Skip to main content

Developing Snake Antivenom Sera by Genetic Immunization: A Review

  • Reference work entry
  • First Online:
Clinical Toxinology in Asia Pacific and Africa

Part of the book series: Toxinology ((TOXI,volume 2))

Abstract

Snakebite is a common and generally harmful neglected tropical disease that constitutes a highly relevant public health problem with worldwide mortality estimated to be around 50,000 deaths annually.

The only approved and accepted treatment for snakebite envenoming is the use of antivenoms produced by the purification of IgG immunoglobulins from large animals (i.e., horses) immunized against specific snake venoms. Nonetheless, since its conception, by Albert Calmette and Vital Brazil, very little has changed on the way these antivenoms are being produced.

Over the last years, on the other hand, with the advance of molecular biology techniques and the rise of transcriptomic and proteomic analysis, the constitution of different snake venoms has been characterized, leading to an increasing demand for the development of new methods of antivenom production, with a more specific immune response and with less adverse effects, such as serum sickness, and even without the need for the collection and maintenance of snake specimens.

DNA immunization, an elegant and robust technique of directly injecting a specific antigen DNA coding sequence directly onto the cells of an immunized animal, seems to be a much easier way of developing specific antibodies without the need for recombinant and frequently laborious protein expression and purification from heterologous organisms (i.e., Escherichia coli).

In this chapter, we will discuss the advances on the transcriptomic analysis of venom glands from different snake species with a focus on the efforts to develop antivenom sera by DNA immunization and its efficacy in neutralizing the toxic effects elicited by the envenomation from snakebite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med. 1999;189(1):169–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alape-Giron A, Sanz L, Escolano J, Flores-Diaz M, Madrigal M, Sasa M, et al. Snake venomics of the lancehead pit viper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res. 2008;7(8):3556–71.

    Article  CAS  PubMed  Google Scholar 

  • Arce-Estrada V, Azofeifa-Cordero G, Estrada R, Alape-Giron A, Flores-Diaz M. Neutralization of venom-induced hemorrhage by equine antibodies raised by immunization with a plasmid encoding a novel P-II metalloproteinase from the lancehead pitviper Bothrops asper. Vaccine. 2009;27(3):460–6.

    Article  CAS  PubMed  Google Scholar 

  • Azofeifa-Cordero G, Arce-Estrada V, Flores-Diaz M, Alape-Giron A. Immunization with cDNA of a novel P-III type metalloproteinase from the rattlesnake Crotalus durissus durissus elicits antibodies which neutralize 69 % of the hemorrhage induced by the whole venom. Toxicon. 2008;52(2):302–8.

    Article  CAS  PubMed  Google Scholar 

  • Boyle CM, Robinson HL. Basic mechanisms of DNA-raised antibody responses to intramuscular and gene gun immunizations. DNA Cell Biol. 2000;19(3):157–65.

    Article  CAS  PubMed  Google Scholar 

  • Brazil V. Contribuiçãoaoestudo de venenoophidico. II. Veneno de algumasespéciesbrazileiras. Rev Méd São Paulo. 1901a;4:296–300.

    Google Scholar 

  • Brazil V. Contribuiçãoaoestudo de venenoophidico. III. Tratamentos das mordeduras das cobras. Rev Méd São Paulo. 1901b;4:375–80.

    Google Scholar 

  • Calmette A. Contribution à l’étude du venin des serpents. Immunisation des animauxettraitement de l’envenimation. Ann Inst Pasteur. 1894;VIII:275–91.

    Google Scholar 

  • Carbajal-Saucedo A, Lopez-Vera E, Benard-Valle M, Smith EN, Zamudio F, de Roodt AR, et al. Isolation, characterization, cloning and expression of an alpha-neurotoxin from the venom of the Mexican coral snake Micrurus laticollaris (Squamata: Elapidae). Toxicon. 2013;66:64–74.

    Article  CAS  PubMed  Google Scholar 

  • Ching AT, Rocha MM, PaesLeme AF, Pimenta DC, de Fatima DFM, Serrano SM, et al. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy’s (venom) gland transcriptome. FEBS Lett. 2006;580(18):4417–22.

