Skip to main content

Saxitoxin and Other Paralytic Toxins: Toxicological Profile

  • Reference work entry
  • First Online:
Marine and Freshwater Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Toxic microalgal blooms that produce paralytic shellfish poison (PSP) have increased worldwide in frequency, duration, and extension of affected areas, with severe impacts on human health, local economies, and exports. PSP is a variable mixture of tetrahydropurine marine biotoxins collectively named as saxitoxins (STXs) that are produced by dinoflagellates from the genera Alexandrium, Pyrodinium, and Gymnodinium. Harmful algal blooms of these species (named “red tides”) produce accumulation of saxitoxins in shellfish, fishes, and other organisms. Ingestion of contaminated tissues may lead to paralytic shellfish poison intoxications in humans and deaths by muscle paralysis and cardiorespiratory failure. Tetrodotoxins (TTXs) are compounds chemically different from STXs, synthesized by cyanobacteria present in freshwater ecosystems that produce a similar paralytic syndrome in cattle, birds, and fishes. TTXs (and STXs) are also present in puffer fishes and cause also human intoxications. In addition, saxitoxins and tetrodotoxins are produced by a number of other species that may represent additional health risks. The severe public health and economic impacts of PSP intoxications brought the attention of researchers almost 80 years ago. Since then a large body of scientific studies on PSP shellfish toxins has accumulated. In recent years an international regulatory effort has been developed to assess, manage, and control health risks caused by PSP toxins and other marine toxins. However, in many countries of the developing world, monitoring and management programs for marine biotoxins in products destined for domestic consumption are limited in scope, geographical extension, frequency, and methodologies. Evidence from physiological, toxicological, and risk management studies is examined that may indicate that current approaches to manage risk and to protect consumers may be still insufficient, especially for underdeveloped countries. Strategies for future work are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DM, Andersen P, Bricelj, VM, Cullen JJ, Rensel JE. Monitoring and management strategies for harmful algal blooms in coastal waters, APEC #201-MR-01.1, Asia Pacific Economic Program, Singapore, and Intergovernmental Océanographie Commission Technical Series No. 59, Paris. 2001.

    Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann Rev Mar Sci. 2012a;4:143–76.

    Article  PubMed  Google Scholar 

  • Anderson DM, Alpermann TJ, Cembella AD, Collos Y, Masseret E, Montresor M. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae. 2012b;14:10–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson DM, Keafer BA, Kleindienst JL, McGillicuddy Jr DJ, Martin JL, Norton K, Pilskaln CL, Smith JL, Sherwood JR, Butman B. Alexandrium fundyense cysts in the Gulf of Maine: long-term time series of abundance and distribution, and linkages to past and future blooms. Deep-Sea Res II. 2014;103:6–26.

    Article  Google Scholar 

  • Andrinolo D, Michea L, Lagos N. Toxic effects, pharmacokinetics and clearance of saxitoxin, a component of paralytic shellfish poison (PSP) in cats. Toxicon. 1999;37:447–64.

    Article  CAS  PubMed  Google Scholar 

  • Andrinolo D, Iglesias V, GarcÍa C, Lagos N. Toxicokinetics and toxicodynamics of gonyautoxins after an oral toxin dose in cats. Toxicon. 2002a;40:699–709.

    Article  CAS  PubMed  Google Scholar 

  • Andrinolo D, Gomes P, Fraga S, Soares P, Lagos N. Transport of the organic cations gonyautoxin 2/3 epimers, a paralytic shellfish poison toxin, through the human and rat intestinal epitheliums. Toxicon. 2002b;40:1389–97.

    Article  CAS  PubMed  Google Scholar 

  • Anon. AOAC Official method 2005.06 quantitative determination of paralytic shellfish poisoning toxins in shellfish using pre-chromatographic oxidation and liquid chromatography with fluorescence detection. Gaithersburg: AOAC International; 2005.

    Google Scholar 

  • Anon. AOAC Official method 2011.02 determination of paralytic shellfish poisoning toxins in mussels, clams, oysters and scallops. Post-column oxidation method (PCOX). First action 2011. Gaithersburg: AOAC International; 2005.

    Google Scholar 

  • AOAC. Paralytic shellfish poison. Method 958.08. In: Horwitz W, editor. Official methods of analysis of AOAC international. 17th ed. Gaithersbury: The Association of Official Analytical Chemists International; 2000.

