Skip to main content

Azaspiracid Toxins: Toxicological Profile

  • Reference work entry
  • First Online:
Book cover Marine and Freshwater Toxins

Part of the book series: Toxinology ((TOXI))

  • 1466 Accesses

Abstract

Azaspiracids (AZAs) are a toxin group that originate from marine dinoflagellates of the genera Azadinium and Amphidoma. After accumulation of these toxins in edible marine organisms and their subsequent consumption, humans develop a gastrointestinal syndrome referred to as azaspiracid shellfish poisoning (AZP). This syndrome is very similar to diarrheic shellfish poisoning (DSP), with main symptoms appearing after a few hours from consumption and including diarrhea, vomiting, and stomach cramps. Due to extensive metabolism in shellfish, more than 30 analogues have been reported to date, and purified compounds for selected analogues have recently been made available for toxicological studies. Currently, only AZA1, AZA2, and AZA3 are regulated in Europe and internationally; however, more recent evidence suggests that AZA6, AZA17, and AZA19 may also be analogues of importance for estimating the full risk of seafood.

Even though animal studies have pointed out target organs (digestive tract, liver, heart, and lung), mechanism of action studies at cellular level are not yet conclusive. While a number of common targets have been excluded (protein phosphatases, kinases, actin depolymerization, G protein-coupled receptors), some evidence points toward ion channel activity of AZAs. Still, in vitro studies do not correlate well with symptoms observed in humans. Also, while some animal studies point toward longer-term effects, no such evidence has been reported from human poisoning events. However, it should be noted that in-depth epidemiological studies are still lacking. Even though all risk assessments have based their evaluation on a single, relatively early poisoning event in 1997, in Arranmore Island, Ireland, producing organisms and toxin occurrences have been reported worldwide, and further occurrence studies should provide a better base for such epidemiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasen JA, Espenes A, Hess P, Aune T. Sub-lethal dosing of azaspiracid-1 in female NMRI mice. Toxicon. 2010;56:1419–25.

    Article  CAS  PubMed  Google Scholar 

  • Aasen JAB, Espenes A, Miles CO, Samdal IA, Hess P, Aune T. Combined oral toxicity of azaspiracid-1 and yessotoxin in female NMRI mice. Toxicon. 2011;57:909–17.

    Article  CAS  PubMed  Google Scholar 

  • Akselman R, Negri RM. Blooms of Azadinium cf. spinosum Elbrächter et Tillmann (Dinophyceae) in northern shelf waters of Argentina, Southwestern Atlantic. Harmful Algae. 2012;19:30–8.

    Article  Google Scholar 

  • Alfonso A, Vieytes MR, Ofuji K, Satake M, Nicolaou KC, Frederick MO, Botana LM. Azaspiracids modulate intracellular pH levels in human lymphocytes. Biochem Biophys Res Commun. 2006;346:1091–9.

    Article  CAS  PubMed  Google Scholar 

  • Alfonso C, Rehmann N, Hess P, Alfonso A, Wandscheer CB, Abuín M, Vale C, Otero P, Vieytes MR, Botana LM. Evaluation of various pH and temperature conditions on the stability of azaspiracids and their importance in preparative isolation and toxicological studies. Anal Chem. 2008;80:9672–80.

    Article  CAS  PubMed  Google Scholar 

  • Álvarez G, Uribe E, Ávalos P, Mariño C, Blanco J. First identification of azaspiracid and spirolides in Mesodesma donacium and Mulinia edulis from Northern Chile. Toxicon. 2010;55:638–41.

    Article  PubMed  Google Scholar 

  • Amzil Z, Sibat M, Royer F, Savar V. First report on azaspiracid and yessotoxin groups detection in French shellfish. Toxicon. 2008;52:39–48.

    Article  CAS  PubMed  Google Scholar 

  • Aune A, Espenes A, Aasen JAB, Quilliam MA, Hess P, Larsen S. Study of possible combined toxic effects of azaspiracid-1 and okadaic acid in mice via the oral route. Toxicon. 2012;60:895–906.

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, LePage KT, Frederick MO, Nicolaou KC, Murray TF. Involvement of caspase activation in azaspiracid-induced neurotoxicity in neocortical neurons. Toxicol Sci. 2010;114:323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cembella AD. Ecophysiology and metabolism of paralytic shellfish toxins in marine microalgae. In: Anderson DM, Cembella AD, Hallegraeff GM, editors. Physiological ecology of harmful algal blooms. Berlin/Heidelberg/New York: Springer; 1998. p. 381–403.

