Skip to main content

Snake Venom Detection Kit (SVDK): Update on Current Aspects and Challenges

  • Reference work entry
  • First Online:
Clinical Toxinology in Asia Pacific and Africa

Part of the book series: Toxinology ((TOXI,volume 2))

Abstract

Snakebite is a medical emergency causing considerable morbidity and mortality worldwide, particularly in the tropics. Snake venom components are known to vary greatly leading to varied clinical manifestations following snakebite. The success of antivenom therapy, which is the mainstay of therapy, usually depends on the snake species involved, and uncertainties concerning the species involved remain a major hurdle in effective management of snakebite. Therefore, proper identification of snake species is of prime importance, consequently leading to the development of the Snake Venom Diagnostic Kit (SVDK). Over the years, various detections tests have been developed, with the immunological-reaction-based enzyme-linked immunosorbent assay ( ELISA) method being the most widely used. However, in recent times various other techniques, such as optical immunoassays (OIA), venom/antibody microarray assay, PCR based assays, etc., are also being developed with much more promise in real-time applications. Furthermore, the tests tend to be highly species-specific, reliable, sensitive, rapid, inexpensive, stable, simple, and portable for field use. It is desirable that each country develops and optimizes its own regional species-specific diagnosis kits for effective management of snakebite. Considering doubts in the commercial viability of developing SVDK, more public or private partnerships have to be developed and nurtured. This work attempts to summarize existing techniques of snake venom detection in current use, especially their advantages and disadvantages. It also focuses on recent developments and discusses the present challenges to the development and application of SVDK for successful clinical usage in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aird SD. Ophidian envenomations strategies and the role of purines. Toxicon. 2002;40:335–93.

    Article  CAS  PubMed  Google Scholar 

  • Alape-Giron A, Sanz L, Escolano J, et al. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res. 2008;7:3556–71.

    Article  CAS  PubMed  Google Scholar 

  • Alirol E, Sharma SK, Bawaskar HS, Kuch U, Chappuis F. Snake bite in South Asia: a review. PLoS Negl Trop Dis. 2010;4:e603. doi:10.1371/journal.pntd.0000603.

    Article  PubMed Central  PubMed  Google Scholar 

  • Audebert F, Sorkine M, Bon C. Envenoming by viper bites in france: clinical gradation and biological quantification by ELISA. Toxicon. 1992;30(5–6):599–609.

    Article  CAS  PubMed  Google Scholar 

  • Barral-Netto M, Schriefer A, Vinhas V, Almeida AR. Enzyme-linked immunosorbent assay for the detection of Bothrops jararaca venom. Toxicon. 1990;28(9):1053–61.

    Article  CAS  PubMed  Google Scholar 

  • Bhatti AR, Wong JP, Siddiqui YM, Siddiqui S. A sensitive fluorogenic enzyme linked immu-nosorbent assay for the detection of Vipera russelli venom. Nat Toxins. 1993;1:277–82.

    Article  CAS  PubMed  Google Scholar 

  • Boche RD, Russell FE. Passive hemagglutination studies with snake venom and antivenom. Toxicon. 1968;6(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  • Boldrini-França J, Corrêa-Netto C, Silva MM, et al. Snake venomics adn antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management. J Proteomics. 2010;73(9):1758–76.

    Article  PubMed  Google Scholar 

  • Chandler HM, Hurrell JG. A new enzyme immunoassay system suitable for field use and its application in a snake venom detection kit. Clin Chim Acta. 1982;121(2):225–30.

    Article  CAS  PubMed  Google Scholar 

  • Chang CC. The action of snake venoms on nerve and muscle. In: Lee CY, editor. Handbook of experimental pharmacology, vol. 52. Berlin: Springer; 1979. p. 309–76.

    Google Scholar 

  • Chavez-Olortegui C, Lopes CS, Cordeiro FD, Granier C, Diniz CR. An enzyme linked immunosorbent assay (ELISA) that discriminates between Bothrops atrox and Lachesis muta muta venoms. Toxicon. 1993;4:417–25.

    Article  Google Scholar 

  • Chinonavanig L, Karnchanachetanee C, Pongsettakul P, Ratanabanangkoon K. Diagnosis of snake venoms by a reverse latex agglutination test. J Toxicol Clin Toxicol. 1991;29(4):493–503.

    Article  CAS  PubMed  Google Scholar 

  • Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991;29:1279–303.

    Article  CAS  PubMed  Google Scholar 

  • Coulter AR, Sutherland SK, Broad AJ. Assay of snake venoms in tissue fluids. J Immunol Methods. 1974;4:297–300.

    Article  CAS  PubMed  Google Scholar 

  • Coulter AR, Harris RD, Sutherland SK. Clinical laboratory: enzyme immunoassay for the rapid clinical identification of snake venom. Med J Aust. 1980;1(9):433–5.

    CAS  PubMed  Google Scholar 

  • Daltry JC, Wuster W, Thorpe RS. Diet and snake venom evolution. Nature. 1996;379:537–40.

