Skip to main content
Book cover

Snake Venoms pp 453–474Cite as

Role of Lymphatic System on Snake Venom Absorption

  • Reference work entry
  • First Online:

Part of the book series: Toxinology ((TOXI))

Abstract

For several decades, advances have been made in venom characterization, mechanism of toxicity, and antivenom therapy. Much of this research has been based on models of the blood vascular system, to analyze the pharmacokinetics of venoms and antivenoms. However, in clinical envenomations, venom is injected into the interstitial space and an absorption process is necessary before it reaches the bloodstream. Absorption may occur by way of the blood or lymphatic capillaries, depending on the physicochemical properties of the molecules involved. Until recently, the role of the lymphatics in envenomation remained essentially unexplored, although several reports have demonstrated the fundamental role of the lymphatic system in the absorption of therapeutic proteins, administered subcutaneously. This review describes the absorption process, from the interstitial space and extracellular matrix through the entry into the blood capillaries and early lymphatics. Venom toxins interact with hyaluronic acid in the extracellular matrix, facilitating interstitial spread before entry into the vessels, and they induce local damage to the vascular endothelium, resulting in local hemorrhage and edema and altering the absorption characteristics of damaged vessels. Large molecules are absorbed primarily via the lymphatics, providing them a fundamentally different toxicokinetic profile from that of smaller toxins for which direct access to the blood capillaries is possible. Improved knowledge of the mechanism and factors influencing the subcutaneous venom absorption can improve the understanding of the role of edema, patterns of local injury, the toxicokinetics of envenomation, the effect of pressure immobilization, the pharmacodynamics and dosing of antivenom, and the phenomenon of recurrent venom effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • American College of Medical Toxicology, American Academy of Clinical Toxicology, American Association of Poison Control Centers, European Association of Poison Control Centres and Clinical Toxicologists, International Society on Toxinology, Asia Pacific Association of Medical Toxicology. Pressure immobilization after North American Crotalinae snake envenomation. J Med Toxicol. 2011;7(4):322–3.

    Article  PubMed Central  Google Scholar 

  • Anker R, Straffon W, Loiselle D, Anker K. Snakebite: comparison of three methods designed to delay uptake of “mock venom”. Aust Fam Physician. 1983;12(5):365–8.

    CAS  PubMed  Google Scholar 

  • Audebert F, Urtizberea M, Sabouraud A, Scherrmann J, Bon C. Pharmacokinetics of Vipera aspis venom after experimental envenomation in rabbits. J Pharmacol Exp Ther. 1994;268(3):1512–7.

    CAS  PubMed  Google Scholar 

  • Aukland K, Reed R. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73(1):1–78.

    CAS  PubMed  Google Scholar 

  • Barnes J, Trueta J. Absorption of bacteria, toxins and snake venoms from the tissues: importance of the lymphatic circulation. Lancet. 1941;237(6142):623–6.

    Article  Google Scholar 

  • Bjarnason B, Fox J. Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther. 1994;62(3):325–72.

    Article  CAS  PubMed  Google Scholar 

  • Bogdan G, Dart R, Falbo S, Mcnally J, Spaite D. Recurrent coagulopathy after antivenom treatment of crotalid snakebite. South Med J. 2000;93(6):562.

    Article  CAS  PubMed  Google Scholar 

  • Bookbinder L, Hofer A, Haller M, Zepeda M, Keller G, Lim J, Edgindton T, Shepard H, Patton J, Frost G. A recombinant human enzyme for enhanced interstitial transport of therapeutics. J Control Release [Internet]. 2006 Ago 28 [cited 2013 Jul 9];114(2):230–41. Available from: http://www.sciencedirect.com/science/article/pii/S0168365906002392/doi: 10.1016/j.jconrel.2006.05.027.

  • Bosman F, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol [Internet]. 2003 Jul 1 [ Cited 2013 May 13];200(4):423–8. Available from: http://onlinelibrary.wiley.com/doi: 10.1002/path.1437.

  • Boyer L, Seifert S, Clark R, McNally J, Williams S, Nordt S, Walter F, Dart R. Recurrent and persistent coagulopathy following pit viper envenomation. Arch Intern Med. 1999;159(7):706–10.