    Google Scholar 

  • Chevallier OP, Graham SF, Alonso E, Duffy C, Silke J, Campbell K, Botana LM, Elliott CT. New insights into the causes of human illness due to consumption of azaspiracid contaminated shellfish. Sci Rep. 2015;5:9818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508.

    Article  CAS  PubMed  Google Scholar 

  • EFSA. Marine biotoxins in shellfish – azaspiracid group, scientific opinion of the panel on contaminants in the food chain, adopted on 9 June 2008. EFSA J. 2008;723:1–52.

    Google Scholar 

  • Elgarch A, Vale P, Rifai S, Fassouane A. Detection of diarrheic shellfish poisoning and azaspiracid toxins in Moroccan mussels: comparison of the LC-MS method with the commercial immunoassay kit. Mar Drugs. 2008;6:587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreiro SF, Vilariño N, Carrera C, Louzao MC, Santamarina G, Cantalapiedra AG, Rodríguez LP, Cifuentes JM, Vieira AC, Nicolaou KC, Frederick MO, Botana LM. In vivo arrhythmogenicity of the marine biotoxin azaspiracid-2 in rats. Arch Toxicol. 2014a;88:425–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreiro SF, Vilariño N, Louzao MC, Nicolaou KC, Frederick MO, Botana LM. In vitro chronic effects on hERG channel caused by the marine biotoxin azaspiracid-2. Toxicon. 2014b;91:69–75.

    Article  CAS  PubMed  Google Scholar 

  • Flanagan AF, Kane M, Donlon J, Palmer R. Azaspiracid, detection of a newly discovered phycotoxin in vitro. J Shellfish Res. 1999;18:716.

    Google Scholar 

  • Flanagan AF, Callanan KR, Donlon J, Palmer R, Forde A, Kane M. A cytotoxicity assay for the detection and differentiation of two families of shellfish toxins. Toxicon. 2001;39:1021–7.

    Article  CAS  PubMed  Google Scholar 

  • Furey A, Moroney C, Braña Magdalena A, Saez MJF, Lehane M, James KJ. Geographical, temporal, and species variation of the polyether toxins, azaspiracids, in shellfish. Environ Sci Technol. 2003;37:3078–84.

    Article  CAS  PubMed  Google Scholar 

  • Furey A, O’Doherty S, O’Callaghan K, Lehane M, James KJ. Azaspiracid poisoning (AZP) toxins in shellfish: toxicological and health considerations. Toxicon. 2010;56:173–90.

    Article  CAS  PubMed  Google Scholar 

  • Fux E, Biré R, Hess P. Comparative accumulation and composition of lipophilic marine biotoxins in passive samplers and in mussels (M. edulis) on the West Coast of Ireland. Harmful Algae. 2009;8:523–37.

    Article  CAS  Google Scholar 

  • Gu HF, Luo ZH, Krock B, Witt M, Tillmann U. Morphology, phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the China Sea. Harmful Algae. 2013;21–22:64–75.

    Article  Google Scholar 

  • Hess P. Use of LC-MS testing to identify lipophilic toxins, to establish local trends and interspecies differences and to test the comparability of LC-MS testing with the mouse bioassay: an example from the Irish biotoxin monitoring programme 2001. In: Villalba A, Reguera B, Romalde JL, Beiras R, editors. Fourth International Conference on Molluscan Shellfish Safety, 4–8 June, 2002. Santiago de Compostela: IOC of UNESCO; 2002. p. 57–66.

    Google Scholar 

  • Hess P, McCarron P, Rehmann N, Kilcoyne J, McMahon T, Ryan G, Ryan PM, Twiner MJ, Doucette GJ, Satake M, Ito E, Yasumoto T. Isolation and purification of azaspiracids from naturally contaminated materials, and evaluation of their toxicological effects. Final project report ASTOX (ST/02/02). Marine Institute – Marine Environment & Health Series, Rinville, Co. Galway 2007;129.

    Google Scholar 

  • Hess P, McCarron P, Krock B, Kilcoyne J, Miles CO. Azaspiracids: chemistry, biosynthesis, metabolism, and detection, seafood and freshwater toxins. Boca Raton: CRC Press; 2014. p. 799–822.