    Article  CAS  PubMed  Google Scholar 

  • De AK. Development of an immunodiagnostic kit for species identification of snakebite and studies on the cross-reacting venom antigens [Ph.D. theiss]. Bangalore; Indian Institute of Science; 1996.

    Google Scholar 

  • Dhananjaya BL, D’Souza CJ. The pharmacological role of nucleotidases in snake venoms. Cell Biochem Funct. 2010;28:171–7.

    Article  CAS  PubMed  Google Scholar 

  • Feng CQ, Tang XJ, Huang LQ, Qian ZZ, Zhang J, Cui GH. High specific PCR identification of Bungarus multicinctus and its adulterants. Zhongguo Zhong Yao Za Zhi. 2006;31(13):1050–3.

    PubMed  Google Scholar 

  • França FO, Barbaro KC, Fan HW, Cardoso JL, Sano-Martins IS, Tomy SC, Lopes MH, Warrell DA, Theakston RD, Butantan Institute Antivenom Study Group. Envenoming by Bothrops jararaca in Brazil: association between venom antigenaemia and severity at admission to hospital. Trans R Soc Trop Med Hyg. 2003;97:312–7.

    Article  PubMed  Google Scholar 

  • Gao R, Zhang Y, Gopalakrishnakone P. Single-bead based immunofluorescence assay for snake venom detection. Biotechnol Prog. 2008;24(1):245–9.

    Article  CAS  PubMed  Google Scholar 

  • Gaus DP, Herrera DF, Troya CJ, Guevara AH. Management of snakebite and systemic envenomation in rural Ecuador using the 20-minute whole blood clotting test. Wilderness Environ Med. 2013;24(4):345–50.

    Article  PubMed  Google Scholar 

  • Greenwood BM, Warrell DA, Davidson NM, Ormerod LD, Reid HA. Immunodiagnosis of snake bite. Br Med J. 1974;4(5947):743–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heneine LG, Araújo dos Santos MR, Dutra de Carvalho Jr A, da Silva Gontijo S. A capture enzyme-linked immunosorbent assay for species-specific detection of Bothrops venoms. J Immunoassay. 1999;20(1–2):91–101.

    Article  CAS  PubMed  Google Scholar 

  • Huang YP, Yu YJ, Hung DZ. Sandwich enzyme-linked immunosorbent assay for Taiwan cobra venom. Vet Hum Toxicol. 2002;44(4):200–4.

    CAS  PubMed  Google Scholar 

  • Joseph JK, Simpson ID, Menon NC, Jose MP, Kulkarni KJ, Raghavendra GB, Warrell DA. First authenticated cases of life-threatening envenoming by the hump-nosed pit viper (Hypnale hypnale) in India. Trans R Soc Trop Med Hyg. 2007;101(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  • Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, et al. Estimating the global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5:e218. doi:10.1371/journal.pmed.0050218.

    Article  PubMed Central  PubMed  Google Scholar 

  • Khow O, Wongtongkam N, Pakmanee N, Omori-Satoh T, Sitprija V. Development of reversed passive latex agglutination for detection of Thai cobra (Naja kaouthia) venom. J Nat Toxins. 1999;8(2):213–20.

    CAS  PubMed  Google Scholar 

  • Kittigul L, Ratanabanangkoon K. Reverse passive hemagglutination tests for rapid diagnosis of snake envenomation. J Immunoassay. 1993;14(3):105–27.

    Article  CAS  PubMed  Google Scholar 

  • Kulawickrama S, O’Leary MA, Hodgson WC, Brown SG, Jacoby T, Davern K, Isbister GK. Development of a sensitive enzyme immunoassay for measuring taipan venom in serum. Toxicon. 2010;55(8):1510–8.

    Article  CAS  PubMed  Google Scholar 

  • Labrousse H, Nishikawa AK, Bon C, Avrameas S. Development of a rapid and sensitive enzyme-linked immunosorbent assay (ELISA) for measuring venom antigens after an experimental snake bite. Toxicon. 1988;26(12):1157–67.

    Article  CAS  PubMed  Google Scholar 

  • le Dong V, Eng KH, le Quyen K, Gopalakrishnakone P. An antibody microarray for the detection of snake venoms. 14th world congress on animal, plant and microbial toxins; 2003 Sept 14–19; Adelaide; 2013a.

    Google Scholar 

  • le Dong V, Eng KH, le Quyen K, Gopalakrishnakone P. Antigen microarray: an application in snake venom study. 14th world congress on animal, plant and microbial toxins; 2003 Sept 14–19; Adelaide; 2003b.

    Google Scholar 

  • le Dong V. Biochemical and immunological studies on snake venoms of South Vietnam [Ph.D. thesis]. Singapore: National University of Singapore; 2004.

    Google Scholar 

  • le Dong V, Selvanayagam ZE, Gopalakrishnakone P, Eng KH. A new avidin-biotin optical immunoassay for the detection of beta-Bungarotoxin and application in diagnosis of experimental snake envenomation. J Immunol Methods. 2002;260(1–2):125–36.

