Skip to main content

Purinergic Mechanisms of Prey Acquisition by Venomous Organisms

  • Reference work entry
  • First Online:

Part of the book series: Toxinology ((TOXI))

Abstract

Venomous organisms are equipped with “venom,” which is injected through specialized devices (spines, fangs, stingers, hypostomes, spurs, harpoons) that help in the acquisition of prey and its digestion. The venom also serves as a defensive armament in protecting itself against the predators and aggressors. The diverse and synergistically acting cocktail of biologically active molecules of the venoms have been evolved with precise function to intervene in the biological systems of the prey/victims, thus helping in acquisition and its subsequent digestion. Although the potential role of many of the major principal constituents of venom in envenomation has been well documented, there is lack of information on the functional significance on the near ubiquitous distribution of purines and its endogenous (prey tissue) release-related enzymes in the venom of the venomous organisms. Purines acting via purinergic receptors are known to act as multitoxin and are known to be a central component of envenomation strategies, thus exemplifying the involvement of purinergic signaling in envenomation (immobilization and digestion). This work attempts to give an insight into the existence of purinergic signaling in envenomation strategies of venomous organisms. The work also explains how injecting exogenous (venom) nucleosides and releasing endogenous (prey tissue) nucleosides with venom enzymes are of complementary envenomation strategies. Further, it focuses on the recent experimental evidence in support of purinergic signaling in envenomation and highlights the importance of estimation of the physiological concentration of purines injected or released (in prey tissue) by action of venom enzymes for the establishment of purinergic signaling during envenomation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aird SD. Ophidian envenomation strategies and the role of purines. Toxicon. 2002;40:335–93.

    Article  CAS  PubMed  Google Scholar 

  • Aird SD. Taxonomic distribution and quantitative analysis of free purine and pyrimidine nucleosides in snake venoms. Comparative biochemistry and physiology. Part B Biochem Mol Biol. 2005;140:109–26.

    Article  Google Scholar 

  • Aird SD. The role of purine and pyrimidine nucleosides in snake venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press/Taylor and Francis; 2010. p. 393–422.

    Google Scholar 

  • Alape-Giron A, Sanz L, Escolano J, et al. Snake venomics of the lance head pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res. 2008;7:3556–71.

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni E, Chamberlin NL, Saper CB, McCarley RW. Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience. 2006;140(2):403–13.

    Article  CAS  PubMed  Google Scholar 

  • Barraco RA, Coffin VL, Altman HJ, Phillips JW. Central effects of adenosine analogs on locomotor activity in mice and antagonism of caffeine. Brain Res. 1983;272:392–5.

    Article  CAS  PubMed  Google Scholar 

  • Bernheimer AW, Rudy B. Interactions between membranes and cytolytic peptides. Biochim Biophys Acta. 1986;864:123–41.

    Article  CAS  PubMed  Google Scholar 

  • Born GV, Honour AJ, Mitchell JR. Inhibition by adenosine and by 2-chloroadenosine of the formation and embolization of platelet thrombi. Nature. 1964;202:761–5.

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G. Purinergic signalling–an overview. Novartis Found Symp. 2006;276:26–48.

    Article  CAS  PubMed  Google Scholar 

  • Caccin P, Pellegatti P, Fernandez J, Vono M, Cintra-Francischinelli M, Lomonte B, Gutiérrez JM, Di Virgilio F, Montecucco C. Why myotoxin-containing snake venoms possess powerful nucleotidases? Biochem Biophys Res Commun. 2013;430(4):1289–93.

    Article  CAS  PubMed  Google Scholar 

  • Castrop H. Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol (Oxf). 2007;189:3–14.

    Article  CAS  Google Scholar 

  • Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991;29:1279–303.

    Article  CAS  PubMed  Google Scholar 

  • Daltry JC, Wuster W, Thorpe RS. Diet and snake venom evolution. Nature. 1996;379:537–40.