    Article  CAS  PubMed  Google Scholar 

  • Ching AT, PaesLeme AF, Zelanis A, Rocha MM, Furtado Mde F, Silva DA, et al. Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes. J Proteome Res. 2012;11(2):1152–62.

    Article  CAS  PubMed  Google Scholar 

  • Chippaux JP. Snake-bites: appraisal of the global situation. Bull World Health Organ. 1998;76(5):515–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Correa-Netto C, Junqueira-de-Azevedo Ide L, Silva DA, Ho PL, Leitao-de-Araujo M, Alves ML, et al. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus. J Proteomics. 2011;74(9):1795–809.

    Article  CAS  PubMed  Google Scholar 

  • Deutsch HF, Diniz CR. Some proteolytic activities of snake venoms. J Biol Chem. 1955;216(1):17–26.

    CAS  PubMed  Google Scholar 

  • Duarte CG, Alvarenga LM, Dias-Lopes C, Machado-de-Avila RA, Nguyen C, Molina F, et al. In vivo protection against Tityus serrulatus scorpion venom by antibodies raised against a discontinuous synthetic epitope. Vaccine. 2010;28(5):1168–76.

    Article  CAS  PubMed  Google Scholar 

  • Feltquate DM, Heaney S, Webster RG, Robinson HL. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol. 1997;158(5):2278–84.

    CAS  PubMed  Google Scholar 

  • Fox S, Rathuwithana AC, Kasturiratne A, Lalloo DG, de Silva HJ. Underestimation of snakebite mortality by hospital statistics in the Monaragala District of Sri Lanka. Trans R Soc Trop Med Hyg. 2006;100(7):693–5.

    Article  CAS  PubMed  Google Scholar 

  • Francischetti IM, My-Pham V, Harrison J, Garfield MK, Ribeiro JM. Bitis gabonica (Gaboon viper) snake venom gland: toward a catalog for the full-length transcripts (cDNA) and proteins. Gene. 2004;337:55–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frank R. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications. J Immunol Methods. 2002;267(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  • Frank R, Overwin H. SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol Biol. 1996;66:149–69.

    CAS  PubMed  Google Scholar 

  • Georgieva D, Risch M, Kardas A, Buck F, von Bergen M, Betzel C. Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis. J Proteome Res. 2008;7(3):866–86.

    Article  CAS  PubMed  Google Scholar 

  • Gong N, Armugam A, Jeyaseelan K. Postsynaptic short-chain neurotoxins from Pseudonaja textilis. cDNA cloning, expression and protein characterization. Eur J Biochem. 1999;265(3):982–9.

    Article  CAS  PubMed  Google Scholar 

  • Harrison RA, Moura-Da-Silva AM, Laing GD, Wu Y, Richards A, Broadhead A, et al. Antibody from mice immunized with DNA encoding the carboxyl-disintegrin and cysteine-rich domain (JD9) of the haemorrhagic metalloprotease, Jararhagin, inhibits the main lethal component of viper venom. Clin Exp Immunol. 2000;121(2):358–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison RA, Richards A, Laing GD, Theakston RD. Simultaneous GeneGun immunisation with plasmids encoding antigen and GM-CSF: significant enhancement of murine antivenom IgG1 titres. Vaccine. 2002;20(13–14):1702–6.

    Article  CAS  PubMed  Google Scholar 

  • Harrison RA, Wuster W, Theakston RD. The conserved structure of snake venom toxins confers extensive immunological cross-reactivity to toxin-specific antibody. Toxicon. 2003;41(4):441–9.

    Article  CAS  PubMed  Google Scholar 

  • Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Lalloo DG. Snake envenoming: a disease of poverty. PLoS Negl Trop Dis. 2009;3(12):e569.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jeon OH, Kim DS. Cloning, expression, and characterization of a cDNA encoding snake venom metalloprotease. Biochem Mol Biol Int. 1999;47(3):417–25.

