Skip to main content

Shotgun Approaches for Venom Analysis

  • Reference work entry
  • First Online:
Venom Genomics and Proteomics

Abstract

Shotgun proteomics relies on the identification, quantification, and characterization of proteins in complex samples. Recent advances in instrumentation allow for sensitive and comprehensive shotgun protein analysis in a high-throughput manner. Combination of shotgun techniques to novel analytical strategies opens interesting possibilities for the implementation of new approaches and methodologies in the frontiers of venom biology. Examples are (i) identification of proteins in low abundance, using combinatorial ligand peptide libraries; (ii) relative and absolute protein quantitation ; and (iii) identification of posttranslational modifications. The full potential of shotgun analysis in venomics is yet to be explored. Some of the pioneer works in the field will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aird SD, Watanabe Y, Villar-Briones A, Roy MC, Terada K, Mikheyev AS. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genomics. 2013;14:790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandeira N, Clauser KR, Pevzner PA. Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins. Mol Cell Proteomics. 2007;6:1123–34.

    Article  CAS  PubMed  Google Scholar 

  • Birrell GW, Earl S, Masci PP, Jersey JD, Wallis TP, Gorman JJ, Lavin MF. Molecular diversity in venom from the Australian brown snake, Pseudonaja textilis. Mol Cell Proteomics. 2006;5(2):379–89.

    Article  CAS  PubMed  Google Scholar 

  • Birrell GW, Earl STH, Wallis TP, Masci PP, Jersey JD, Gorman JJ, Lavin MF. The diversity of bioactive proteins in Australian snake venoms. Mol Cell Proteomics. 2007;6(6):973–86.

    Article  CAS  PubMed  Google Scholar 

  • Buczek O, Bulaj G, Olivera BM. Conotoxins and the posttranslational modification of secreted gene products. Cell Mol Life Sci. 2005;62:3067–79.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev Proteomics. 2014;11(3):315–29.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ, Juárez P, Sanz L. Snake venomics. Strategy Appl J Mass Spectrom. 2007;42:1405–14.

    Article  CAS  Google Scholar 

  • Calvete JJ, Fasoli E, Sanz L, Boschetti E, Righetti PG. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J Proteome Res. 2009;8:3055–67.

    Article  CAS  PubMed  Google Scholar 

  • Castoe TA, de Koning AP, Hall KT, Card DC, Schield DR, Fujita MK, Ruggiero RP, Degner JF, Daza JM, Gu W, et al. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci U S A. 2013;110:20645–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Z, Cao R, Jiang L, Liang S. A combined de novo protein sequencing and cDNA library approach to the venomic analysis of Chinese spider Araneus ventricosus. J Proteomics. 2013;78:416–27.

    Article  CAS  PubMed  Google Scholar 

  • Fox JW, Ma L, Nelson K., Sherman NE, Serrano SMT. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Toxicon. 2006; 47: 700–14.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Wickramaratna JC, Hodgson WC, Alewood PF, Kini RM, Ho H, Wüster W. Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: taxonomic and toxinological implications. Rapid Commun Mass Spectrom. 2002;16:600–8.

    Article  CAS  PubMed  Google Scholar 

  • Galan JA, Guo M, Sanchez EE, Cantu E, Rodriguez-Acosta A, Perez JC, Tao WA. Quantitative analysis of snake venoms using soluble polymer-based isotope labeling. Mol Cell Proteomics. 2008;7:785–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelpí E. From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part I 1965–1984. J Mass Spectrom. 2008;43:419–35.

    Article  PubMed  Google Scholar 

  • Gelpí E. From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part II 1985–2000. J Mass Spectrom. 2009;44:1137–61.

    Article  PubMed  Google Scholar 

  • Guercio RA, Shevchenko A, Lopez-Lozano JL, Paba J, Sousa MV, Ricart CA. Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox. Proc Natl Acad Sci U S A. 2006;4:11.

    Google Scholar 

  • Guthals A, Clauser KR, Frank AM, Bandeira N. Sequencing-grade De novo analysis of MS/MS triplets (CID/HCD/ETD) from overlapping peptides. J Proteome Res. 2013;12:2846–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17:994–9.

    Article  CAS  PubMed  Google Scholar 

  • Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics. 2014;15:366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ. The one hour yeast proteome. Mol Cell Proteomics. 2014;13:339–47.

    Article  CAS  PubMed  Google Scholar 

  • Jensen ON. Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol. 2006;7:391–403.

    Article  CAS  PubMed  Google Scholar 

  • Kulkeaw K, Chaicumpa W, Sakolvaree Y, Tongtawe P, Tapchaisri P. Proteome and immunome of the venom of the Thai cobra, Naja kaouthia. Toxicon. 2007;49:1026–41.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wang J, Zhang X, Ren Y, Wang N, Zhao K, Chen X, Zhao C, Li X, Shao J, et al. Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochem J. 2004;384:119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhang L, Fang Y, Han B, Lu X, Zhou T, Feng M, Li J. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC Genomics. 2013;14:766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates 3rd JR. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999;17:676–82.

