins, or translocators, insert into the target membrane and form a pore through which proteins are injected. Compared to other components of the T3S machinery, the needle tip and translocators show low levels of sequence identity among different T3S families, which suggests that these essential components adapted to the specific needs of the bacteria that use these T3S systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abby SS, Rocha EPC. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet. 2012;8(9):e1002983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akeda Y, Galan JE. Chaperone release and unfolding of substrates in type III secretion. Nature. 2005;437(7060):911–5.

    Article  CAS  PubMed  Google Scholar 

  • Akopyan K, Edgren T, Wang-Edgren H, Rosqvist R, Fahlgren A, Wolf-Watz H, Fallman M. Translocation of surface-localized effectors in type III secretion. Proc Natl Acad Sci. 2011;108(4):1639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armentrout EI, Rietsch A. The type III secretion translocation pore senses host cell contact. PLoS Pathog. 2016;12(3):e1005530.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blocker AJ, Deane JE, Veenendaal AKJ, Roversi P, Hodgkinson JL, Johnson S, Lea SM. What’s the point of the type III secretion system needle? Proc Natl Acad Sci U S A. 2008;105(18):6507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bröms JE, Forslund A-L, Forsberg Å, Francis MS. PcrH of Pseudomonas aeruginosa is essential for secretion and assembly of the type III translocon. J Infect Dis. 2003;188(12):1909–21.

    Article  PubMed  Google Scholar 

  • Broz P, Mueller CA, Müller SA, Philippsen A, Sorg I, Engel A, Cornelis GR. Function and molecular architecture of the Yersinia injectisome tip complex. Mol Microbiol. 2007;65(5):1311–20.

    Article  CAS  PubMed  Google Scholar 

  • Büttner D. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev. 2012;76(2):262–310.

    Article  PubMed  PubMed Central  Google Scholar 

  • Büttner D, Bonas U. Port of entry – the type III secretion translocon. Trends Microbiol. 2002;10(4):186–92.

    Article  PubMed  Google Scholar 

  • Cheung M, Shen D-K, Makino F, Kato T, Roehrich AD, Martinez-Argudo I, Walker ML, Murillo I, Liu X, Pain M, Brown J, Frazer G, Mantell J, Mina P, Todd T, Sessions RB, Namba K, Blocker AJ. Three‐dimensional electron microscopy reconstruction and cysteine‐mediated crosslinking provide a model of the type III secretion system needle tip complex. Mol Microbiol. 2015;95(1):31–50.

    Article  CAS  PubMed  Google Scholar 

  • Cisz M, Lee P-C, Rietsch A. ExoS controls the cell contact-mediated switch to effector secretion in Pseudomonas aeruginosa. J Bacteriol. 2008;190(8):2726–38.

    Article  CAS  PubMed  Google Scholar 

  • Cornelis GR. The type III secretion injectisome. Nat Rev Microbiol. 2006;4:811–25.

    Article  CAS  PubMed  Google Scholar 

  • De Bord KL, Lee VT, Schneewind O. Roles of LcrG and LcrV during type III targeting of effector Yops by Yersinia enterocolitica. J Bacteriol. 2001;183(15):4588–98.

    Article  Google Scholar 

  • De Geyter C, Vogt B, Benjelloun-Touimi Z, Sansonetti PJ, Ruysschaert J-M, Parsot C, Cabiaux V, et al. Purification of IpaC, a protein involved in entry of Shigella flexneri into epithelial cells and characterization of its interaction with lipid membranes. FEBS Lett. 1997;400(2):149–54.

    Article  PubMed  Google Scholar 

  • Derewenda U, Mateja A, Devedijlev Y, Routzahn KM, Evdokimov AG, Derewenda ZS, Waugh DS. The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure. 2004;12(2):301–6.

    CAS  PubMed  Google Scholar 

  • Dey S, Basu A, Datta S. Characterization of molten globule PopB in absence and presence of Its chaperone PcrH. Protein J. 2012;31(5):401–16.

    Article  CAS  PubMed  Google Scholar 

  • Dickenson NE, Zhang L, Epler CR, Adam PR, Picking WL, Picking WD. Conformational changes in IpaD from Shigella flexneri upon binding bile salts provide insight into the second step of type III secretion. Biochemistry. 2011;50(2):172–80.