    Article  CAS  PubMed  Google Scholar 

  • le Dong V, Eng KH, le Quyen K, Gopalakrishnakone P. Optical immunoassay for snake venom detection. Biosens Bioelectron. 2004;19(10):1285–94.

    Article  CAS  PubMed  Google Scholar 

  • Minton SA. Present tests for detection of snake venom: clinical applications. Annu Emerg Med. 1987;16:932–7.

    Article  CAS  Google Scholar 

  • Mohapatra B, Warrell DA, Suraweera W, Bhatia P, Dhingra N, et al. Snakebite mortality in India: a nationally representative mortality survey. PLoS Negl Trop Dis. 2011;5:e1018. doi:10.1371/journal.pntd.0001018.

    Article  PubMed Central  PubMed  Google Scholar 

  • Muelling Jr RJ, Samson RF, Beven T. The precipitin test in elucidating the cause of death. Am J Clin Pathol. 1957;28(5):489–94.

    PubMed  Google Scholar 

  • O’Leary MA, Maduwage K, Isbister GK. Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms. J Pharmacol Toxicol Methods. 2013;67(3):177–81.

    Article  PubMed  Google Scholar 

  • Ogunfowokan O, Jacob DA, Livinus OL. Relationship between bite-to-hospital time and morbidity in victims of cardpet viper bite in North-Central Nigeria. West Afr J Med. 2011;30(5):348–53.

    CAS  PubMed  Google Scholar 

  • Ratanabanangkoon K, Billings PB, Matangkasombut P. Immunodiagnosis of snake venom poisoning. Asian Pac J Allergy Immunol. 1987;5(2):187–90.

    CAS  PubMed  Google Scholar 

  • Selvanayagam ZE, Gopalakrishnakone P. Tests for detection of snake venoms, toxins and venom antibodies: review on recent trends (1987–1997). Toxicon. 1999;37(4):565–86.

    Article  CAS  PubMed  Google Scholar 

  • Selvanayagam ZE, Gnanavendhan SG, Ganesh KA, Rajagopal D, Rao PV. ELISA for the detection of venoms from four medically important snakes of India. Toxicon. 1999;37(5):757–70.

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom L, Karlson-Stiber C, Persson H, Al Abdulla IH, Smith DC. Development and clinical application of immunoassays for European adder (Vipera berus berus) venom and antivenom. Toxicon. 1996;34:91–8.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland SK, Coulter AR. Three instructive cases of tiger snake (Notechis scutatus) envenomation – and how a radioimmunoassay proved the diagnosis. Medical J Aust. 1977;2(6):177–80.

    CAS  Google Scholar 

  • Thachil RT, Tony JC, Jude E, Ross C, Vincent ND, Sridhar CB. Antisnakevenom: an over-used medication. Trop Doct. 1992;22(3):113–5.

    CAS  PubMed  Google Scholar 

  • Theakston RDG. The application of immunoassay techniques, including enzyme-linked immuno- sorbent assay (ELISA), to snake venom research. Toxicon. 1983;21:341–52.

    Article  CAS  PubMed  Google Scholar 

  • Theakston RD, Lloyd-Jones MJ, Reid HA. Micro-ELISA for detecting and assaying snake venom and venom-antibody. Lancet. 1977;2(8039):639–41.

    Article  CAS  PubMed  Google Scholar 

  • Tiru-Chelvam R. Demonstration of sites of snake-venom localisation by immunofluorescence techniques. J Pathol. 1972;107(4):303–5.

    Article  CAS  PubMed  Google Scholar 

  • Tu AT, Farid T, Morinaga M. Analysis of snake venom fro forensic investigation. J Nat Toxins. 2001;10(2):167–75.

    CAS  PubMed  Google Scholar 

  • Valmiki R, Zacharich A, Tharyan P, et al. Identification of snake species by PCR and sequence analysis of mitochondrial DNA from cotton swabs of snakebite area and description of local species causing snakebite. 3rd annual conference of the Toxinological Society of India (TSI) and 1st international conference on “Biology of Natural Toxins”; 2013 Dec 19–21; Goa: BITS Pilani K K Birla Goa Campus.

    Google Scholar 

  • Warrell DA, Gutiérrez JM, Calvete JJ, Williams D. New approaches and amp; technologies of venomics to meet the challenge of human envenoming by snakebites in India. Indian J Med Res. 2013;138:38–59.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhadrapura Lakkappa Dhananjaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Dhananjaya, B.L., Menon, J.C., Joseph, J.K., Raveendran, D.K., Oommen, O.V. (2015). Snake Venom Detection Kit (SVDK): Update on Current Aspects and Challenges. In: Gopalakrishnakone, P., Faiz, A., Fernando, R., Gnanathasan, C., Habib, A., Yang, CC. (eds) Clinical Toxinology in Asia Pacific and Africa. Toxinology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6386-9_39

Download citation

Publish with us

Policies and ethics