Skip to main content

Industrial Production and Quality Control of Snake Antivenoms

  • Reference work entry
  • First Online:

Part of the book series: Toxinology ((TOXI))

Abstract

The production of snake antivenoms involves stages such as production of venom, immunization of animals to generate hyperimmune plasma, immunoglobulin purification, viral inactivation (or removal), and stabilization of the formulation. In order to manufacture products of satisfactory effectiveness and safety, antivenom design must be validated by preclinical and clinical studies. Moreover, during the industrial production, the quality of the products and of the entire manufacturing process (including management of clean rooms, production of water for injection, and sterilization or sanitization of the equipment) must be strictly evaluated. This chapter presents a practical description of the stages involved in the design, production, and quality control of snake antivenoms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abubakar IS, Abubakar SB, Habib AG, Nasidi A, Durfa N, Yusuf PO, Larnyang S, Garnvwa J, Sokomba E, Salako L, Theakston RD, Juszczak E, Alder N, Warrell DA, Nigeria-UK EchiTab Study Group. Randomised controlled double-blind non-inferiority trial of two antivenoms for saw-scaled or carpet viper (Echis ocellatus) envenoming in Nigeria. PLoS Negl Trop Dis. 2010;4(7):e767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Abdulla I, Garnvwa JM, Rawat S, Smith DS, Landon J, Nasidi A. Formulation of a liquid ovine Fab-based antivenom for the treatment of envenomation by the Nigerian carpet viper (Echis ocellatus). Toxicon. 2003;42:399–404.

    Article  CAS  PubMed  Google Scholar 

  • Andya JD, Hsu CC, Shire SJ. Mechanism of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS Pharm Sci. 2003;5(2):1–11.

    Article  Google Scholar 

  • Angulo Y, Estrada R, Gutiérrez JM. Clinical and laboratory alterations in horses during immunization with snake venoms for the production of polyvalent (Crotalinae) antivenom. Toxicon. 1997;35:81–90.

    Article  CAS  PubMed  Google Scholar 

  • Burnouf T, Griffiths E, Padilla A, Seddik S, Stephano MA, Gutiérrez JM. Assessment of the viral safety of antivenoms fractionated from equine plasma. Biologicals. 2004;32(3):115–28.

    Article  CAS  PubMed  Google Scholar 

  • Burnouf T, Terpstra F, Habib G, Seddik S. Assessment of viral inactivation during pH 3.3 pepsin digestion and caprylic acid treatment of antivenoms. Biologicals. 2007;35:329–34.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics. 2011;8:739–58.

    Article  CAS  PubMed  Google Scholar 

  • Camey KU, Velarde DT, Sanchez EF. Pharmacological characterization and neutralization of the venoms used in the production of Bothropic antivenom in Brazil. Toxicon. 2002;40:501–9.

    Article  CAS  PubMed  Google Scholar 

  • Caricati C, Oliveira-Nascimento L, Yoshida J, Stephano M, Caricati A, Raw I. Safety of snake antivenom immunoglobulins: efficacy of viral inactivation in a complete downstream process. Biotechnol Prog. 2013;29(4):972–79

    Article  CAS  PubMed  Google Scholar 

  • Carneiro SM, Zablith MB, Kerchove CM, Moura-da-Silva AM, Quissell DO, Markus RP, Yamanouye N. Venom production in long-term primary culture of secretory cells of the Bothrops jararaca venom gland. Toxicon. 2006;47:87–94.

    Article  CAS  PubMed  Google Scholar 

  • Chippaux JP, Williams V, White J. Snake venom variability: methods of study. Toxicon. 1991;29:1279–303.

    Article  CAS  PubMed  Google Scholar 

  • Chotwiwatthanakun C, Pratapaphon R, Akesowan S, Sriprapat S, Ratanabangkoon K. Production of potent polyvalent antivenom against three elapid venoms using a low dose, low volume, multi-site immunization protocol. Toxicon. 2001;39:1487–94.

    Article  CAS  PubMed  Google Scholar 

  • Dichtelmüller H, Rudnick D, Kloft M. Inactivation of lipid enveloped viruses by octanoic acid treatment of immunoglobulin solution. Biologicals. 2002;30:135–42.

