Skip to main content

Spider Venom and Drug Discovery: A Review

  • Reference work entry
  • First Online:
Spider Venoms

Part of the book series: Toxinology ((TOXI))

Abstract

Spider venoms are complex mixtures of active molecules, including proteins, small peptides, and other organic compounds, such as polyamines. They have been investigated in drug discovery processes, and the number of patent applications comprising spider venoms, toxins, and derivatives in biotechnological inventions shows the various uses of these molecules. Spider peptide toxins are mainly active on ion channels and can be specific for insects (leading to the design of insecticides) as well as for mammals (enabling the design of drugs for the treatment of neurological diseases, pain, erectile dysfunction, or cancer). Some spider peptide toxins have been investigated for the development of antimicrobial drugs. Spider acylpolyamines have been investigated for the treatment of several neurodegenerative diseases. Patent applications comprising spider venom molecules from species of all continents have been filed in many countries, mostly in the USA, China, Germany, and Great Britain. Many species have been cited in these documents, being Loxosceles, Nephila, Atrax, Hadronyche, and Sicarius the most claimed genera. This chapter demonstrates that much effort has been made aiming at the development of new drugs based on the study of spider venom molecules, showing that spiders are a great source of natural molecules that can become valuable products in various fields, from agriculture to human therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams ME. Agatoxins: ion channel specific toxins from the American funnel web spider, Agelenopsis aperta. Toxicon. 2004;43(5):509–25.

    Article  CAS  PubMed  Google Scholar 

  • Beleboni RO, Carolino RO, Pizzo AB, Castellan-Baldan L, Coutinho-Netto J, dos Santos WF, Coimbra NC. Pharmacological and biochemical aspects of GABAergic neurotransmission: pathological and neuropsychobiological relationships. Cell Mol Neurobiol. 2004;24(6):707–28.

    Article  CAS  PubMed  Google Scholar 

  • Cabbiness SG, Gehrke CW, Kuo KC, Chan TK, Hall JE, Hudiburg SA, Odell GV. Polyamines in some tarantula venoms. Toxicon. 1980;18(5–6):681–3.

    Article  CAS  PubMed  Google Scholar 

  • Corzo G, Gilles N, Satake H, Villegas E, Dai L, Nakajima T, Haupt J. Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel. FEBS Lett. 2003;547:43–50.

    Article  CAS  PubMed  Google Scholar 

  • Coutinho-Netto J, Abdul-Ghani AS, Collins JF, Bradford HF. Is glutamate a trigger factor in epileptic hyperactivity? Epilepsia. 1981;22(3):289–96.

    Article  CAS  PubMed  Google Scholar 

  • Escoubas P, Sollod BL, King GF. Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon. 2006;47:650–63.

    Article  CAS  PubMed  Google Scholar 

  • Lazarev VN, Shkarupeta MM, Polina NF, Kostrjukova ES, Vassilevski AA, Kozlov SA, Grishin EV, Govorun VM. Antimicrobial peptide from spider venom inhibits Chlamydia trachomatis infection at an early stage. Arch Microbiol. 2013;195(3):173–9.

    Article  CAS  PubMed  Google Scholar 

  • Olney JW. Excitotoxicity: an overview. Can Dis Wkly Rep. 1990;16(Suppl 1E):47–57.

    PubMed  Google Scholar 

  • Palagi A, Kohb JMS, Leblanca M, Wilsonc D, Dutertrec S, King GF, Nicholson GM, Escoubas P. Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC-MALDI-TOF mass spectrometry. J Proteomics. 2013;80:292–310.

    Article  CAS  PubMed  Google Scholar 

  • Santos DM, Verly RM, Piló-Veloso D, de Maria M, de Carvalho MA, Cisalpino PS, Soares BM, Diniz CG, Farias LM, Moreira DF, Frézard F, Bemquerer MP, Pimenta AM, de Lima ME. LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha. Amino Acids. 2010;39(1):135–44.

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature. 2006;444(7116):208–12.

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Ding X, Meng S, Liu C, Wang H, Xia L, Liu Z, Liang S. Antimicrobial potential of lycosin-I, a cationic and amphiphilic peptide from the venom of the spider Lycosa singorensis. Curr Mol Med. 2013;13(6):900–10.

    Article  CAS  PubMed  Google Scholar 

  • Vajda FJ. Neuroprotection and neurodegenerative disease. J Clin Neurosci. 2002;9(1):4–8.

    Article  PubMed  Google Scholar 

  • Vassilevski AA, Kozlov SA, Grishin EV. Molecular diversity of spider venom. Biochemistry (Mosc). 2009;74(13):1505–34.

    Article  CAS  Google Scholar 

  • Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, Lewis RJ, King GF. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids. 2011;40:15–28.

    Article  CAS  PubMed  Google Scholar 

  • Wan H, Lee KS, Kim BY, Zou FM, Yoon HJ, Je YH, Li J, Jin BR. A spider-derived Kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor. PLoS One. 2013;8(1):e53343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windley MJ, Herzig V, Dziemborowicz SA, Hardy MC, King GK, Nicholson GM. Spider-venom peptides as bioinsecticides. Toxins. 2012;4:191–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong XF, Poulsen MH, Hussein RA, Nørager NG, Strømgaard K. Structure-activity relationship study of spider polyamine toxins as inhibitors of ionotropic glutamate receptors. ChemMedChem. 2014;9(12):2661–70.

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Adams ME. Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J Biol Chem. 1998;273(4):2059–66.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhao M, Fields GB, Wu CF, Branton WD. δ/ω-Plectoxin-Pt1a: an excitatory spider toxin with actions on both Ca(2+) and Na(+) channels. PLoS One. 2013;8(5):e64324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Matavel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Matavel, A., Estrada, G., De Marco Almeida, F. (2016). Spider Venom and Drug Discovery: A Review. In: Gopalakrishnakone, P., Corzo, G., de Lima, M., Diego-García, E. (eds) Spider Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6389-0_9

Download citation

Publish with us

Policies and ethics