    Article  CAS  PubMed  Google Scholar 

  • Dickenson NE, Chaudhari SP, Adam PR, Kramer RM, Joshi SB, Middaugh CR, Picking WL, Picking WD. Oligomeric states of the Shigella translocator protein IpaB provide structural insights into formation of the type III secretion translocon. Protein Sci. 2013;22(5):614–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Discola KF, Förster A, Boulay F, Simorre J-P, Attree I, Dessen A, Job V. Membrane and chaperone recognition by the major translocator protein PopB of the type III secretion system of Pseudomonas aeruginosa. J Biol Chem. 2014;289(6):3591–601.

    Article  CAS  PubMed  Google Scholar 

  • Dohlich K, Zumsteg AB, Goosmann C, Kolbe M. A substrate-fusion protein is trapped inside the type III secretion system channel in Shigella flexneri. PLoS Pathog. 2014;10(1):e1003881.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faudry E, Vernier G, Neumann E, Forge V, Attree I. Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa. Biochemistry. 2006;45(26):8117–23.

    Article  CAS  PubMed  Google Scholar 

  • Faudry E, Job V, Dessen A, Attree I, Forge V. Type III secretion system translocator has a molten globule conformation both in its free and chaperone-bound forms. FEBS J. 2007;274(14):3601–10.

    Article  CAS  PubMed  Google Scholar 

  • Galán JE, Lara-Tejero M, Marlovits TC, Bacterial WS, Type III. Secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol. 2014;68:415–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goure J, Pastor A, Faudry E, Chabert J, Dessen A, Attree I. The V antigen of Pseudomonas aeruginosa Is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect Immun. 2004;72(8):4741–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hueck CJ. Type III, protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998;62(2):379–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hume PJ, McGhie EJ, Hayward RD, Koronakis V. The purified Shigella IpaB and Salmonella SipB translocators share biochemical properties and membrane topology. Mol Microbiol. 2003;49(2):425–39.

    Article  CAS  PubMed  Google Scholar 

  • Job V, Matteï P-J, Lemaire D, Attree I, Dessen A. Structural basis of chaperone recognition of type III secretion system minor translocator proteins. J Biol Chem. 2010;285(30):23222–30.

    Article  Google Scholar 

  • Kenjale R, Wilson J, Zenk SF, Saurya S, Picking WL, Picking WD, Blocker AJ. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem. 2005;280(52):42929–37.

    Article  CAS  PubMed  Google Scholar 

  • Kosarewicz A, Königsmaier L, Marlovits TC. The blueprint of the type-3 injectisome. Philos Trans R Soc B. 2012;367(1592):1140–54.

    Article  CAS  Google Scholar 

  • Lara-Tejero M, Kato J, Wagner S, Liu X, Galán JE. A sorting platform determines the order of protein secretion in bacterial type III systems. Science. 2011;331(6021):1188–91.

    Article  CAS  PubMed  Google Scholar 

  • Lee P-C, Stopford CM, Svenson AG, Rietsch A. Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol Microbiol. 2010;75(4):924–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee P-C, Zmina SE, Stopford CM, Toska J, Rietsch A. Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG. Proc Natl Acad Sci U S A. 2014;111(19):E2027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunelli M, Lokareddy RK, Zychlinsky A, Kolbe M. IpaB-IpgC interaction defines binding motif for type III secretion translocator. Proc Natl Acad Sci U S A. 2009;106(24):9661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Argudo I, Blocker AJ. The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol. 2010;78(6):1365–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matson JS, Nilles ML. LcrG-LcrV interaction is required for control of yops secretion in Yersinia pestis. J Bacteriol. 2001;183(17):5082–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagner C, Arquint C, Cornelis GR. Translocators YopB and YopD from Yersinia enterocolitica form a multimeric integral membrane complex in eukaryotic cell membranes. J Bacteriol. 2011;193(24):6923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller CA, Broz P, Müller SA, Ringler P, Erne-Brand F, Sorg I, Kuhn M, Engel A, Cornelis GR. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science. 2005;310(5748):674–6.

    Article  CAS  PubMed  Google Scholar 

  • Mueller CA, Broz P, Cornelis GR. The type III secretion system tip complex and translocon. Mol Microbiol. 2008;68(5):1085–95.

