Skip to main content

Snake Venom Peptidomics

  • Reference work entry
  • First Online:
Venom Genomics and Proteomics

Part of the book series: Toxinology ((TOXI))

Abstract

Even though the beginning of the studies of snake venom peptides is strongly correlated to the first discoveries of bradykinin-potentiating peptides, in the mid-twentieth century, snake venom peptidomics is still in its infancy. Over the last decade, the development of mass spectrometry, transcriptomics, and bioinformatics and the application of these tools to the study of snake venoms have unveiled the proteomes of several species and produced considerable knowledge of diverse aspects of snake biology. Though the studies of snake venomics are growing rapidly, snake venom peptidomics is still an emerging research field due to specificities of snake venoms and of peptidomic analysis. In this chapter, the main findings of snake venom peptidomics research are highlighted, and the strategies of venom preparation and mass spectrometry (MS) analysis, de novo sequencing of MS spectra, and the integration of “omics” strategies for exploring peptidomes are presented and discussed. The understanding of snake venom peptidomes could help to design specific protocols to avoid undesirable proteolysis of venom components, hence, improving the preparation of immunization mixtures used for antivenom production. As more sophisticated methods of analysis and high-throughput approaches are used, a number of new peptides will be discovered, and more importantly, the biological meaning of snake venom peptidomes will be revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Borges D, Perez-Riverol Y, Nogueira FCS, Domont GB, Noda J, Da Veiga LF, et al. Effectively addressing complex proteomic search spaces with peptide spectrum matching. Bioinformatics. 2013;29(10):1343–4.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon. 2013;75:44–62.

    Article  CAS  PubMed  Google Scholar 

  • Ching AT, Rocha MM, Paes Leme AF, Pimenta DC, de Fátima D, Furtado M, Serrano SM, et al. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy’s (venom) gland transcriptome. FEBS Lett. 2006;580(18):4417–22.

    Article  CAS  PubMed  Google Scholar 

  • Cidade D, Simão T, Dávila A, Wagner G, Junqueira-de-Azevedo I, Ho P, et al. Bothrops jararaca venom gland transcriptome: analysis of the gene expression pattern. Toxicon. 2006;48(4):437–61.

    Article  CAS  PubMed  Google Scholar 

  • Corrêa-Netto C, Junqueira-de-Azevedo IDLM, Silva DA, Ho PL, Leitão-de-Araújo M, Alves MLM, et al. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes. Micrurus altirostris and M. corallinus. J Proteomics. 2011;74(9):1795–809.

    Article  PubMed  Google Scholar 

  • Dias GS, Kitano ES, Pagotto AH, Sant’anna SS, Rocha MM, Zelanis A, et al. Individual variability in the venom proteome of juvenile Bothrops jararaca specimens. J Proteome Res. 2013;12(10):4585–98.

    Article  CAS  PubMed  Google Scholar 

  • Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, et al. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake. Crotalus simus simus. BMC Genomics. 2013;14:234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edman P, Begg G. A protein sequenator. Eur J Biochem. 1967;1(1):80–91.

    Article  CAS  PubMed  Google Scholar 

  • Elias J, Gygi S. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 2007;4(3):207–14.

    Article  CAS  PubMed  Google Scholar 

  • Favreau P, Cheneval O, Menin L, Michalet S, Gaertner H, Principaud F, et al. The venom of the snake genus Atheris contains a new class of peptides with clusters of histidine and glycine residues. Rapid Commun Mass Spectrom. 2007;21(3):406–12.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez Ocaña M, Jarvis J, Parker R, Bramley PM, Halket JM, Patel RK, et al. C-terminal sequencing by mass spectrometry: application to gelatine-derived proline-rich peptides. Proteomics. 2005;5(5):1209–16.

    Article  PubMed  Google Scholar 

  • Ferreira SH. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Br J Pharmacol Chemother. 1965;24:163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira SH, Rocha e Silva M. Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom. Experientia. 1965;21(6):347–9.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira S, Bartelt D, Greene L. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry. 1970a;9(13):2583–93.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira SH, Greene LH, Alabaster VA, Bakhle YS, Vane JR. Activity of various fractions of bradykinin potentiating factor against angiotensin I converting enzyme. Nature. 1970b;225(5230):379–80.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Murbach A, Ianzer D, Portaro F, Prezoto B, Fernandes B, et al. The C-type natriuretic peptide precursor of snake brain contains highly specific inhibitors of the angiotensin-converting enzyme. J Neurochem. 2003;85(4):969–77.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi S, Murayama N, Saguchi K, Ohi H, Fujita Y, Camargo ACM, et al. Bradykinin-potentiating peptides and C-type natriuretic peptides from snake venom. Immunopharmacology. 1999;44(1–2):129–35.