    Article  CAS  PubMed  Google Scholar 

  • Boyer L, Seifert S, Cain J. Recurrence phenomena after immunoglobulin therapy for snake envenomations: part 2. Guidelines for clinical management with crotaline Fab antivenom. Ann Emerg Med. 2001;37(2):196–201.

    Article  CAS  PubMed  Google Scholar 

  • Boyer L, Chase P, Degan J, Figge G, Buelna-Romero A, Luchetti C, Alagón A. Subacute coagulopathy in a randomized, comparative trial of Fab and F(ab’)2 antivenoms. Toxicon. 2013;74:101–108.

    Google Scholar 

  • Bush S, Seifert S, Oakes J, Smith S, Phan T, Pearl S, Reibling E. Continuous IV Crotalidae polyvalent immune Fab (Ovine) (FabAV) for selected North American rattlesnake bite patients. Toxicon [Internet]. 2013 Mar 6[cited 2013 Agu 7];69:29–37. Available from: http://www.sciencedirect.com/science/article/pii/S004101011300069X/doi: 10.1016/j.toxicon.2013.02.008.

  • Calderón-Aranda E, Rivière G, Choumet V, Possani L, Bon C. Pharmacokinetics of the toxic fraction of Centruroides limpidus limpidus venom in experimentally envenomed rabbits and effects of immunotherapy with specific F (ab’)2. Toxicon. 1999;37(5):771–82.

    Article  PubMed  Google Scholar 

  • Canale E, Isbister GK, Currie BJ. Investigating pressure bandaging for snakebite in a simulated setting: bandage type, training and the effect of transport. Emerg Med Australas [Internet]. 2009 Jun 12 [cited 2014 Nov 15];21(3):184–90. Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1742-6723.2009.01180.x/full/doi: 10.1111/j.1742-6723.2009.01180.x.

  • Chain E, Duthie E. Identity of hyaluronidase and spreading factor. Br J Exp Pathol. 1940;21(6):324–38.

    CAS  PubMed Central  Google Scholar 

  • Chippaux J, Goyffon M. Venoms, antivenoms and immunotherapy. Toxicon. 1998;36(6):823–46.

    Article  CAS  PubMed  Google Scholar 

  • Dart R, Seifert S, Boyer L, Clark R, Hall E, McKinney P, McNally J, Kitchens C, Curry S, Bogdan G, Ward S, Porter R. A randomized multicenter trial of crotalinae polyvalent immune Fab (ovine) antivenom for the treatment for crotaline snakebite in the United States. Arch Intern Med [Internet]. 2001 Sep 10 [cited 2013 Aug 8];161(16):2030–6. Available from: http://archinte.jamanetwork.com/article.aspx?articleid=648884/doi: 10.1001/archinte.161.16.2030.

  • Doley R, Zhou X, Kini RM. Snake venom phospholipase A2 enzymes. In: Mackessy SP, editor. Handbook of venom and toxins of reptiles. Boca Raton: CRC Press/Taylor and Francis Group; 2010.

    Google Scholar 

  • Duran-Reynals F. A spreading factor in certain snake venoms and its relation to their mode of action. J Exp Med. 1939;69(1):69–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer V, de Mari T, Gremski L, Silva D, da Silveira R, Gremski W, Chaim O, Senff-Ribeiro A, Nader H, Veiga S. A novel hyaluronidase from brown spider (Loxosceles intermedia) venom (Dietrich’s Hyaluronidase): from cloning to functional characterization. PLoS Negl Trop Dis [Internet]. 2013 May 2 [cited 3 Agu 2013];7(5):e2206. Available from: http://www.plosntds.org/article/doi: 10.1371/journal.pntd.0002206.

  • Fidler H, Glasgow D, Carmichael E. Pathological changes produced by the subcutaneous injection of rattlesnake (Crotalus) venom into Macaca mulatta monkeys. Am J Pathol. 1940;16(3):355–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser J, Laurent T, Laurent U. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242:27S–33.

    Article  Google Scholar 

  • German B, Hack J, Brewer K, Meegs W. Pressure-immobilization bandages delay toxicity in a porcine model of eastern coral snake (Micrurus fulvius fulvius) envenomation. Ann Emerg Med [Internet]. 2005 Jun [cited 2013 Jul 28];45(6):603–8. Available from: http://www.sciencedirect.com/science/article/pii/S019606440401741X/doi: 10.1016/j.annemergmed.2004.11.025.