    Google Scholar 

  • Ashihara H, Yokota T, Crozier A. Purine Alkaloids, Cytokinins and Purine-Like Neurotoxin Alkaloids. In: Ramawat K, Merillon J, editors. Natural products – phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Berlin/Heidelberg: Springer; 2013. SpringerReference www.springerreference.com.

    Google Scholar 

  • Bakke MJ, Horsberg TE. Kinetic properties of saxitoxin in Atlantic salmon (Salmo salar) and Atlantic cod (Gadus morhua). Comp Biochem Physiol. 2010; Part C 152: 444–50.

    Google Scholar 

  • Batoreu MCC, Dias E, Pereira P, Franca S. Risk of human exposure to paralytic toxins of algal origin. Environ Toxicol Pharmacol. 2005;19:401–6.

    Article  CAS  PubMed  Google Scholar 

  • Boesch DF, Anderson DM, Horner RA, Shumway SE, Tester PA, Whitledge TE. Harmful algal blooms in coastal waters: options for prevention, control and mitigation. NOAA Coastal Ocean Program Decision Analysis Series No.10. Silver Spring: NOAA Coastal Ocean Office; 1997. 46 pp. + appendix.

    Google Scholar 

  • Bricelj MV, Shumway SE. Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation. Rev Fish Sci. 1998;6:315–83.

    Article  CAS  Google Scholar 

  • Bricelj MV, Connell L, Konoki K, MacQuarrie SP, Scheuer T, Catterall WA, Trainer VL. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature. 2005;434:763–7.

    Article  CAS  PubMed  Google Scholar 

  • Callejas L, Melendez AC, Amador JJ, Conklin L, Gaffga N, Schurz Rogers H, DeGrasse S, Hall S, Earley M, Mei J, Rubin C, Aldighieri S, Backer LC, Azziz-Baumgartner E. Paralytic shellfish poisonings resulting from an algal bloom in Nicaragua. BMC Res Notes. 2015;8:74. doi:10.1186/s13104-015-1012-4.

    Google Scholar 

  • Campàs M, Prieto-Simon B, Marty JL. Biosensors to detect marine toxins: assessing seafood safety. Talanta. 2007;72:884–95.

    Article  PubMed  Google Scholar 

  • Catterall WA. Structure and function of voltage-gated sodium channels at atomic resolution. Exp Physiol. 2014;99:35–51.

    Article  CAS  PubMed  Google Scholar 

  • Cembella AD, Quilliam MA, Lewis NI, Bauder AG, Dell’Aversano C, Thomasa K, Jellett J, Cusack RR. The toxigenic marine dinoflagellate Alexandrium tamarense as the probable cause of mortality of caged salmon in Nova Scotia. Harmful Algae. 2002;1:313–25.

    Article  CAS  Google Scholar 

  • Cervantes Cianca RC, Faro LRF, Durán BR, Alfonso PM. Alterations of 3,4-dihydroxyphenyl-ethylamine and its metabolite 3,4-dihydroxyphenylacetic produced in rat brain tissues after systemic administration of saxitoxin. Neurochem Int. 2011;59:643–7.

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Pereira A, Gerwick W. The chemistry of Marine Algae and cyanobacteria. In: Fattorusso E, Gerwick W, Taglialatela-Scafati O, editors. Handbook of marine natural products. Berlin/Heidelberg: Springer; 2012. SpringerReference www.springerreference.com

  • Ciminiello P, Forino M, Dell’Aversano C. Seafood toxins: classes, sources, and toxicology. In: Fattorusso E, Gerwick W, Taglialatela-Scafati O, editors. Handbook of marine natural products. Berlin Heidelberg: Springer; 2012. SpringerReference www.springerreference.com

    Google Scholar 

  • Costa PR, Botelho MJ, Lefebvre KA. Characterization of paralytic shellfish toxins in seawater and sardines (Sardina pilchardus) during blooms of Gymnodinium catenatum. Hydrobiologia. 2010;655:89–97.