    Article  CAS  PubMed  Google Scholar 

  • Ianzer D, Konno K, Marques-Porto R, Vieira Portaro F, Stöcklin R, Martins de Camargo A, et al. Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography. Peptides. 2004;25(7):1085–92.

    Article  CAS  PubMed  Google Scholar 

  • Juárez P, Sanz L, Calvete J. Snake venomics: characterization of protein families in Sistrurus barbouri venom by cysteine mapping, N-terminal sequencing, and tandem mass spectrometry analysis. Proteomics. 2004;4(2):327–38.

    Article  PubMed  Google Scholar 

  • Kinter M, Sherman NE. Collisionally induced dissociation of protonated peptide ions and the interpretation of product ion spectra. Protein sequencing and identification using tandem mass spectrometry. New York: Wiley; 2000. p. 301.

    Google Scholar 

  • Kloog Y, Ambar I, Sokolovsky M, Kochva E, Wollberg Z, Bdolah A. Sarafotoxin, a novel vasoconstrictor peptide: phosphoinositide hydrolysis in rat heart and brain. Science. 1988;242(4876):268–70.

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Picolo G, Gutierrez VP, Brigatte P, Zambelli VO, Camargo ACM, et al. Crotalphine, a novel potent analgesic peptide from the venom of the South American rattlesnake Crotalus durissus terrificus. Peptides. 2008;29(8):1293–304.

    Article  CAS  PubMed  Google Scholar 

  • Lipkind G, Gong Q, Steiner DF. Molecular modeling of the substrate specificity of prohormone convertases SPC2 and SPC3. J Biol Chem. 1995;270(22):13277–84.

    Article  CAS  PubMed  Google Scholar 

  • Lomonte B, Fernández J, Sanz L, Angulo Y, Sasa M, Gutiérrez JM, et al. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics. J Proteomics. 2014;105C:323–39.

    Article  Google Scholar 

  • Marques-Porto R, Lebrun I, Pimenta D. Self-proteolysis regulation in the Bothrops jararaca venom: the metallopeptidases and their intrinsic peptidic inhibitor. Comp Biochem Physiol C Toxicol Pharmacol. 2008;147(4):424–33.

    Article  PubMed  Google Scholar 

  • McCleary RJ, Kini RM. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon. 2013;62:56–74.

    Article  CAS  PubMed  Google Scholar 

  • Menin L, Perchuć A, Favreau P, Perret F, Michalet S, Schöni R, et al. High throughput screening of bradykinin-potentiating peptides in Bothrops moojeni snake venom using precursor ion mass spectrometry. Toxicon. 2008;51(7):1288–302.

    Article  CAS  PubMed  Google Scholar 

  • Murayama N, Hayashi M, Ohi H, Ferreira L, Hermann V, Saito H, et al. Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide. Proc Natl Acad Sci U S A. 1997;94(4):1189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odell G, Ferry P, Vick L, Fenton A, Decker L, Cowell R, et al. Citrate inhibition of snake venom proteases. Toxicon. 1998;36(12):1801–6.

    Article  CAS  PubMed  Google Scholar 

  • Ohno M, Ménez R, Ogawa T, Danse JM, Shimohigashi Y, Fromen C, et al. Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog Nucleic Acid Res Mol Biol. 1998;59:307–64.

    Article  CAS  PubMed  Google Scholar 

  • Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry. 1971;10(22):4033–9.

    Article  CAS  PubMed  Google Scholar 

  • Pimenta DC, Lebrun I. Cryptides: buried secrets in proteins. Peptides. 2007;28(12):2403–10.

    Article  CAS  PubMed  Google Scholar 

  • Pimenta D, Prezoto B, Konno K, Melo R, Furtado M, Camargo A, et al. Mass spectrometric analysis of the individual variability of Bothrops jararaca venom peptide fraction. Evidence for sex-based variation among the bradykinin-potentiating peptides. Rapid Commun Mass Spectrom. 2007;21(6):1034–42.

    Article  CAS  PubMed  Google Scholar 

  • Raffin-Sanson ML, de Keyzer Y, Bertagna X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol. 2003;149(2):79–90.