    Article  CAS  PubMed  Google Scholar 

  • Margres MJ, McGivern JJ, Wray KP, Seavy M, Calvin K, Rokyta DR. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). J Proteomics. 2014;96:145–58.

    Article  CAS  PubMed  Google Scholar 

  • Nawarak J, Sinchaikul S, Wu C-Y, Liau M-Y, Phutrakul S, Chen S-T. Proteomics of snake venoms from elapidae and viperidae families by multidimensional chromatographic methods. Electrophoresis. 2003;24(16):2838–54.

    Article  CAS  PubMed  Google Scholar 

  • Nogueira FC, Domont GB. Survey of shotgun proteomics. Methods Mol Biol. 2014;1156:3–23.

    Article  CAS  PubMed  Google Scholar 

  • Olsen JV, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics. 2013;12:3444–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portes-Junior JA, Yamanouye N, Carneiro SM, Knittel PS, Sant’Anna SS, Nogueira FC, Junqueira M, Magalhães GS, Domont GB, Moura-da-Silva AM. Unraveling the processing and activation of snake venom metalloproteinases. J Proteome Res. 2014;13:3338–48.

    Article  CAS  PubMed  Google Scholar 

  • Resende VMF, Vasilj A, Santos KS, Palma MS, Shevchenko A. Proteome and phosphoproteome of Africanized and European honeybee venoms. Proteomics. 2013;13:2638–48.

    Article  CAS  PubMed  Google Scholar 

  • Righetti PG, Fasoli E, Boschetti E. Combinatorial peptide ligand libraries: the conquest of the ‘hidden proteome’ advances at great strides. Electrophoresis. 2011;32:960–6.

    Article  CAS  PubMed  Google Scholar 

  • Sousa LF, Nicolau CA, Peixoto PS, Bernardoni JL, Oliveira SS, Portes-Junior JA, Mourão RHV, Lima-dos-Santos I, Sano-Martins IS, Chalkidis HM, et al. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of Bothrops complex. PLoS Negl Trop Dis. 2013;7:e2442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tashima AK, Zelanis A, Kitano ES, Ianzer D, Melo RL, Rioli V, Sant’anna SS, Schenberg AC, Camargo AC, Serrano SM. Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteomics. 2012;11:1245–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tayo LL, Lu B, Cruz LJ, Yates JR. Proteomic analysis provides insights on venom processing in Conus textile. J Proteome Res. 2010;9:2292–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur SS, Geiger T, Chatterjee B, Bandilla P, Fröhlich F, Cox J, Mann M. Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. Mol Cell Proteomics. 2011;10:M110.003699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Undheim EA, Sunagar K, Hamilton BR, Jones A, Venter DJ, Fry BG, King GF. Multifunctional warheads: diversification of the toxin arsenal of centipedes via novel multidomain transcripts. J Proteomics. 2014;102:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Valente RH, Guimarães PR, Junqueira M, Neves-Ferreira AG, Soares MR, Chapeaurouge A, Trugilho MR, León IR, Rocha SL, Oliveira-Carvalho AL, et al. Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data. J Proteomics. 2009;72:241–55.

    Article  CAS  PubMed  Google Scholar 

  • Van Vaerenbergh M, Debyser G, Devreese B, de Graaf DC. Exploring the hidden honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS. J Proteomics. 2014;99:169–78.

    Article  PubMed  Google Scholar 

  • Verano-Braga T, Dutra AA, Leon IR, Melo-Braga MN, Roepstorff P, Pimenta AM, Kjeldsen F. Moving pieces in a venomic puzzle: unveiling post-translationally modified toxins from Tityus serrulatus. J Proteome Res. 2013;12:3460–70.

    Article  CAS  PubMed  Google Scholar 

  • Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, Kerkkamp HM, Vos RA, Guerreiro I, Calvete JJ, et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110:20651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolters DA, Washburn MP, Yates 3rd JR. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 2001;73:5683–90.

    Article  CAS  PubMed  Google Scholar 

  • Yates JR. The revolution and evolution of shotgun proteomics for large-scale proteome analysis. J Am Chem Soc. 2013;135:1629–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelanis A, Tashima AK, Pinto AFM, Paes Leme AF, Stuginski DR, Furtado MF, Sherman NE, Ho PL, Fox JW, Serrano SMT. Bothrops jararaca venom proteome rearrangement upon neonate to adult transition. Proteomics. 2011;11:4218–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Barbosa Domont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Melani, R.D., Goto-Silva, L., Nogueira, F.C.S., Junqueira, M., Domont, G.B. (2016). Shotgun Approaches for Venom Analysis. In: Gopalakrishnakone, P., Calvete, J. (eds) Venom Genomics and Proteomics. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6416-3_26

Download citation

Publish with us

Policies and ethics