    Article  CAS  Google Scholar 

  • Costa PR, Pereira P, Guilherme S, Baratac M, Nicolau L, Santos MA, Pacheco M, Pousão-Ferreira P. Biotransformation modulation and genotoxicity in white seabream upon exposure to paralytic shellfish toxins produced by Gymnodinium catenatum. Aquat Toxicol. 2012;106–107:42–7.

    Article  PubMed  Google Scholar 

  • Cox AM, Shull DH, Horner RA. Profiles of Alexandrium catenella cysts in Puget Sound sediments and the relationship to paralytic shellfish poisoning events. Harmful Algae. 2008;7:379–88.

    Google Scholar 

  • Crespo BG, Keafer BA, Ralston DK, Lind H, Farber D, Anderson DM. Dynamics of Alexandrium fundyense blooms and shellfish toxicity in the Nauset Marsh System of Cape Cod (Massachusetts, USA). Harmful Algae. 2011;12:26–38.

    Article  Google Scholar 

  • Daneshian M, Botana LM, Dechraoui Bottein M-Y, Buckland G, Campàs M, Dennison N, Dickey RW, Diogène J, Fessard V, Hartung T, Humpage A, Leist M, Molgó J, Quilliam MA, Rovida C, Suarez-Isla BA, Tubaro A, Wagner K, Zoller O, Dietrich D. A roadmap for hazard monitoring and risk assessment of Marine biotoxins on the basis of chemical and biological test systems. Altex. 2014;30(4/13):487–545.

    Google Scholar 

  • Deeds JR, Landsberg JH, Etheridge SM, Pitcher GC, Longan SW. Non-traditional vectors for paralytic shellfish poisoning. Mar Drugs. 2008;6:308–48. doi:10.3390/md20080015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeGrasse SL, van de Riet J, Hatfield R, Turner A. Pre-versus post-column oxidation liquid chromatography fluorescence detection of paralytic shellfish toxins. Toxicon. 2011;57:619–24.

    Article  CAS  PubMed  Google Scholar 

  • DeGrasse S, Rivera V, Roach J, White K, Callahan J, Couture D, Simone K, Peredy T, Poli M. Paralytic shellfish toxins in clinical matrices: extension of AOAC official method 2005.06 to human urine and serum and application to a 2007 case study in Maine. Deep Sea Res Part II. 2014;103:368–75.

    Article  CAS  Google Scholar 

  • EFSA. Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on marine biotoxins in shellfish – saxitoxin group. EFSA J. 2009a;1019:1–76.

    Google Scholar 

  • EFSA. EFSA Panel on Contaminants in the Food Chain (CONTAM), 2009. Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on marine biotoxins in shellfish – influence of processing in the levels of lipophilic marine biotoxins in bivalve molluscs. EFSA J. 2009b;1016:1–10. Available from: www.efsa.europa.eu. December 2010.

  • European Commission Decision 2002/657/EC. Implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Commun. 2002;L221:8–36.

    Google Scholar 

  • Fitzgerald DJ, Cunliffe DA, Burch MD. Development of health alerts for cyanobacteria and related toxins in drinking water in South Australia. Environ Toxicol. 1999;14:203–9.

    Article  CAS  Google Scholar 

  • Garcia C, Bravo MC, Lagos M, Lagos C. Paralytic shellfish poisoning: post-mortem analysis of tissue and body fluid samples from human victims in the Patagonia fjords. Toxicon. 2004;43:149–58.

    Article  CAS  PubMed  Google Scholar 

  • Garcia C, Lagos M, Truan D, Lattes K, Vejar O, Chamorro B, Lagos N. Human intoxication with paralytic shellfish toxins: clinical parameters and toxin analysis in plasma and urine. Biol Res. 2005;38:197–205. doi:10.4067/S0716-97602005000200009.

    Google Scholar 

  • García C, Rodriguez-Navarro A, Díaz JC, Torres R, Lagos N. Evidence of in vitro glucuronidation and enzymatic transformation of paralytic shellfish toxins by healthy human liver microsomes fraction. Toxicon. 2009;53:206–16.

    Article  PubMed  Google Scholar 

  • Garcia C, Barriga A, Diaz JC, Lagos M, Lagos N. Route of metabolization and detoxication of paralytic shellfish toxins in humans. Toxicon. 2010;55:135–44.