  • Girish K, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci [Internet]. 2007 May 1 [cited 2013 May 21];80(21):1921–43. Available from: http://www.sciencedirect.com/science/article/pii/S002432050700210X/doi: 10.1016/j.lfs.2007.02.037.

  • Girish S, Jagadeesha D, Rajeev K, Kemparaju K. Snake venom hyaluronidase: an evidence for isoforms and extracellular matrix degradation. Mol Cell Biochem. 2002;240(1–2):105–10.

    Article  CAS  PubMed  Google Scholar 

  • Girish K, Shashidharamurthy R, Nagaraju S, Gowda T, Kemparaju K. Isolation and characterization of hyaluronidase a “spreading factor” from Indian cobra (Naja naja) venom. Biochimie [Internet]. 2004 Mar 19 [cited 2013 May 21];86(3):193–202. Available from: http://www.sciencedirect.com/science/article/pii/S0300908404000318#/doi: 10.1016/j.biochi.2004.02.004.

  • Gold B, Barrish R, Dart R. North American Snake Envenomation: diagnosis, treatment and management. Emerg Med Clin N Am [Internet]. 2004 May [cited 2013 May 2];22(2):423–43. Available from: http://www.sciencedirect.com/science/article/pii/S0733862704000082/doi: 10.1016/j.emc.2004.01.007.

  • Gutiérrez J, Romero M, Díaz C, Borkow G, Ovadia M. Isolation and characterization of a metalloproteinase with weak hemorrhagic activity from the venom of the snake Bothrops asper (terciopelo). Toxicon. 1995;33(1):19–29.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, León G, Lomonte B. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet. 2003;42(8):721–41.

    Article  PubMed  Google Scholar 

  • Gutiérrez J, Rucavado A, Escalante T, Díaz C. Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon [Internet]. 2005 Jun 15 [cited 2013 Jul 9];5(8):997–1011. Available from: http://www.sciencedirect.com/science/article/pii/S0041010105000668/doi: 10.1016/j.toxicon.2005.02.029.

  • Guyton AC, Hall JE. Capítulo 66. Fisiología de los trastornos gastrointestinales. In: Tratado de Fisiología médica, 12th ed. Elsevier España, S. L., Barcelona, España; 2011a.

    Google Scholar 

  • Guyton AC, Hall JE. Capítulo 14. La microcirculación y el Sistema Linfático: Intercambio de Líquido Capilar, Líquido intersticial y flujo linfático. In: Tratado de Fisiología médica, 12th ed. Elsevier España, S. L., Barcelona, España; 2011b.

    Google Scholar 

  • Hammoudi-Triki D, Lefort J, Rougeot C, Robbe-Vincent A, Bon C, Laraba-Djebari F, Choumet V. Toxicokinetic and toxicodynamic analyses of Androctonus australis hector venom in rats: optimization of antivenom therapy. Toxicol Appl Pharmacol [Internet]. 2007 Feb 1. [cited 2013 Aug 5];218(3):205–14. Available from: http://www.sciencedirect.com/science/article/pii/S0041008X06004145/doi: 10.1016/j.taap.2006.11.003.

  • Hati R, Mitra P, Sarker S, Bhattacharyya K. Snake venom hemorrhagins. CRC Crit Rev Toxicol. 1999;29(1):1–19.

    Article  CAS  Google Scholar 

  • Ho M, Silamut K, White N, Karbwang J, Looareesuwan S, Phillips R, Warrell D. Pharmacokinetics of three commercial antivenoms in patients envenomed by the Malayan pit viper, Calloselasma rhodostoma, in Thailand. Trop Med Hyg. 1990;42(3):260–6.

    CAS  Google Scholar 

  • Ismail M, Abd-Elsalam M, Al-Ahaidib M. Pharmacokinetics of 125I-labelled Walterinnesia aegyptia venom and its specific antivenins: flash absorption and distribution of the venom and its toxin versus slow absorption and distribution of IgG, F (ab’)2 and F (ab) of the antivenin. Toxicon. 1998;36(1):93–114.

