Skip to main content

Identifying Insect Protein Receptors Using an Insecticidal Spider Toxin

  • Reference work entry
  • First Online:
Book cover Spider Venoms

Abstract

The insecticidal spider toxin PaluIT1 was used to identify potential protein receptors in lepidopteran larvae. PaluIT1 was reacted with both biotin-N-hydroxy-succinimide (BHS) and fluorescein isothiocyanate (FITC) to obtain biotinylated and fluorescent probes, respectively. BHS and FITC reacted either to the N-terminal of the residue Ala1 or to the ε-amine of the Lys8 residue of PaluIT1; therefore, mono- and di-labeled products were obtained. The mono-labeled fluorescent probes were lethal to pest larvae species such as Galleria mellonella, Spodoptera frugiperda, Spodoptera litura, and Diatraea magnifactella with LD50 values from 10 to 33 μ g/g of larvae. In addition, rabbit primary antibodies against PaluIT1 were made for histochemical and immunochemical assays in order to identify protein receptors of PaluIT1 in lepidopteran larvae. Western blot assays using PaluIT1, PaluIT1-biotin, PaluIT1-FITC, and antibodies against PaluIT1 helped to identify insect protein receptors from ganglia cord homogenates. Protein bands of 250–260 kDa in S. frugiperda, G. mellonella, and D. magnifactella and above 207 kDa in S. litura were observed suggesting a Nav α-subunit protein receptor in these lepidopteran species. In addition, protein bands of 80 kDa in S. frugiperda and D. magnifactella and of 75 and 80 kDa in G. mellonella were also identified. A proteomic analysis of those protein bands suggested that PaluIT1 interacts with the cutworm larvae voltage-gated sodium channel, hexamerin and arylphorin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beresford PJ, Basinski-Gray JM, Chiu JK, Chadwick JS, Aston WP. Characterization of hemolytic and cytotoxic Gallysins: a relationship with arylphorins. Dev Comp Immunol. 1997;21:253–66.

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57:397–409.

    Article  CAS  PubMed  Google Scholar 

  • Corzo G, Escoubas P, Stankiewicz M, Pelhate M, Kristensen CP, Nakajima T. Isolation, synthesis and pharmacological characterization of delta-palutoxins IT, novel insecticidal toxins from the spider Paracoelotes luctuosus. Eur J Biochem. 2000;267:5783–95.

    Article  CAS  PubMed  Google Scholar 

  • de Lima ME, Couraud F, Lapied B, Pelhate M, Ribeiro Diniz C, Rochat H. Photoaffinity labeling of scorpion toxin receptors associated with insect synaptosomal Na+ channels. Biochem Biophys Res Commun. 1988;151:187–92.

    Article  PubMed  Google Scholar 

  • Dong K. Insect sodium channels and insecticide resistance. Invert Neurosci. 2007;7:17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eitan M, Fowler E, Herrmann R, Duval A, Pelhate M, Zlotkin E. A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action. Biochemistry. 1990;29:5941–7.

    Article  CAS  PubMed  Google Scholar 

  • Elazar M, Levi R, Zlotkin E. Targeting of an expressed neurotoxin by its recombinant baculovirus. J Exp Biol. 2001;204:2637–45.

    CAS  PubMed  Google Scholar 

  • Escoubas P, Palma MF, Nakajima T. A microinjection technique using Drosophila melanogaster for bioassay-guided isolation of neurotoxins in arthropod venoms. Toxicon. 1995;33:1549–55.

    Article  CAS  PubMed  Google Scholar 

  • Ferrat G, Bosmans F, Tytgat J, Pimentel C, Chagot B, Gilles N, Nakajima T, Darbon H, Corzo G. Solution structure of two insect-specific spider toxins and their pharmacological interaction with the insect voltage-gated Na+ channel. Proteins. 2005;59:368–79.

    Article  CAS  PubMed  Google Scholar 

  • Gordon D. A new approach to insect-pest control – combination of neurotoxins interacting with voltage sensitive sodium channels to increase selectivity and specificity. Invert Neurosci. 1997;3:103–16.

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Merrick D, Auld V, Dunn R, Goldin AL, Davidson N, Catterall WA. Tissue-specific expression of the RI and RII sodium channel subtypes. Proc Natl Acad Sci U S A. 1987;84:8682–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon D, Merrick D, Wollner DA, Catterall WA. Biochemical properties of sodium channels in a wide range of excitable tissues studied with site-directed antibodies. Biochemistry. 1988;27:7032–8.