    Article  CAS  PubMed  Google Scholar 

  • García C, Pérez F, Contreras C, Figueroa D, Barriga A, López-Rivera A, Araneda OF, Contreras HR. Saxitoxins and okadaic acid group: accumulation and distribution in invertebrate marine vectors from Southern Chile. Food Addit Contam Part A. 2015;32:984–1002.

    Article  Google Scholar 

  • Gessner B, Bell P, Doucette G, Moczydlowski E, Poli M, Dolah F, Hall S. Hypertension and identification of toxin in human urine and serum following a cluster of mussel-associated paralytic shellfish poisoning outbreaks. Toxicon. 1997a;35:711–22.

    Article  CAS  PubMed  Google Scholar 

  • Gessner BD, Middaugh JP, Doucette GJ. Paralytic shellfish poisoning in Kodiak. Alaska West J Med. 1997b;167:351–3.

    CAS  PubMed  Google Scholar 

  • Gibbard J, Naubert J. Paralytic shellfish poisoning on the Canadian Atlantic coast. Am J Public Health Nations Health. 1948;38:550–3. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1624411/pdf/amjphnation01102-0087.pdf

    Google Scholar 

  • Gubbins MJ, Eddy FB, Gallacher S, Stagg RM. Paralytic shellfish poisoning toxins induce xenobiotic metabolising enzymes in Atlantic salmon (Salmo salar). Mar Environ Res. 2000;50:479–83.

    Article  CAS  PubMed  Google Scholar 

  • Guzmán A, Fernández de Henestrosa AR, Marín A-P, Ho A, González Borroto JI, Carasa I, Pritchard L. Evaluation of the genotoxic potential of the natural neurotoxin tetrodotoxin (TTX) in a battery of in vitro and in vivo genotoxicity assays. Mutat Res. 2007;634:14–24.

    Article  PubMed  Google Scholar 

  • Hall S, Strichartz G, Moczydlowski E, Rivindran A, Reichardt PB. The saxitoxins: sources, chemistry, and pharmacology. In: Hall S, Strichartz G, editors. Marine toxins: origin, structure and molecular pharmacology, Chapter 2. 29–65. American Chemical Society Symposium Series, Washington, DC, USA; 1990.

    Google Scholar 

  • Harwood DT, Boundy M, Selwood AI, van Ginkel R, MacKenzie L, McNabb PS. Refinement and implementation of the Lawrence method (AOAC 2005.06) in a commercial laboratory: assay performance during an Alexandrium catenella bloom event. Harmful Algae. 2013;24:20–31.

    Article  CAS  Google Scholar 

  • Hernandez-Orozco ML, Garate LI. Sindrome de envenenamiento paralizante por consumo de moluscos. Rev Biomed. 2006;17:45–60.

    Google Scholar 

  • Hines HB, Naseem SM, Wannemacher RW. [3H]-Saxitoxinol metabolism and elimination in the rat. Toxicon. 1993;31:905–8.

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Lam PKS, Dennis PHS. Interactions of paralytic shellfish toxins with xenobiotic-metabolizing and antioxidant enzymes in rodents. Toxicon. 2003;42:425–31.

    Article  CAS  PubMed  Google Scholar 

  • Humpage AR, Magalhaes VF, Froscio SM. Comparison of analytical tools and biological assays for detection of paralytic shellfish poisoning toxins. Anal Bioanal Chem. 2010;397:1655–71.

    Article  CAS  PubMed  Google Scholar 

  • Hurley W, Wolterstorff C, MacDonald R, Schultz D. Paralytic shellfish poisoning: a case series. West J Emerg Med. 2014;15:78–81. doi: 10.5811/westjem.2014.4.16279.

    Google Scholar 

  • Kellmann R, Ploux O, Neilan B. Neurotoxic alkaloids from cyanobacteria. In: Ramawat K, Merillon J, editors. Natural products – phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Berlin/Heidelberg: Springer; 2013. SpringerReference www.springerreference.com

    Google Scholar 

  • Kleindienst JL, Anderson DM, McGillicuddy DJ, Stumpf RP, Fisher KM, Couture DA, Hickey JM, Nash C. Categorizing the severity of paralytic shellfish poisoning outbreaks in the Gulf of Maine for forecasting and management. Deep-Sea Res II. 2013;103:277–87.