    Book  Google Scholar 

  • Ito E. Toxicology of azaspiracid-1: acute and chronic poisoning, tumorigenicity, and chemical structure relationship to toxicity in a mouse model. In: Botana LM, editor. Seafood and Freshwater Toxins: pharmacology, physiology and detection. Boca Raton: CRC Press; 2008.

    Google Scholar 

  • Ito E, Satake M, Ofuji K, Kurita N, McMahon T, James K, Yasumoto T. Multiple organ damage caused by a new toxin azaspiracid, isolated from mussels produced in Ireland. Toxicon. 2000;38:917–30.

    Article  CAS  PubMed  Google Scholar 

  • Ito E, Satake M, Ofuji K, Higashi M, Harigaya K, McMahon T, Yasumoto T. Chronic effects in mice caused by oral administration of sublethal doses of azaspiracid, a new marine toxin isolated from mussels. Toxicon. 2002;40:193–203.

    Article  CAS  PubMed  Google Scholar 

  • Ito E, Satake M, Ofuji K, McKahon T, Yasumoto T. Pathological study of azaspiracid poisoning in mice. In: Henshilwood K, Deegan B, Mcmahon T, Cusack C, Keaveney S, Silke J, O’ Cinneide M, Lyons D, Hess P, editors. Proceedings of the 5th International Conference Molluscan Shellfish Safety, 14–18 June 2004, Galway; 2004.

    Google Scholar 

  • Ito E, Frederick MO, Koftis TV, Tang W, Petrovic G, Ling T, Nicolaou KC. Structure toxicity relationships of synthetic azaspiracid-1 and analogs in mice. Harmful Algae. 2006;5:586–91.

    Article  CAS  Google Scholar 

  • James KJ, Furey A, Lehane M, Moroney C, Satake M, Yasumoto T. LC-MS methods for the investigation of a new shellfish toxic syndrome - azaspiracid poisoning (AZP). In Mycotoxins and Phycotoxins in Perspective at the Turn of the Century. deKeo WJ. Samson RA, van Egmond HP, Gilbert J, Sabino M, editors. Wageningen, The Netherlands, 2001;401–408.

    Google Scholar 

  • James KJ, Furey A, Lehane M, Ramstad H, Aune T, Hovgaard P, Morris S, Higman W, Satake M, Yasumoto T. First evidence of an extensive northern European distribution of azaspiracid poisoning (AZP) toxins in shellfish. Toxicon. 2002;40:909–15.

    Article  CAS  PubMed  Google Scholar 

  • James KJ, Moroney C, Roden C, Satake M, Yasumoto T, Lehane M, Furey A. Ubiquitous ‘benign’ alga emerges as the cause of shellfish contamination responsible for the human toxic syndrome, azaspiracid poisoning. Toxicon. 2003a;41:145–51.

    Article  CAS  PubMed  Google Scholar 

  • James KJ, Sierra MD, Lehane M, Braña Magdalena A, Furey A. Detection of five new hydroxyl analogues of azaspiracids in shellfish using multiple tandem mass spectrometry. Toxicon. 2003b;41:277–83.

    Article  CAS  PubMed  Google Scholar 

  • James KJ, Saez MJF, Furey A, Lehane M. Azaspiracid poisoning, the food-borne illness associated with shellfish consumption. Food Addit Contam. 2004;21:879–92.

    Article  CAS  PubMed  Google Scholar 

  • James KJ, Furey A, Satake M, Yasumoto T. Azaspiracid poisoning (AZP): a new shellfish toxic syndrome in Europe. In: Hallegraeff GM, Blackburn SI, Bolch CJ, Lewis RJ, editors. Harmful algal blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Paris, France, 2001. pp. 250–253.

    Google Scholar 

  • Jauffrais T, Herrenknecht C, Séchet V, Sibat M, Tillmann U, Krock B, Kilcoyne J, Miles C, McCarron P, Amzil Z, Hess P. Quantitative analysis of azaspiracids in Azadinium spinosum cultures. Anal Bioanal Chem. 2012a;403:833–46.