    Article  CAS  PubMed  Google Scholar 

  • Dhananjaya BL, D’Souza CJ. The pharmacological role of nucleotidases in snake venoms. Cell Biochem Funct. 2010;28:171–7.

    Article  CAS  PubMed  Google Scholar 

  • Dhananjaya BL, Vishwanath BS, D’Souza CJ. Snake venom nucleases, nucleotidases and phosphomonoesterases. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press/Taylor and Francis; 2010. p. 155–72.

    Google Scholar 

  • Drury AN, Szent-Gyfrgyi A. The physiological activity of adenine compounds with especial reference to their action upon mammalian heart. J Physiol Lond. 1929;68:213–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24:31–55.

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Worth T. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther. 1982;220:70–6.

    CAS  PubMed  Google Scholar 

  • Fan M, Jamal MS. Role of adenosine in airway inflammation in an allergic mouse model of asthma. Int Immunopharmacol. 2006;6(1):36–45.

    Article  CAS  PubMed  Google Scholar 

  • Fischer FG, Dorfel H. Adenosine in Gift der puffotter Bitis arietans (schlangengifte, I). Hoppe-Seyler’s Z Phy Chem. 1954;296:232–8.

    Article  CAS  Google Scholar 

  • Girish KS, Kemparaju K. Overlooked issues of snakebite management: time for strategic approach. Curr Top Med Chem. 2011;11(20):2494–508.

    Article  CAS  PubMed  Google Scholar 

  • Graham RL, McClean S, O’Kane EJ, Theakston D, Shaw C. Adenosine in the venoms from viperinae snakes of the genus Bitis: identification and quantitation using LC/MS and CE/MS. Biochem Biophys Res Commun. 2005;333(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves MB, Stoggall SM, Collis MG. Evidence that the adenosine receptor mediating relaxation in dog lateral saphenous vein and guinea-pig aorta is of the A2B subtype. Br J Pharmacol. 1991;102:198.

    Article  Google Scholar 

  • Jain N, Kemp N, Adeyeno O, Buchanan P, Stone TW. Anxiolytic activity of adenosine receptor activation in mice. Br J Pharmacol. 1995;116:2127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko KR, Ngai AC, Winn HR. Role of adenosine in the regulation of regional cerebral blood flow in sensory cortex. Am J Physiol. 1990;259(6 Pt 2):H1703–8.

    CAS  PubMed  Google Scholar 

  • Lo WC, Jan CR, Wu SN, Tseng CJ. Cardiovascular effects of nitric oxide and adenosine in the nucleus tractus solitarii of rats. Hypertension. 1998;32(6):1034–8.

    Article  CAS  PubMed  Google Scholar 

  • Lumsden NG, Fry BG, Ventura S, Kini RM, Hodgson WC. The in vitro and in vivo pharmacological activity of Boiga dendrophila (mangrove catsnake) venom. Auton Autacoid Pharmacol. 2004;24:107–13.

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Armugam A, Jeyaseelan K. Cytotoxic potency of cardiotoxin from Naja sputatrix: development of a new cytolytic assay. Biochem J. 2002;366:35–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro JF, Romero C, Maldonado E. Effects of N6-cyclohexyl adenosine (CHA) on isolation-induced aggression in male mice. Methods Find Exp Clin Pharmacol. 2000;22(1):43–6.

    Article  CAS  PubMed  Google Scholar 

  • Nikodijevic O, Sarges R, Daly JW, Jacobson KA. Behavioral effects of A1- and A2-selective adenosine agonists and antagonists: evidence for synergism and antagonism. J Pharmacol Exp Ther. 1991;259:286–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunez CE, Angulo Y, Lomonte B. Identification of the myotoxic site of the Lys49 phospholipase A(2) from Agkistrodon piscivorus piscivorus snake venom: synthetic C-terminal peptides from Lys49, but not from Asp49 myotoxins, exert membrane-damaging activities. Toxicon. 2001;39:1587–94.