    Article  Google Scholar 

  • Kruve A, Rebane R, Kipper K, Oldekop M-L, Evard H, Herodes K, Ravio P, Leito I. Tutorial review on validation of liquid chromatography–mass spectrometry methods: part II. Anal Chim Acta. 2015;870:8–28.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence J, Loreal H, Toyofuku H, Hess P, Iddya K, Ababouch L. FAO Fisheries and aquaculture technical paper 551, assessment and management of biotoxin risks in bivalve molluscs. Rome: Food and Agriculture Organisation of the United Nations; 2011.

    Google Scholar 

  • Llewellyn LE, Dodd MJ, Robertson A, Ericson G, de Koning C, Negri AP. Post-mortem analysis of samples from a human victim of a fatal poisoning caused by the xanthid crab, Zosimus aeneus. Toxicon. 2002;40:1463–9.

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn L, Negri A, Robertson A. Paralytic shellfish toxins in tropical oceans. Toxin Rev. 2006;25:159–96.

    Article  CAS  Google Scholar 

  • Long RR, Sargent JC, Hammer K. Paralytic shellfish poisoning: a case report and serial electrophysiologic observations. Neurology. 1990;40:1310–1.

    Article  CAS  PubMed  Google Scholar 

  • McFarren EF, Schafer ML, Campbell JE, Lewis KH, Jensen ET, Schantz EJ. Public health significance of paralytic shellfish poison. Adv Food Res. 1961;10:135–79.

    Article  CAS  Google Scholar 

  • McGillicuddy Jr DJ, Brosnahan ML, Couture DA, Hed R, Keafer BA, Manning JP, Martin JL, Pilskaln CH, Townsend DW, Anderson DM. A red tide of Alexandrium fundyense in the Gulf of Maine. Deep-Sea Res II. 2014;103:174–84.

    Article  Google Scholar 

  • Montebruno DZ. Anatomo-pathologic study of paralytic shellfish intoxication in the XII region of Chile. Rev Med Chil (Chil). 1993;121:94–7.

    CAS  Google Scholar 

  • Moore SK, Mantua NJ, Hickey BM, Trainer VL. Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae. 2009;8:463–77.

    Article  CAS  Google Scholar 

  • Munday R, Reeve J. Risk assessment of shellfish toxins. Toxins. 2013;51:2109–37. doi:10.3390/toxins5112109.

    Article  Google Scholar 

  • Munday R, Thomas K, Gibbs R, Murphy C, Quilliam MA. Acute toxicities of saxitoxin, neosaxitoxin, decarbamoyl saxitoxin and gonyautoxins 1/4 and 2/3 to mice by various routes of administration. Toxicon. 2013;76:77–83.

    Article  CAS  PubMed  Google Scholar 

  • Murphy AL. Mussel poisoning in Nova Scotia. Can Med Assoc J. 1936;35:418–9. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1561803/pdf/canmedaj00517-0122.pdf

  • Naseem SM. Toxicokinetics of [3H]saxitoxinol in peripheral and central nervous system of rats. Toxicol Appl Pharmacol. 1996;141:49–58.

    Article  CAS  PubMed  Google Scholar 

  • Navarro JM, Gonzalez, K, Cisternas B, Lopez JA, Chaparro OR, Segura CJ, Cordova M, Suarez-Isla BA, Fernandez-Reiriz MJ, Labarta U. Contrasting physiological responses of two populations of the razor clam Tagelus dombeii with different histories of exposure to Paralytic Shellfish Poisoning (PSP). PLoS ONE. 2014;9:e105794. doi:10.1371/journal.pone.0105794.

    Google Scholar 

  • Nishitani L, Chew KK. Recent developments in paralytic shellfish poisoning research. Aquaculture. 1984;39:317–29.

    Article  Google Scholar 

  • OECD. OECD Guideline for the testing of chemicals. Guideline 452. Chronic toxicity studies. Paris: OECD; 2009a (Adopted on 7 Sept 2009).

    Google Scholar 

  • OECD. OECD Guideline for the testing of chemicals. Guideline 451. Carcinogenicity studies. Paris: OECD; 2009b. (Adopted on 7 Sept 2009).

    Google Scholar 

  • OECD. OECD Guideline for the testing of chemicals. Guideline 453. Combined chronic toxicity/carcinogenicity studies. Paris: OECD; 2009c. (Adopted on 7 Sept 2009).