    Article  CAS  PubMed  Google Scholar 

  • Jauffrais T, Kilcoyne J, Séchet V, Herrenknecht C, Truquet P, Hervé F, Bérard JB, Nulty C, Taylor S, Tillmann U, Miles CO, Hess P. Production and isolation of azaspiracid-1 and -2 from Azadinium spinosum culture in pilot scale photobioreactors. Mar Drugs. 2012b;10:1360–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauffrais T, Marcaillou C, Herrenknecht C, Truquet P, Séchet V, Nicolau E, Tillmann U, Hess P. Azaspiracid accumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum. Toxicon. 2012c;60:582–95.

    Article  CAS  PubMed  Google Scholar 

  • Kilcoyne J, Keogh A, Clancy G, LeBlanc P, Burton IW, Quilliam MA, Hess P, Miles CO. Improved isolation procedure for azaspiracids from shellfish, structural elucidation of azaspiracid-6, and stability studies. J Agric Food Chem. 2012;60:2447–55.

    Article  CAS  PubMed  Google Scholar 

  • Kilcoyne J, McCarron P, Twiner MJ, Nulty C, Crain S, Quilliam MA, Rise F, Wilkins AL, Miles CO. Epimers of azaspiracids: isolation, structural elucidation, relative LC-MS response, and in vitro toxicity of 37-epi-azaspiracid-1. Chem Res Toxicol. 2014a;27:587–600.

    Article  CAS  PubMed  Google Scholar 

  • Kilcoyne J, Nulty C, Jauffrais T, McCarron P, Herve F, Foley B, Rise F, Crain S, Wilkins AL, Twiner MJ, Hess P, Miles CO. Isolation, structure elucidation, relative LC-MS response, and in vitro toxicity of azaspiracids from the dinoflagellate Azadinium spinosum. J Nat Prod. 2014b;77:2465–74.

    Article  CAS  PubMed  Google Scholar 

  • Kilcoyne J, Jauffrais T, Twiner MJ, Doucette G, Aasen Bunæs J A, Sosa S, Krock B, Séchet V, Nulty C, Salas R, Clarke D, Geraghty J, Duffy C, Foley B, John U, Quilliam MA, McCarron P, Miles CO, Silke J, Cembella A, Tillmann U, Hess P. Azaspiracids – toxicological evaluation, test methods and identifcation of the source organisms (ASTOX II); Marine Institute - Marine Research Sub-Programme (NDP 2007–2013) series (http://oar.marine.ie/handle/10793/970), 2014c.

    Google Scholar 

  • Kilcoyne J, Twiner MJ, McCarron P, Crain S, Giddings SD, Foley B, Rise F, Hess P, Wilkins AL, Miles CO. Structure elucidation, relative LC–MS response and in vitro toxicity of azaspiracids 7–10 isolated from mussels (Mytilus edulis). J Agric Food Chem. 2015;63:5083–91.

    Article  CAS  PubMed  Google Scholar 

  • Kittler K, Preiss-Weigert A, These A. Identification strategy using combined mass spectrometric techniques for elucidation of phase I and phase II in vitro metabolites of lipophilic marine biotoxins. Anal Chem. 2010;82:9329–35.

    Article  CAS  PubMed  Google Scholar 

  • Klontz KC, Abraham A, Plakas SM, Dickey RW. Mussel-associated azaspiracid intoxication in the United States. Ann Intern Med. 2009;150:361.

    Article  PubMed  Google Scholar 

  • Krock B, Tillmann U, John U, Cembella A. LC-MS-MS aboard ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea. Anal Bioanal Chem. 2008;392:797–803.

    Article  CAS  PubMed  Google Scholar 

  • Krock B, Tillmann U, John U, Cembella AD. Characterization of azaspiracids in plankton size-fractions and isolation of an azaspiracid-producing dinoflagellate from the North Sea. Harmful Algae. 2009;8:254–63.

    Article  CAS  Google Scholar 

  • Krock B, Tillmann U, Voß D, Koch BP, Salas R, Witt M, Potvin É, Jeong HJ. New azaspiracids in Amphidomataceae (Dinophyceae). Toxicon. 2012;60:830–9.

    Article  CAS  PubMed  Google Scholar 

  • Kulagina KV, Twiner MJ, Hess P, McMahon T, Satake M, Yasumoto T, Ramsdell JS, Doucette GJ, Ma W, O’Shaughnessy TJ. Azaspiracid-1 inhibits bioelectrical activity of spinal cord neuronal networks. Toxicon. 2006;47:766–73.