    Article  CAS  PubMed  Google Scholar 

  • Robeva A, Politi V, Shannon J, Bjarnason J, Fox J. Synthetic and endogenous inhibitors of snake venom metalloproteinases. Biomed Biochim Acta. 1991;50(4–6):769–73.

    CAS  PubMed  Google Scholar 

  • Samir P, Link AJ. Analyzing the cryptome: uncovering secret sequences. AAPS J. 2011;13(2):152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidler J, Zinn N, Boehm ME, Lehmann WD. De novo sequencing of peptides by MS/MS. Proteomics. 2010;10(4):634–49.

    Article  CAS  PubMed  Google Scholar 

  • Sousa J, Monteiro R, Castro H, Zingali R. Proteolytic action of Bothrops jararaca venom upon its own constituents. Toxicon. 2001;39(6):787–92.

    Article  CAS  PubMed  Google Scholar 

  • Standing KG. Peptide and protein de novo sequencing by mass spectrometry. Curr Opin Struct Biol. 2003;13(5):595–601.

    Article  CAS  PubMed  Google Scholar 

  • Tashima AK, Sanz L, Camargo AC, Serrano SM, Calvete JJ. Snake venomics of the Brazilian pitvipers Bothrops cotiara and Bothrops fonsecai. Identification of taxonomy markers. J Proteomics. 2008;71(4):473–85.

    Article  CAS  PubMed  Google Scholar 

  • Tashima AK, Zelanis A, Kitano ES, Ianzer D, Melo RL, Rioli V, et al. Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteomics. 2012;11(11):1245–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valente R, Guimarães P, Junqueira M, Neves-Ferreira A, Soares M, Chapeaurouge A, et al. Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data. J Proteomics. 2009;72(2):241–55.

    Article  CAS  PubMed  Google Scholar 

  • Wattenberg A, Organ AJ, Schneider K, Tyldesley R, Bordoli R, Bateman RH. Sequence dependent fragmentation of peptides generated by MALDI quadrupole time-of-flight (MALDI Q-TOF) mass spectrometry and its implications for protein identification. J Am Soc Mass Spectrom. 2002;13(7):772–83.

    Article  CAS  PubMed  Google Scholar 

  • Wermelinger L, Dutra D, Oliveira-Carvalho A, Soares M, Bloch CJ, Zingali R. Fast analysis of low molecular mass compounds present in snake venom: identification of ten new pyroglutamate-containing peptides. Rapid Commun Mass Spectrom. 2005;19(12):1703–8.

    Article  CAS  PubMed  Google Scholar 

  • WHO. Preparation and storage of snake venom. In: WHO, editor. WHO guidelines for the production, control and regulation of snake antivenom immunoglobulins. Geneva: WHO Press; 2010. p. 134.

    Google Scholar 

  • Wu C, Wu F, Pan J, Morser J, Wu Q. Furin-mediated processing of Pro-C-type natriuretic peptide. J Biol Chem. 2003;278(28):25847–52.

    Article  CAS  PubMed  Google Scholar 

  • Yen C-Y, Russell S, Mendoza AM, Meyer-Arendt K, Sun S, Cios KJ, et al. Improving sensitivity in shotgun proteomics using a peptide-centric database with reduced complexity: protease cleavage and SCX elution rules from data mining of MS/MS spectra. Anal Chem. 2006;78(4):1071–84.

    Article  CAS  PubMed  Google Scholar 

  • Zelanis A, Tashima AK. Unraveling snake venom complexity with ‘omics’ approaches: challenges and perspectives. Toxicon. 2014;87:131–4.

    Article  CAS  PubMed  Google Scholar 

  • Zelanis A, Tashima AK, Rocha MM, Furtado MF, Camargo AC, Ho PL, et al. Analysis of the ontogenetic variation in the venom proteome/peptidome of Bothrops jararaca reveals different strategies to deal with prey. J Proteome Res. 2010;9(5):2278–91.

    Article  CAS  PubMed  Google Scholar 

  • Zelanis A, Andrade-Silva D, Rocha MM, Furtado MF, Serrano SM, Junqueira-de-Azevedo IL, et al. A transcriptomic view of the proteome variability of newborn and adult Bothrops jararaca snake venoms. PLoS Negl Trop Dis. 2012;6(3):e1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Keiji Tashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Tashima, A.K., Zelanis, A. (2016). Snake Venom Peptidomics. In: Gopalakrishnakone, P., Calvete, J. (eds) Venom Genomics and Proteomics. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6416-3_49

Download citation

Publish with us

Policies and ethics