    Google Scholar 

  • OECD. OECD Guidelines for the testing of chemicals. Guideline 407. Repeated dose 28-Day oral toxicity study in rodents. Paris: OECD; 2008. (Adopted on 3 Oct 2008).

    Google Scholar 

  • Oshima Y. Post-column derivatisation liquid chromatography method for paralytic shellfish toxins. J AOAC Int. 1995;78:528–32.

    CAS  Google Scholar 

  • Otero JJG. Epidemiology of marine toxins. In: Botana LM, editor. Seafood and freshwater toxins. Physiology, pharmacology and detection. 3rd ed. Boca Raton: CRC Press, Taylor and Francis Group; 2014.

    Google Scholar 

  • Paredes I, Rietjens IMCM, Vieites JM, Cabado AG. Update of risk assessments of main marine biotoxins in the European Union. Toxicon. 2011;58:336–54.

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Medcof JC, Tennant AD. Paralytic shellfish poisoning in eastern Canada. Fish Res Board Can Bull. 1971;177:1–87.

    Google Scholar 

  • Price DW, Kizer KW, Hansgen KH. California paralytic shellfish poisoning prevention program. J Shellfish Res. 1991;10:119–45.

    Google Scholar 

  • Reverté L, Soliño L, Carnicer O, Diogène J, Campàs M. Alternative methods for the detection of emerging Marine toxins: biosensors, biochemical assays and cell-based assays. Mar Drugs. 2014;12:5719–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigue D, Etzel R, Hall S. Lethal paralytic shellfish poisoning in Guatemala. Am J Trop Med Hyg. 1990;42:267–71.

    CAS  PubMed  Google Scholar 

  • Rodrigues SM, de Carvalho M, Mestre T, Ferreira JJ, Coelho M, Peralta R, Vale P. Paralytic shellfish poisoning due to ingestion of Gymnodinium catenatum contaminated cockles – application of the AOAC HPLC official method. Toxicon. 2012;59:558–66.

    Article  CAS  PubMed  Google Scholar 

  • Sar EA, Ferrario ME, Reguera B. Floraciones Algales Nocivas en el Cono Sur Americano. Pontevedra: Instituto Español de Oceanografía; 2002.

    Google Scholar 

  • Schantz EJ. Chemistry and biology of saxitoxin and related toxins. Annals NY Acad Sci. 1986;479:15–23.

    Article  CAS  Google Scholar 

  • Sephton DH, Haya K, Martin JL, LeGresley MM, Page FH. Paralytic shellfish toxins in zooplankton, mussels, lobsters and caged Atlantic salmon, Salmo salar, during a bloom of Alexandrium fundyense off Grand Manan Island, in the Bay of Fundy. Harmful Algae. 2007;6:745–58.

    Article  CAS  Google Scholar 

  • Shumway SE, Sherman SA, Cembella AD, Selvin R. Accumulation of paralytic shellfish toxins by surf clams, Spisula solidissima (Dillwyn, 1897) in the Gulf of Maine: seasonal changes, distribution between tissues, and notes on feeding habits. Nat Toxins. 1994;2:236–51.

    Article  CAS  PubMed  Google Scholar 

  • Sommer H, Meyer KF. Paralytic shellfish poisoning. Arch Pathol. 1937;24:560–98.

    CAS  Google Scholar 

  • Soong TW, Venkatesh B. Adaptive evolution of tetrodotoxin resistance in animals. Trends Genet. 2008;22:621–6.

    Article  Google Scholar 

  • Stafford RG, Hines HB. Urinary elimination of saxitoxin after intravenous injection. Toxicon. 1995;33:1501–10.

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Isla BA. Paralytic shellfish toxins. Pharmacology and toxicology. Biological detection methods. In: Botana LM, editor. Seafood and freshwater toxins. Pharmacology and detection. 2nd ed. Boca Raton: CRC Press-Tay, lor and Francis Group, LLC; 2008.

    Google Scholar 

  • Tenant AD, Naubert J, Corbeil HE. An outbreak of paralytic shellfish poisoning. Can Med Assoc J. 1955;72:436–9. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1825472/pdf/canmedaj00705-0023.pdf

  • Thottumkara AP, Parsons WH, Du Bois J. Saxitoxin. Angew. Chem. Int. Ed. 2014;53:5760–5784.