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Moskowitz H, Zlotkin E. Sodium channel polypeptides in central nervous systems of various insects identified with site directed antibodies. Biochim Biophys Acta. 1990;1026:80–6.

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Moskowitz H, Eitan M, Warner C, Catterall WA, Zlotkin E. Localization of receptor sites for insect-selective toxins on sodium channels by site-directed antibodies. Biochemistry. 1992;31:7622–8.

    Article  CAS  PubMed  Google Scholar 

  • Haunerland NH, Bowers WS. Binding of insecticides to lipophorin and arylphorin, two hemolymph proteins of Heliothis zea. Arch Insect Biochem Physiol. 1986;3:87–96.

    Article  CAS  Google Scholar 

  • Lina-Garcia L, Obregon Barboza V, Sosa Pliego Y, Acevedo-Aviles M, Martinez Monrroy A, Trejo-Loyo A, Diaz-Corro L. Establecimiento de la cría de (Galleria magnifactella) en condiciones de laboratorio. XXXIII Congreso Nacional de Control Biológico, Uruapan; 2010.

    Google Scholar 

  • Nicholson GM. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon. 2007;49:490–512.

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Taylor MF, Feyereisen R. Voltage-gated sodium channel genes hscp and hDSC1 of Heliothis virescens F. genomic organization. Insect Mol Biol. 1999;8:161–70.

    Article  CAS  PubMed  Google Scholar 

  • Poopathi S, Thirugnanasambantham K, Mani C, Mary KA, Mary BA, Balagangadharan K. Hexamerin a novel protein associated with Bacillus sphaericus resistance in Culex quinquefasciatus. Appl Biochem Biotechnol. 2014;172:2299–307.

    Article  CAS  PubMed  Google Scholar 

  • Scherfer C, Karlsson C, Loseva O, Bidla G, Goto A, Havemann J, Dushay MS, Theopold U. Isolation and characterization of hemolymph clotting factors in Drosophila melanogaster by a pullout method. Curr Biol. 2004;14:625–9.

    Article  CAS  PubMed  Google Scholar 

  • Singh P. Artificial diets for insects, mites, and spiders. New York: IFI/Plenum; 1977.

    Book  Google Scholar 

  • Soderlund DM, Knipple DC. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol. 2003;33:563–77.

    Article  CAS  PubMed  Google Scholar 

  • Sonoda S, Ashfaq M, Tsumuki H. Cloning and nucleotide sequencing of three heat shock protein genes (hsp90, hsc70, and hsp19.5) from the diamondback moth, Plutella xylostella (L.) and their expression in relation to developmental stage and temperature. Arch Insect Biochem Physiol. 2006a;62:80–90.

    Article  CAS  PubMed  Google Scholar 

  • Sonoda S, Ashfaq M, Tsumuki H. Genomic organization and developmental expression of glutathione S-transferase genes of the diamondback moth, Plutella xylostella. J Insect Sci. 2006b;6:1–9.

    Article  PubMed  Google Scholar 

  • Trainer VL, McPhee JC, Boutelet-Bochan H, Baker C, Scheuer T, Babin D, Demoute JP, Guedin D, Catterall WA. High affinity binding of pyrethroids to the alpha subunit of brain sodium channels. Mol Pharmacol. 1997;51:651–7.

    CAS  PubMed  Google Scholar 

  • Zlotkin E, Rochat H, Kopeyan C, Miranda F, Lissitzky S. Purification and properties of the insect toxin from the venom of the scorpion Androctonus australis Hector. Biochimie. 1971;53:1073–8.

    Article  CAS  PubMed  Google Scholar 

  • Zlotkin E, Eitan M, Bindokas VP, Adams ME, Moyer M, Burkhart W, Fowler E. Functional duality and structural uniqueness of depressant insect-selective neurotoxins. Biochemistry. 1991;30:4814–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by grants from Dirección General de Asuntos del Personal Académico (DGAPA-UNAM) number IN204415 and from SEP-CONACyT number 240616 to GC and CONACYT CB 106949 to EV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elba Villegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Cordero, M. et al. (2016). Identifying Insect Protein Receptors Using an Insecticidal Spider Toxin. In: Gopalakrishnakone, P., Corzo, G., de Lima, M., Diego-García, E. (eds) Spider Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6389-0_22

Download citation

Publish with us

Policies and ethics