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer [Internet]. 2003 Jun [cited 2013 May 14];3(6):422–433. Available from: http://www.nature.com/nrc/journal/v3/n6/full/nrc1094.html/doi:10.1038/nrc1094.

  • Kamiguti A, Zuzel M, Theakston R. Snake venom metalloproteinases and disintegrins: interactions with cells. Braz J Med Biol Res. 1998;31(7):853–62.

    Article  CAS  PubMed  Google Scholar 

  • Kasturiratne A, Wickremasinghe A, de Silva N, Gunawardena N, Pathmeswaran A, Premaratna R, Savioli L, Lalloo D, de Silva H. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med [Internet]. 2008 Nov 4 [cited 2013 Jul 26];5(11):1591–604. Available from: http://www.plosmedicine.org/article/doi: 10.1371/journal.pmed.0050218.

  • Kemparaju K, Girish K, Nagaraju S. Hyaluronidases, a neglected class of glycosidases from snake venom: beyond a spreading factor. In: Mackessy S, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press/Taylor and Francis Group; 2010.

    Google Scholar 

  • Kitchens C, Van Mierop L. Envenomation by the Eastern coral snake (Micrurus fulvius fulvius). A study of 39 victims. JAMA. 1987;258(12):1615–8.

    Article  CAS  PubMed  Google Scholar 

  • Kota J, Machavaram K, McLennan D, Edwards G, Porter C, Charman S. Lymphatic absorption of subcutaneously administered proteins: influence of different injection sites on the absorption of darbepoetin alfa using a sheep model. Drug Metab Dispos [internet]. 2007 Dec [cited 2013 Agu 3];35(12):2211–7. Available from: http://dmd.aspetjournals.org/content/35/12/2211.short/doi: 10.1124/dmd.107.015669.

  • Krifi M, Miled K, Abderrazek M, El Ayeb M. Effects of antivenom on Buthus occitanus tunetanus (Bot) scorpion venom pharmacokinetics: towards an optimization of antivenom immunotherapy in a rabbit model. Toxicon [Internet]. 2001 Sep [cited 2013 Aug 6];39(9):1317–26. Available from: http://www.sciencedirect.com/science/article/pii/S0041010101000836/doi: 10.1016/S0041-0101(01)00083-6.

  • Krifi M, Savin S, Debray M, Bon C. El Ayeb M, Choumet V. Pharmacokinetic studies of scorpion venom before and after antivenom immunotherapy. Toxicon [Internet]. 2004 Dec 2 [cited 2013 Aug 5];45(2):187–98. Available from: http://www.sciencedirect.com/science/article/pii/S0041010104004374/doi: 10.1016/j.toxicon.2004.10.007.

  • Lavonas E, Ruha A, Banner W, Bebarta V, Bernstein J, Bush S, Kerns 2nd W, Richardson W, Seifert S, Tanen D, Curry S, Dart R. Unified treatment algorithm for the management of evidence-informed consensus workshop. BMC Emerg Med. 2011;11:2. doi:10.1186/1471-227X-11-2 [Internet].

    Article  PubMed  PubMed Central  Google Scholar 

  • McLennan D, Porter C, Charman S. Subcutaneous drug delivery and the role of the lymphatics. Drug Discov Today: Technol [Internet]. 2005 spring [cited 2013 Apr 12];2(1):89–96. Available from: http://www.sciencedirect.com/science/article/pii/S1740674905000119/doi: 10.1016/j.ddtec.2005.05.006.

  • Mebs D. Venomous and poisonous animals: a handbook for biologist, toxicologist and toxinologist, physicians and pharmacist. Boca Raton/London/New York/Washington, DC: Medpharm scientific/CRC Press; 2002.

    Google Scholar 

  • Meyer W, Habib A, Onayade A, Yakubu A, Smith D, Nasidi A, Daudu I, Warrell D, Theakston R. First clinical experiences with a new ovine Fab Echis ocellatus snake bite antivenom in Nigeria: randomized comparative trial with Institute Pasteur serum (IPSER) Africa antivenom. Am J Trop Med Hyg. 1997;56(3):291–300.