    Article  CAS  PubMed  Google Scholar 

  • Olsson RA, Pearson JD. Cardiovascular purinoreceptors. Physiol Rev. 1990;70:761–845.

    CAS  PubMed  Google Scholar 

  • Ownby CL, Bjarnason J, Tu AT. Hemorrhagic toxins from rattlesnake (Crotalus atrox) venom. Pathogenesis of hemorrhage induced by three purified toxins. Am J Pathol. 1978;93:201–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmour RM, Lipowski CJ, Simon CK, Ervin FR. Adenosine analogs inhibit fighting in isolated male mice. Life Sci. 1989;44:1293–301.

    Article  CAS  PubMed  Google Scholar 

  • Radulovacki M, Virus RM, Rapoza D, Crane RA. A comparison of the dose response effects of pyrimidine ribonucleosides and adenosine on sleep in rats. Psychopharmacology (Berl). 1985;87(2):136–40.

    Article  CAS  Google Scholar 

  • Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50:413–92.

    CAS  PubMed  Google Scholar 

  • Ramkumar V, Stiles GL, Beaven MA, Ali H. The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem. 1993;268:16887–90.

    CAS  PubMed  Google Scholar 

  • Redman RS, Silinsky EM. A selective adenosine antagonist (8-cyclopentyl-1,3-dipropylxanthine) eliminates both neuromuscular depression and the action of exogenous adenosine by an effect on A1 receptors. Mol Pharmacol. 1993;44:835–40.

    CAS  PubMed  Google Scholar 

  • Sarda N, Gharib A, Coindet J, Pacheco H, Jouvet M. Possible involvement of the S-adenosyl-l-homocysteine metabolites, adenosine and l-homocysteine, in sleep in rats. Neurosci Lett. 1986;66(3):287–92.

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J. Adenosine receptor activation and nociception. Eur J Pharmacol. 1998;347:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J. Adenosine and ATP receptors. Handb Exp Pharmacol. 2007;177:309–28.

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J, Zarrindast MR, Reid AR, Doak GJ. Adenosine A3 receptor activation produces nociceptive behaviour and edema by release of histamine and 5-hydroxytryptamine. Eur J Pharmacol. 1997;333:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J, Reid A, Liu XJ. Involvement of mast cells, sensory afferents and sympathetic mechanisms in paw oedema induced by adenosine A(1) and A(2B/3) receptor agonists. Eur J Pharmacol. 2000;395(1):47–50.

    Article  CAS  PubMed  Google Scholar 

  • Seligmann C, Kupatt C, Becker BF, Zahler S, Beblo S. Adenosine endogenously released during early reperfusion mitigates postischemic myocardial dysfunction by inhibiting platelet adhesion. J Cardiovasc Pharmacol. 1998;32:156–63.

    Article  CAS  PubMed  Google Scholar 

  • Silinsky EM. Adenosine decreases both presynaptic calcium currents and neurotransmitter release at the mouse neuromuscular junction. J Physiol. 2004;558(Pt 2):389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobrevia L, Yudilevich DL, Mann GE. Activation of A2-purinoreceptors by adenosine stimulates l-arginine transport (system y+) and nitric oxide synthesis in human fetal endothelial cells. J Physiol. 1997;499(Pt 1):135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilley SL, Wagoner VA, Salvatore CA, Jacobson MA, Koller BH. Adenosine and inosine increase cutaneous vasopermeability by activating A(3) receptors on mast cells. J Clin Invest. 2000;105:361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winsky L, Harvey JA. Retardation of associative learning in the rabbit by an adenosine analog as measured by classical conditioning of the nictitating membrane response. J Neurosci. 1986;6:2684–90.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhadrapura Lakkappa Dhananjaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Dhananjaya, B.L., D’Souza, C.J.M. (2016). Purinergic Mechanisms of Prey Acquisition by Venomous Organisms. In: Gopalakrishnakone, P., Calvete, J. (eds) Venom Genomics and Proteomics. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6416-3_1

Download citation

Publish with us

Policies and ethics