    Article  CAS  PubMed  Google Scholar 

  • Lehane M, Braña Magdalena A, Moroney C, Furey A, James KJ. Liquid chromatography with electrospray ion trap mass spectrometry for the determination of five azaspiracids in shellfish. J Chromatogr A. 2002;950:139–47.

    Article  CAS  PubMed  Google Scholar 

  • López-Rivera A, O’Callaghan K, Moriarty M, O’Driscoll D, Hamilton B, Lehane M, James KJ, Furey A. First evidence of azaspiracids (AZAs): a family of lipophilic polyether marine toxins in scallops (Argopecten purpuratus) and mussels (Mytilus chilensis) collected in two regions of Chile. Toxicon. 2010;55:692–701.

    Article  PubMed  Google Scholar 

  • Magdalena AB, Lehane M, Krys S, Fernandez ML, Furey A, James KJ. The first identification of azaspiracids in shellfish from France and Spain. Toxicon. 2003a;42:105–8.

    Article  CAS  PubMed  Google Scholar 

  • Magdalena AB, Lehane M, Moroney C, Furey A, James KJ. Food safety implications of the distribution of azaspiracids in the tissue compartments of scallops (Pecten maximus). Food Addit Contam. 2003b;20:154–60.

    Article  CAS  PubMed  Google Scholar 

  • McCarron P, Emteborg H, Hess P. Freeze-drying for the stabilisation of shellfish toxins in mussel tissue (Mytilus edulis) reference materials. Anal Bioanal Chem. 2007;387:2475–86.

    Article  CAS  PubMed  Google Scholar 

  • McCarron P, Kilcoyne J, Miles CO, Hess P. Formation of azaspiracids-3,-4,-6, and-9 via decarboxylation of carboxyazaspiracid metabolites from shellfish. J Agric Food Chem. 2009;57:160–9.

    Article  CAS  PubMed  Google Scholar 

  • McCarron P, Giddings S, Quilliam M. A mussel tissue certified reference material for multiple phycotoxins. Part 2: liquid chromatography–mass spectrometry, sample extraction and quantitation procedures. Anal Bioanal Chem. 2011;400:835–46.

    Article  CAS  PubMed  Google Scholar 

  • McMahon T, Silke J. West coast of Ireland; winter toxicity of unknown aetiology in mussels. Harmful Algae News. 1996;14:2.

    Google Scholar 

  • Nicolaou KC, Koftis TV, Vyskocil S, Petrovic G, Tang W, Frederick MO, Chen DYK, Yiwei L, Ling T, Yamada TMA. Total synthesis and structural elucidation of azaspiracid-1. Final assignment and total synthesis of the correct structure of azaspiracid-1. J Am Chem Soc. 2004;128:2859–72.

    Article  Google Scholar 

  • Nzoughet KJ, Hamilton JTG, Floyd SD, Douglas A, Nelson J, Devine L, Elliott CT. Azaspiracid: first evidence of protein binding in shellfish. Toxicon. 2008;51:1255–63.

    Article  CAS  PubMed  Google Scholar 

  • O’Driscoll D, Škrabáková Z, O’Halloran J, van Pelt FNAM, James KJ. Mussels increase xenobiotic (azaspiracid) toxicity using a unique bioconversion mechanism. Environ Sci Technol. 2011;45:3102–8.

    Article  PubMed  Google Scholar 

  • Ofuji K, Satake M, McMahon T, Silke J, James KJ, Naoki H, Oshima Y, Yasumoto T. Two analogs of azaspiracid isolated from mussels, Mytilus edulis, involved in human intoxication in Ireland. Nat Toxins. 1999;7:99–102.

    Article  CAS  PubMed  Google Scholar 

  • Ofuji K, Satake M, McMahon T, James KJ, Naoki H, Oshima Y, Yasumoto T. Structures of azaspiracid analogs, azaspiracid-4 and azaspiracid-5, causative toxins of azaspiracid poisoning in Europe. Biosci Biotechnol Biochem. 2001;65:740–2.

    Article  CAS  PubMed  Google Scholar 

  • Percopo I, Siano R, Rossi R, Soprano V, Sarno D, Zingone A. A new potentially toxic Azadinium species (Dinophyceae) from the Mediterranean Sea, A. dexteroporum sp. nov. J Phycol. 2013;49:950–66.