    CAS  PubMed  Google Scholar 

  • Mora J, Mora R, Lomonte B, Gutierrez J. Effects of Bothrops asper snake venom on lymphatic vessels: insights into a hidden aspect of envenomation. PLOS Negl Trop Dis [Internet]. 2008 Oct 15 [cited 2013 Jul 8];2(10):E318. Available from: http://www.plosntds.org/article/info/doi: 10.1371journal.pntd.0000318.

  • Morais J, De Freitas M, Yamaguchi I, Dos Santos M, Da Silva W. Snake antivenoms from hyperimmunized horses: comparison of the antivenom activity and biological properties of their whole IgG and F (ab’)2 fragments. Toxicon. 1994;32(6):725–34.

    Article  CAS  PubMed  Google Scholar 

  • Norris RL, Ngo J, Nolan K, Hooker G. Physicians and lay people are unable to apply pressure immobilization properly in a simulated snakebite scenario. Wild Environ Med [Internet]. 2005 Mar [cited 2013 Nov 15];16(1):16–21. Available from: http://www.sciencedirect.com/science/article/pii/S1080603205703422/doi: 10.1580/PR12-04.1.

  • Otero-Patiño R, Cardoso J, Higashi H, Núñez V, Diaz A, Toro M, Garcia M, Sierra A, Garcia L, Moreno A, Medina M, Castañeda N, Silva-Diaz J, Murcia M, Cardenas S, Da Silva W. A randomized, blinded, comparative trial of one pepsin-digested and two whole IgG antivenoms for Bothrops snake bites in Uraba, Colombia. The Regional Group on Antivenom Therapy Research (REGATHER). Am J Trop Med Hyg. 1998;58(2):183–9.

    PubMed  Google Scholar 

  • Page-McCaw A, Ewald A, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Bio [Internet]. 2007 Mar [cited 2013 May 25];8(3):221–33. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760082/doi: 10.1038nrm2125.

  • Paine M, Desmond H, Theakston R, Crampton J. Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem. 1992;267(32):22869–76.

    CAS  PubMed  Google Scholar 

  • Paniagua D, Jiménez L, Romero C, Vergara I, Calderón A, Benard M, Bernas M, Rilo H, de Roodt A, D’Suze G, Witte M, Boyer L, Alagón A. Lymphatic route of transport and pharmacokinetics of Micrurus fulvius (coral snake) venom in sheep. Lymphology. 2012;45(4):144–53.

    CAS  PubMed  Google Scholar 

  • Pear J, Morrison J, Charles N, Muir V. First-aid for snake-bite: efficacy of a constrictive bandage with limb immobilization in the management of human envenomation. Med J Aust. 1981;19(6):293–5.

    Google Scholar 

  • Pepin S, Lutsch C, Grandgeorge M, Scherrmann J. Snake F(ab’)2 antivenom from hyperimmunized horse: pharmacokinetics following intravenous and intramuscular administrations in rabbits. Pharm Res. 1995;12(10):1470–3.

    Article  CAS  PubMed  Google Scholar 

  • Porter C, Charman S. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci [Internet]. 2000 Mar [cited 2013 May 2];89(3):297–310. Available from: http://onlinelibrary.wiley.com/store/doi: 10.1002/(SICI)1520-6017(200003)89:3%3C297::AID-JPS2%3E3.0.CO;2-P.

  • Reddy S, Berk D, Jain R, Swartz M. A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J Appl Physiol [Internet]. 2006 Jun 8 [cited 2013 Aug 3];101(4):1162–9. Available from: http://jap.physiology.org/content/101/4/1162.short/doi: 10.1152/japplphysiol.00389 2006.

  • Rivière G, Choumet V, Audebert F, Sabouraud A, Debray M, Scherrmann J, Bon C. Effect of antivenom on venom pharmacokinetics in experimentally envenomed rabbits: toward an optimization of antivenom therapy. J Pharmacol Exp Ther. 1997;281(1):1–8.

    PubMed  Google Scholar 

  • Rucavado A, Núñez J, Gutiérrez J. Blister formation and skin damage induced by BaP1, a haemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Int J Exp Pathol. 1998;79(4):245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rucavado A, Flores-Sánchez E, Franceschi A, Magalhaes A, Gutiérrez J. Characterization of the local tissue damage induced by LHF-II, a metalloproteinase with weak hemorrhagic activity isolated from Lachesis muta muta snake venom. Toxicon. 1999;37(9):1297–312.