    Article  PubMed  Google Scholar 

  • Duddu S, Dal MP. Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody. Pharm Res. 1997;14(5):591–5.

    Article  CAS  PubMed  Google Scholar 

  • EMEA (The European Agency for the Evaluation of Medicinal Products). Note for guidance on virus validation studies: the design, contribution and interpretation of studies validating the inactivation and removal of viruses. London: EMEA; 1996.

    Google Scholar 

  • EMEA (The European Agency for the Evaluation of Medicinal Products). Note for guidance on the production and quality control of animal immunoglobulins and immunosera for human use. London: EMEA; 2002.

    Google Scholar 

  • Feige K, Ehrat FB, Kästner SB, Schwarzwald CC. Automated plasmapheresis compared with other plasma collection methods in the horse. J Vet Med A Physiol Pathol Clin Med. 2003;50:185–9.

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez JM, Avila C, Rojas G, Cerdas L. An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon. 1988;26:411–3.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, Lomonte B, León G, Alape-Girón A, Flores-Díaz M, Sanz L, Angulo Y, Calvete JJ. Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteomics. 2009;72:165–82.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, Sanz L, Flores-Díaz M, Figueroa L, Madrigal M, Herrera M, Villalta M, León G, Estrada R, Borges A, Alape-Girón A, Calvete JJ. Impact of regional variation in Bothrops asper snake venom on the design of antivenoms: integrating antivenomics and neutralization approaches. J Proteome Res. 2010;9:564–77.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, León G, Lomonte B, Angulo Y. Antivenoms for snakebite envenomings. Inflamm Allergy Drug Targets. 2011;10:369–80.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, Solano G, Pla D, Herrera M, Segura A, Villalta M, Vargas M, Sanz L, Lomonte B, Calvete JJ, León G. Assessing the preclinical efficacy of antivenoms: from the lethality neutralization assay to antivenomics. Toxicon. 2013;69:168–79.

    Article  PubMed  Google Scholar 

  • ICH (International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use). Quality of biotechnological products: stability testing of biotechnological/biological products Q5C. ICH; 1996. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5C/Step4/Q5C_Guideline.pdf

  • Kempf C, Stucki M, Boschetti N. Pathogen inactivation and removal procedures used in the production of intravenous immunoglobulins. Biologicals. 2007;35:35–42.

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Nakai S. Simple separation of immunoglobulin from egg yolk by ultrafiltration. J Food Sci. 1998;63:485–90.

    Article  CAS  Google Scholar 

  • Ko KY, Ahn DU. Preparation of immunoglobulin Y from egg yolk using ammonium sulfate precipitation and ion exchange chromatography. Poult Sci. 2007;86:400–7.

    Article  CAS  PubMed  Google Scholar 

  • Lazar A, Epstein E, Lustig S, Barnea A, Silberstein L, Reuveny S. Inactivation of West-Nile virus during peptic cleavage of horse plasma IgG. Biologicals. 2002;30:163–5.

    Article  CAS  PubMed  Google Scholar 

  • León G, Sánchez L, Hernández A, Villalta M, Herrera M, Segura A, Estrada R, Gutiérrez JM. Immune response towards snake venoms. Inflamm Allergy Drug Targets. 2011;10:381–98.

    Article  PubMed  Google Scholar 

  • Macedo SM, Lourenço EL, Borelli P, Fock RA, Ferreira Jr JM, Farsky SH. Effect of in vivo phenol or hydroquinone exposure on events related to neutrophil delivery during an inflammatory response. Toxicology. 2006;220:126–35.

    Article  CAS  PubMed  Google Scholar 

  • Meier J, Adler C, Hösle P, Cascio R. The influence of three different drying procedures on some enzymatic activities of three Viperidae snake venoms. Mem Inst Butantan. 1991;53(1):119–26.

    Google Scholar 

  • Niinistö K, Raekallio M, Sankari S. Storage of equine red blood cells as a concentrate. Vet J. 2008;176:227–31.