    Article  CAS  PubMed  Google Scholar 

  • Mueller KE, Plano GV, Fields KA. New frontiers in type III secretion biology: the Chlamydia perspective. Infect Immun. 2014;82(1):2–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanao M, Ricard-Blum S, Di Guilmi AM, Lemaire D, Lascoux D, Chabert J, Attree I, Dessen A. Type III secretion proteins PcrV and PcrG from Pseudomonas aeruginosa form a 1:1 complex through high affinity interactions. BMC Microbiol. 2003;3(1):21–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen VS, Jobichen C, Tan KW, Tan YW, Chan SL, Ramesh K, Yuan Y, Hong Y, Seetharman J, Leung KY, Sivaraman J, Mok YK. Structure of AcrH–AopB chaperone-translocator complex reveals a role for membrane hairpins in type III secretion system translocon assembly. Structure. 2015;23:1–10.

    Article  Google Scholar 

  • Olive AJ, Kenjale R, Epsina M, Moore DS, Picking WL, Picking WD. Bile salts stimulate recruitment of IpaB to the Shigella flexneri surface, where it colocalizes with IpaD at the tip of the type III secretion needle. Infect Immun. 2007;75(5):2626–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallen MJ, Beatson SA, Bailey CM. Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perpective. FEMS Microbiol Rev. 2005;29(2):201–29.

    Article  CAS  PubMed  Google Scholar 

  • Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A. Type III secretion: building and operating a remarkable nanomachine. Trends Biochem Sci. 2015;41(2):175–89.

    Article  PubMed  Google Scholar 

  • Romano FB, Rossi KC, Savva CG, Holzenburg A, Clerico EM, Heuck AP. Efficient Isolation of Pseudomonas aeruginosa type III secretion translocators and assembly of heteromeric transmembrane pores in model membranes. Biochemistry. 2011;50(33):7117–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano FB, Tang Y, Rossi KC, Monopoli KR, Ross JL, Heuck AP. Type 3 secretion translocators spontaneously assemble a hexadecameric transmembrane complex. J Biol Chem. 2016;291(12):6304–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato H, Frank DW. Multi-functional characteristics of the Pseudomonas aeruginosa type III needle-tip protein, PcrV; Comparison to orthologs in other gram-negative bacteria. Front Microbiol. 2011;2:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa T, Katoh H, Yasumoto H. V‐antigen homologs in pathogenic gram‐negative bacteria. Microbiol Immunol. 2014;58(5):267–85.

    Article  CAS  PubMed  Google Scholar 

  • Schiano CA, Lathem WW. Post-transcriptional regulation of gene expression in Yersinia species. Front Cell Infect Microbiol. 2012;2:129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoehn G, Di Guilmi AM, Lemaire D, Attree I, Weissenhorn W, Dessen A. Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in Pseudomonas. EMBO J. 2003;22(19):4957–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiner M, Niemann HH. Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycD in complex with a peptide of the minor translocator YopD. BMC Struct Biol. 2012;12:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senerovic L, Tsunoda SP, Goosmann C, Brinkmann V, Zychlinsky A, Meissner F, Kolbe M. Spontaneous formation of IpaB ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages. Cell Death and Dis. 2012;3(9):e384.

    Article  CAS  Google Scholar 

  • Sundin C, Thelaus J, Bröms JE, Forsberg Å. Polarisation of type III translocation by Pseudomonas aeruginosa requires PcrG, PcrV and PopN. Microb Pathog. 2004;37(6):313–22.

    Article  CAS  PubMed  Google Scholar 

  • Veenendaal AKJ, Hodgkinson JL, Schwarzer L, Stabat D, Zenk SF, Blocker AJ. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol. 2007;63(6):1719–30.

    Article  CAS  PubMed  Google Scholar 

  • Wager B, Faudry E, Wills T, Attree I, Delcour AH. Current fluctuation analysis of the PopB and PopD translocon components of the Pseudomonas aeruginosa type III secretion system. Biophys J. 2015;104(7):1445–55.

    Article  Google Scholar 

Download references

Acknowledgments

This publication was made possible by Grant Number GM097414 from the National Institute of Health (A.P.H).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arjan J. Vermeulen , Yuzhou Tang or Alejandro P. Heuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vermeulen, A.J., Tang, Y., Heuck, A.P. (2018). Translocation of Toxins by Gram-Negative Pathogens Using the Type III Secretion System. In: Stiles, B., Alape-Girón, A., Dubreuil, J., Mandal, M. (eds) Microbial Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6449-1_29

Download citation

Publish with us

Policies and ethics