    Article  CAS  PubMed  Google Scholar 

  • Rucavado A, Escalante T, Teixeira C, Fernándes C, Díaz C, Gutiérrez J. Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake Bothrops asper. Mediat Inflamm [Internet]. 2002 Apr [cited 2013 Jun 3];11(2):121–8. Available from: http://www.hindawi.com/journals/mi/2002/137109/abs/doi: 10.1080/09629350220131980.

  • Seifert S, Boyer L. Recurrence phenomena after immunoglobulin therapy for snake envenomations: part 1. Pharmacokinetics and pharmacodynamics of immunoglobulin antivenoms and related antibodies. Ann Emerg Med [Internet]. 2001 Feb [cited 2013 Jun 17];37(2):189–95. Available from: http://www.sciencedirect.com/science/article/pii/S0196064401541633/doi: 10.1067/mem.2001.113135.

  • Seifert S, Boyer L, Dart R, Porter R, Sjostrom L. Relationship of venom effects to venom antigen and antivenom serum concentrations in a patient with Crotalus atrox envenomation treated with a Fab antivenom. Ann Emerg Med. 1997;30(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  • Seifert S, White J, Currie B. Pressure bandaging for North American snake bite? No! ClinToxicol [Internet]. 2011 Nov 8 [cited 2013 Jul 26];49(10):883–5. Available from: http://informahealthcare.com/doi/abs/doi: 10.3109/15563650.2011.626424.

  • Shapiro S, Senior R. Matrix metalloproteinases: matrix degradation and more. Am J Respir Cell Mol Biol. 1999;20(6):1100–2.

    Article  CAS  PubMed  Google Scholar 

  • Simpson ID, Tanwar PD, Andrade C, Kochar DK, Norris RL. The Ebbinghaus retention curve: training does not increase the ability to apply pressure immobilisation in simulated snake bite – implications for snake bite first aid in the developing world. T Roy Soc Trop Med H [Internet]. 2008 Jan 21 [cited 2014 nov 15];102(5):451–9. Available from: http://trstmh.oxfordjournals.org/content/102/5/451.short/doi: 10.1016/j.trstmh.2008.01.014.

  • Supersaxo A, Hein W, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;7(2):167–9.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland S, Coulter A, Harris R. Rationalisation of first-aid measures for Elapid snakebites. Lancet. 1979;1(8109):183–5.

    Article  CAS  PubMed  Google Scholar 

  • Swartz M. The physiology of the lymphatic system. Adv Drug Deliver Rev [Internet]. 2001 Apr 3 [cited 2013 May 12];50(1):3–20. Available from: http://www.sciencedirect.com/science/article/pii/S0169409X01001508/doi: 10.1016/S0169-409X(01)00150-8.

  • Takakura Y, Mahato I, Hashida M. Extravasation of macromolecules. Adv Drug Deliv Rev. 1998;34(1):93–108.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka G, Maria de Fátima D, Portaro F, Sant’Anna O, Tambourgi D. Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Neglect Trop D [Internet]. 2010 Mar 9 [cited 2013 Jun 5];4(3):e622. Available from: http://www.plosntds.org/article/doi: 10.1371/journal.pntd.0000622.

  • Tanzer M. Current concepts of extracellular matrix. J Orthop Sci [Internet]. 2006 May [cited 2013 Jun 18];11:326–31. Available from: http://link.springer.com/article/doi: 10.1007/s00776-006-1012-2.

  • Teixeira C, Landucci E, Antunes E, Chacur M, Cury Y. Inflammatory effects of snake venom myotoxic phospholipases A2. Toxicon [Internet]. 2003 Dec 15 [cited 2013 Jun 25];42(8):947–62. Available from: http://www.sciencedirect.com/science/article/pii/S0041010103003325/doi: 10.1016/j.toxicon.2003.11.006.

  • Theakston R. An objective approach to antivenom therapy and assessment of first-aid measures in snake bite. Ann Trop Med Parasitol. 1997;91(7):857–65.

    CAS  PubMed  Google Scholar 

  • Theakston R, Fan H, Warrell D, Da Silva W, Ward S, Higashi H. Use of enzyme immunoassays to compare the effect and assess the dosage regimens of three Brazilian Bothrops antivenoms. The Butantan Institute Antivenom Study Group (BIASG). Am J Trop Med Hyg. 1992; 47(5):593–604.