    Article  PubMed  Google Scholar 

  • Pikal MJ. Mechanism of protein stabilization during freeze-drying and storage: the relative importance of thermodynamic stabilization and glassy state relaxation dynamics. In: Rey L, May JC, editors. Freeze-drying/lyophilization of pharmaceutical and biological products. 2nd ed. New York: Marcer Dekker Inc; 2004.

    Google Scholar 

  • Rial A, Morais V, Rossi S, Massaldi H. A new ELISA for determination of potency in snake antivenoms. Toxicon. 2006;48:462–6.

    Article  CAS  PubMed  Google Scholar 

  • Rojas G, Jiménez JM, Gutiérrez JM. Caprylic acid fractionation of hyperimmune horse plasma: description of a simple procedure for antivenom production. Toxicon. 1994;32:351–63.

    Article  CAS  PubMed  Google Scholar 

  • Sampaio SC, Rangel-Santos AC, Peres CM, Curi R, Cury Y. Inhibitory effect of phospholipase A2 isolated from Crotalus durissus terrificus venom on macrophage function. Toxicon. 2005;45:671–6.

    Article  CAS  PubMed  Google Scholar 

  • Sarciaux JM, Mansour S, Hageman MJ, Nail SL. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying. J Pharm Sci. 1999;88(12):1354–61.

    Article  CAS  PubMed  Google Scholar 

  • Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins I: stability after freeze-drying. J Pharm Sci. 2010;99(5):2256–78.

    Article  CAS  PubMed  Google Scholar 

  • Segura Á, León G, Su C-Y, Gutiérrez J-M, Burnouf T. Assessment of the impact of solvent/detergent treatment on the quality and potency of a whole IgG equine antivenom. Biologicals. 2009a;37:306–12.

    Article  CAS  PubMed  Google Scholar 

  • Segura Á, Herrera M, González E, Vargas M, Solano G, Gutiérrez JM, León G. Stability of equine IgG antivenoms obtained by caprylic acid precipitation: towards a liquid formulation stable at tropical room temperature. Toxicon. 2009b;53:609–15.

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Herrera M, Villalta M, Vargas M, Gutiérrez JM, León G. Assessment of snake antivenom purity by comparing physicochemical and immunochemical methods. Biologicals. 2012;41:93–7.

    Article  PubMed  Google Scholar 

  • Solano S, Segura Á, León G, Gutiérrez JM, Burnouf T. Low pH formulation of whole IgG antivenom: impact on quality, safety, neutralizing potency and viral inactivation. Biologicals. 2012;40:129–33.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira C, Cury Y, Moreira V, Picolob G, Chaves F. Inflammation induced by Bothrops asper venom. Toxicon. 2009;54:988–97.

    Article  CAS  PubMed  Google Scholar 

  • Theakston RD, Warrell DA, Griffiths E. Report of a WHO workshop on the standardization and control of antivenoms. Toxicon. 2003;41:541–57.

    Article  CAS  PubMed  Google Scholar 

  • Wang W. Instability, stabilization and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185:129–88.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Singh S, Zeng D, King K, Nema S. Antibody structure, instability and formulation. J Pharm Sci. 2007;96(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  • Warrell DA. Snake bite. Lancet. 2010;375:77–88.

    Article  PubMed  Google Scholar 

  • World Health Organization. Handbook for good clinical research practices (GCP). Geneva: WHO; 2005.

    Google Scholar 

  • World Health Organization. Guidelines for the production, control and regulation of snake antivenom immunoglobulins. Geneva: WHO; 2010.

    Google Scholar 

  • Xie G, Timasheff N. Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured than for the native protein. Protein Sci. 1997;6:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zychar BC, Castro Jr NC, Marcelino JR, Gonçalves LR. Phenol used as a preservative in Bothrops antivenom induces impairment in leukocyte-endothelial interactions. Toxicon. 2008;51:1151–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

León, G. et al. (2016). Industrial Production and Quality Control of Snake Antivenoms. In: Gopalakrishnakone, P., Calvete, J. (eds) Venom Genomics and Proteomics. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6416-3_24

Download citation

Publish with us

Policies and ethics