    Google Scholar 

  • Turner AD, Norton DM, Hatfield RG, Morris S, Reese AR, Algoet M, Lees DN. Single laboratory validation of the AOAC HPLC method (2005.06) for mussels: refinement and extension of the method to additional toxins. J AOAC Int. 2009;92:190–207.

    CAS  PubMed  Google Scholar 

  • Turner AD, Dhanji-Rapkova M, Algoet M, Suarez-Isla BA, Cordova M, Caceres C, Murphy CJ, Casey M, Lees DN. Investigations into matrix components affecting the performance of the official bioassay reference method for quantitation of paralytic shellfish poisoning toxins in oysters. Toxicon. 2012;59:215–30.

    Google Scholar 

  • Turner AD, Stubbs B, Coates L, Dhanji-Rapkova M, Hatfield RG, Lewis AM, Rowland-Pilgrim S, O’Neil A, Stubbs P, Ross S, Baker C, Algoet M. Variability of paralytic shellfish toxin occurrence and profiles in bivalve molluscs from Great Britain from official control monitoring as determined by pre-column oxidation liquid chromatography and implications for applying immunochemical tests. Harmful Algae. 2014;31:87–99.

    Article  CAS  Google Scholar 

  • Turner AD, McNabb PS, Harwood T, Selwood AJ, Boundy MJ. Single-laboratory validation of a multitoxin ultra-performance LC-hydrophilic interaction LC-MS/MS method for quantitation of paralytic shellfish toxins in bivalve shellfish. J AOAC Int. 2015;98:609–16.

    CAS  PubMed  Google Scholar 

  • Vale P. Saxitoxin and analogs: ecobiology, origin, chemistry, and detection. In: Botana LM, editor. Seafood and freshwater toxins. Physiology, pharmacology and detection. 3rd ed. Boca Raton: Florida. CRC Press, Taylor and Francis Group; 2014.

    Google Scholar 

  • Vale P, Botelho MJ, Rodrigues SM, Gomes SS, Sampayo MAM. Two decades of marine biotoxin monitoring in bivalves from Portugal (1986–2006): a review of exposure assessment. Harmful Algae. 2008;7:11–25.

    Article  CAS  Google Scholar 

  • Weinstein P. Red tides. In: Bobrowsky P, editor. Earth sciences series. Encyclopedia of natural hazards. Berlin/Heidelberg: Springer; 2013. SpringerReference www.springerreference.com

    Google Scholar 

  • Wekell JC, Hurst J, Lefebvre KA. The origin of the regulatory limits for PSP and ASP toxins in shellfish. J Shellfish Res. 2004;23:927–30.

    Google Scholar 

  • Wiese M, D’Agostino P, Mihali T, Moffitt M, Neilan B. Neurotoxic alkaloids: saxitoxin and its analogues. Mar Drugs. 2010;8(7):2185–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen C, Rojas de Astudillo L, Franco Soler J, la Barbera-Sánchez A. Paralytic shellfish poisoning toxin profiles in green mussels from Trinidad and Venezuela. J Food Comp Anal. 2006;19:88–94.

    Article  CAS  Google Scholar 

  • Zamorano R, Marín M, Cabrera F, Figueroa D, Contreras C, Barriga A, Lagos N, García C. Determination of the variability of both hydrophilic and lipophilic toxins in endemic wild bivalves and carnivorous gastropods from the Southern part of Chile. Food Addit Contam: Part A. 2013;30:1660–77.

    Article  CAS  Google Scholar 

  • Zepeda RJ, Candiracci M, Lobos N, Lux S, Miranda HF. Chronic toxicity study of Neosaxitoxin in Rats. Mar Drugs. 2014;12:5055–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Xu X, Li T, Liu Z. Shellfish toxins targeting voltage-gated sodium channels. Drugs. 2013;11:4698–723.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A. Suarez-Isla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Suarez-Isla, B.A. (2016). Saxitoxin and Other Paralytic Toxins: Toxicological Profile. In: Gopalakrishnakone, P., Haddad Jr., V., Tubaro, A., Kim, E., Kem, W. (eds) Marine and Freshwater Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6419-4_25

Download citation

Publish with us

Policies and ethics