    Google Scholar 

  • Tu A, Hendon R. Characterization of lizard venom hyaluronidase and evidence for its action as a spreading factor. Comp Biochem Physiol B. 1983;76(2):377–83.

    Article  CAS  PubMed  Google Scholar 

  • Vazquez H, Chavez-Haro A, Garcia-Ubbelohde W, Mancilla-Nava R, Paniagua-Solís J, Alagón A, Sevcik C. Pharmacokinetics of a F(ab’)2 scorpion antivenom in healthy human volunteers. Toxicon [Internet]. 2005 Sep 28 [cited 2013 Jun 14];46(7):797–805. Available from: http://www.sciencedirect.com/science/article/pii/S0041010105002977/doi: 10.1016/j.toxicon.2005.08.010.

  • Vazquez H, Chavez-Haro A, Garcia-Ubbelohde W, Paniagua-Solis J, Alagon A, Sevcik C. Pharmacokinetics of a F(ab’)2 scorpion antivenom administered intramuscularly in healthy human volunteers. Int Immunopharmacol [Internet]. 2010a Sep 17 [cited 2013 Jun 14];10(11):1318–24. Available from: http://www.sciencedirect.com/science/article/pii/S1567576910002729/doi: 10.1016/j.intimp.2010.08.018.

  • Vazquez H, Olvera F, Paniagua-Solis J, Alagon A, Sevcik C. Pharmacokinetics in rabbits and anti-sphingomyelinase D neutralizing power of Fab, F(ab’)2, IgG and IgG(T) fragments from hyper immune equine plasma. Int Immunopharmacol [Internet]. 2010b Jan 20 [cited 2013 Jun 14];10(4):447–54. Available from: http://www.sciencedirect.com/science/article/pii/S1567576910000147/doi: 10.1016/j.intimp.2010.01.005.

  • Warrell D, Looareesuwan S, Theakston R, Phillips R, Chanthavanich P, Viravan C, Supanaranond W, Karbwang J, Ho M, Hutton R, Vejcho S. Randomized comparative trial of three monospecific antivenoms for bites by the Malayan pit viper (Calloselasma rhodostoma) in southern Thailand: clinical and laboratory correlations. Am J Trop Med Hyg. 1986;35(6):1235–47.

    CAS  PubMed  Google Scholar 

  • Wiig H, Swartz M. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev [Internet]. 2012 Jul 1 [cited 2013 May 12];92(3):1005–60. Available from: http://physrev.physiology.org/content/92/3/1005.long/doi: 10.1152/physrev.00037.2011.

  • Witte M. The year of the snake-and the lymphatic system. Lymphology. 2012;45(4):142–3.

    CAS  PubMed  Google Scholar 

  • World Health Organization. Neglected tropical diseases: snakebites. Available: www.who.int/neglected_diseases/diseases/snakebites/en/. Accessed 23 June 2013.

  • Wu F, Bhansali S, Law W, Bergey E, Prasad P, Morris M. Fluorescence imaging of the lymph node uptake of proteins in mice after subcutaneous injection: molecular weight dependence. Pharm Res [Internet]. 2012 Feb 29 [cited 2013 Jun 25];29(7):1843–53. Available from: http://link.springer.com/article/doi: 10.1007/s11095-012-0708-6.

  • Yingprasertchai S, Bunyasrisawat S, Ratanabanangkoon K. Hyaluronidase inhibitors (sodium cromoglycate and sodium auro-thiomalate) reduce the local tissue damage and prolong the survival time of mice injected with Naja kaouthia and Calloselasma rhodostoma venoms. Toxicon [Internet]. 2003 Nov [cited 2013 Agu 3];42(6):635–46. Available from http://www.sciencedirect.com/science/article/pii/S0041010103002617#/doi: 1016/j.toxicon.2003.09.001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayanira Paniagua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Paniagua, D., Vergara, I., Boyer, L., Alagón, A. (2017). Role of Lymphatic System on Snake Venom Absorption. In: Inagaki, H., Vogel, CW., Mukherjee, A., Rahmy, T. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6410-1_10

Download citation

Publish with us

Policies and ethics