    CAS  Google Scholar 

  • Perez R, Rehmann N, Crain S, LeBlanc P, Craft C, MacKinnon S, Reeves K, Burton I, Walter J, Hess P, Quilliam M, Melanson J. The preparation of certified calibration solutions for azaspiracid-1, -2, and -3, potent marine biotoxins found in shellfish. Anal Bioanal Chem. 2010;398:2243–52.

    Article  CAS  PubMed  Google Scholar 

  • Potvin É, Jeong HJ, Kang NS, Tillmann U, Krock B. First report of the photosynthetic dinoflagellate genus Azadinium in the Pacific Ocean: morphology and molecular characterization of Azadinium cf. poporum. J Eukaryotic Microbiol. 2012;59:145–56.

    Article  CAS  Google Scholar 

  • RASFF. The Rapid Alert System for Food and Feed (RASFF) Annual Report 2008, http://ec.europa.eu/food/food/rapidalert/report2008_en.pdf. 2008.

  • Rehmann N, Hess P, Quilliam MA. Discovery of new analogs of the marine biotoxin azaspiracid in blue mussels (Mytilus edulis) by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:549–58.

    Article  CAS  PubMed  Google Scholar 

  • Roman Y, Alfonso A, Louzao MC, de la Rosa LA, Leira F, Vieites JM, Vieytes MR, Ofuji K, Satake M, Yasumoto T, Botana LM. Azaspiracid-1, a potent, nonapoptotic new phycotoxin with several cell targets. Cell Signalling. 2002;14:703–16.

    Article  CAS  PubMed  Google Scholar 

  • Rundberget T, Sandvik M, Larsen K, Pizarro GM, Reguera B, Castberg T, Gustad E, Loader JI, Rise F, Wilkins AL, Miles CO. Extraction of microalgal toxins by large-scale pumping of seawater in Spain and Norway, and isolation of okadaic acid and dinophysistoxin-2. Toxicon. 2007;50:960–70.

    Article  CAS  PubMed  Google Scholar 

  • Ryan G, Cunningham K, Ryan MP. Pharmacology and epidemiological impact of azaspiracids. In: Botana LM, editor. Seafood and freshwater toxins: pharmacology, physiology, and detection. 2nd ed. Boca Raton: CRC Press (Taylor and Francis Group); 2008. p. 755–61.

    Chapter  Google Scholar 

  • Salas R, Tillmann U, John U, Kilcoyne J, Burson A, Cantwell C, Hess P, Jauffrais T, Silke J. The role of Azadinium spinosum (Dinophyceae) in the production of azaspiracid shellfish poisoning in mussels. Harmful Algae. 2011;10:774–83.

    Article  Google Scholar 

  • Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440:463–9.

    Article  CAS  PubMed  Google Scholar 

  • Satake M, Ofuji K, James KJ, Furey A, Yasumoto T. New toxic event caused by Irish mussels. In: Reguera B, Blanco J, Fernandez ML, Wyatt T, editors. Harmful algae, proceedings of the VIII international conference on harmful algae, (June 1999, Vigo, Spain). Santiago de Compostela: Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO; 1998a. p. 468–9.

    Google Scholar 

  • Satake M, Ofuji K, Naoki H, James KJ, Furey A, McMahon T, Silke J, Yasumoto T. Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. J Am Chem Soc. 1998b;120:9967–8.

    Article  CAS  Google Scholar 

  • Taleb H, Vale P, Amanhir R, Benhadouch A, Sagou R, Chafik A. First detection of azaspiracids in mussels in north west Africa. J Shellfish Res. 2006;25:1067–70.

    Article  Google Scholar 

  • Tillmann U, Elbrächter M, Krock B, John U, Cembella AD. Azadinium spinosum gen. et sp. nov (Dinophyceae) identified as a primary producer of azaspiracid toxins. Eur J Phycol. 2009;44:63–79.

    Article  CAS  Google Scholar 

  • Tillmann U, Elbrächter M, John U, Krock B, Cembella AD. Azadinium obesum (Dinophyceae), a new nontoxic species in the genus that can produce azaspiracid toxins. Phycologia. 2010;49:169–82.

    Article  Google Scholar 

  • Tillmann U, Elbrächter M, John U, Krock B. A new non-toxic species in the dinoflagellate genus Azadinium: A. poporum sp. nov. Eur J Phycol. 2011;46:74–87.

    Article  CAS  Google Scholar 

  • Tillmann U, Salas R, Gottschling M, Krock B, O’Driscoll D, Elbrächter M. Amphidoma languida sp. nov. (Dinophyceae) reveals a close relationship between Amphidoma and Azadinium. Protist. 2012;163:701–19.

    Article  CAS  PubMed  Google Scholar 

  • Tillmann U, Salas R, Jauffrais T, Hess P, Silke J. AZA: the producing organisms – biology and trophic transfer. In: Botana LM, editor. Seafood and freshwater toxins. Boca Raton: CRC Press; 2014. p. 773–98.

    Chapter  Google Scholar 

  • Torgersen T, Aasen J, Aune T. Diarrhetic shellfish poisoning by okadaic acid esters from brown crabs (Cancer pagurus) in Norway. Toxicon. 2005;46:572–8.

    Article  CAS  PubMed  Google Scholar 

  • Torgersen T, Bremnes NB, Rundberget T, Aune T. Structural confirmation and occurrence of azaspiracids in Scandinavian brown crabs (Cancer pagurus). Toxicon. 2008;51:93–101.

    Article  CAS  PubMed  Google Scholar 

  • Tubaro A, Kilcoyne J, Pelin M, D’Orlando E, Beltramo D, Nulty C, Hess P, Sosa S. Acute oral toxicity of three azaspiracid analogues in mice. Toxicon. 2014;91:183.

    Article  Google Scholar 

  • Twiner MJ, Hess P, Bottein Dechraoui M-Y, McMahon T, Samons MS, Satake M, Yasumoto T, Ramsdell JS, Doucette GJ. Cytotoxic and cytoskeletal effects of azaspiracid-1 on mammalian cell lines. Toxicon. 2005;45:891–900.

    Article  CAS  PubMed  Google Scholar 

  • Twiner MJ, Rehmann N, Hess P, Doucette GJ. Azaspiracid shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts. Mar Drugs. 2008;6:39–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twiner MJ, Doucette GJ, Rasky A, Huang X-P, Roth BL, Sanguinetti MC. The marine algal toxin azaspiracid is an open state blocker of hERG potassium channels. Chem Res Toxicol. 2012a;25:1975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twiner MJ, El-Ladki R, Kilcoyne J, Doucette GJ. Comparative effects of the marine algal toxins azaspiracid-1, -2, and -3 on Jurkat T lymphocyte cells. Chem Res Toxicol. 2012b;25:747–54.

    Article  CAS  PubMed  Google Scholar 

  • Twiner MJ, Hess P, Doucette GJ. Azaspiracids: toxicology, pharmacology, and risk assessment, seafood and freshwater toxins. Boca Raton: CRC Press; 2014. p. 823–56.

    Book  Google Scholar 

  • Ueoka R, Ito A, Izumikawa M, Maeda S, Takagi M, Shin-ya K, Yoshida M, van Soest RWM, Matsunaga S. Isolation of azaspiracid-2 from a marine sponge Echinoclathria sp. as a potent cytotoxin. Toxicon. 2009;53:680–4.

    Article  CAS  PubMed  Google Scholar 

  • Vale C, Gomez-Limia B, Nicolaou KC, Frederick MO, Vieytes MR, Botana LM. The c-Jun-N-terminal kinase is involved in the neurotoxic effect of azaspiracid-1. Cell Physiol Biochem. 2007;20:957–66.

    Article  CAS  PubMed  Google Scholar 

  • Vale C, Nicolaou KC, Frederick MO, Vieytes MR, Botana LM. Cell volume decrease as a link between azaspiracid-induced cytotoxicity and c-Jun-N-terminal kinase activation in cultured neurons. Toxicol Sci. 2010;113:158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Hess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Hess, P., Twiner, M.J., Kilcoyne, J., Sosa, S. (2016). Azaspiracid Toxins: Toxicological Profile. In: Gopalakrishnakone, P., Haddad Jr., V., Tubaro, A., Kim, E., Kem, W. (eds) Marine and Freshwater Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6419-4_20

Download citation

Publish with us

Policies and ethics