    CAS  PubMed  Google Scholar 

  • Junqueira-de-Azevedo Ide L, Ho PL. A survey of gene expression and diversity in the venom glands of the pitviper snake Bothrops insularis through the generation of expressed sequence tags (ESTs). Gene. 2002;299(1–2):279–91.

    Article  PubMed  Google Scholar 

  • Junqueira-de-Azevedo IL, Ching AT, Carvalho E, Faria F, Nishiyama Jr MY, Ho PL, et al. Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics. 2006;173(2):877–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kashima S, Roberto PG, Soares AM, Astolfi-Filho S, Pereira JO, Giuliati S, et al. Analysis of Bothrops jararacussu venomous gland transcriptome focusing on structural and functional aspects: I–gene expression profile of highly expressed phospholipases A2. Biochimie. 2004;86(3):211–9.

    Article  CAS  PubMed  Google Scholar 

  • Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11):e218.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim JJ, Yang JS, Lee DJ, Wilson DM, Nottingham LK, Morrison L, et al. Macrophage colony-stimulating factor can modulate immune responses and attract dendritic cells in vivo. Hum Gene Ther. 2000;11(2):305–21.

    Article  CAS  PubMed  Google Scholar 

  • Ko JH, Chung WH. Serum sickness. Lancet. 2013;381(9862):e1.

    Article  PubMed  Google Scholar 

  • Leao LI, Ho PL, Junqueira-de-Azevedo IL. Transcriptomic basis for an antiserum against Micrurus corallinus (coral snake) venom. BMC Genomics. 2009;10:112.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moura-da-Silva AM, Linica A, Della-Casa MS, Kamiguti AS, Ho PL, Crampton JM, et al. Jararhagin ECD-containing disintegrin domain: expression in Escherichia coli and inhibition of the platelet-collagen interaction. Arch Biochem Biophys. 1999;369(2):295–301.

    Article  CAS  PubMed  Google Scholar 

  • Narum DL, Kumar S, Rogers WO, Fuhrmann SR, Liang H, Oakley M, et al. Codon optimization of gene fragments encoding Plasmodium falciparum merzoite proteins enhances DNA vaccine protein expression and immunogenicity in mice. Infect Immun. 2001;69(12):7250–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinyachat A, Rojnuckarin P, Muanpasitporn C, Singhamatr P, Nuchprayoon S. Albocollagenase, a novel recombinant P-III snake venom metalloproteinase from green pit viper (Cryptelytrops albolabris), digests collagen and inhibits platelet aggregation. Toxicon. 2011;57(5):772–80.

    Article  CAS  PubMed  Google Scholar 

  • Qinghua L, Xiaowei Z, Wei Y, Chenji L, Yijun H, Pengxin Q, et al. A catalog for transcripts in the venom gland of the Agkistrodon acutus: identification of the toxins potentially involved in coagulopathy. Biochem Biophys Res Commun. 2006;341(2):522–31.

    Article  PubMed  Google Scholar 

  • Ramakrishna L, Anand KK, Mohankumar KM, Ranga U. Codon optimization of the tat antigen of human immunodeficiency virus type 1 generates strong immune responses in mice following genetic immunization. J Virol. 2004;78(17):9174–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reid HA. Antivenom reactions and efficacy. Lancet. 1980;1(8176):1024–5.

    Article  CAS  PubMed  Google Scholar 

  • Sanz L, Ayvazyan N, Calvete JJ. Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J Proteomics. 2008;71(2):198–209.

    Article  CAS  PubMed  Google Scholar 

  • Schottler WH. Antigen-antibody relations in the present antivenin production of Brazil. Am J Trop Med Hyg. 1951;31(4):500–9.

    CAS  PubMed  Google Scholar 

  • Schwettmann L, Tschesche H. Cloning and expression in Pichia pastoris of metalloprotease domain of ADAM 9 catalytically active against fibronectin. Protein Expr Purif. 2001;21(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  • Selistre-de-Araujo HS, de Souza EL, Beltramini LM, Ownby CL, Souza DH. Expression, refolding, and activity of a recombinant nonhemorrhagic snake venom metalloprotease. Protein Expr Purif. 2000;19(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  • Singhamatr P, Rojnuckarin P. Molecular cloning of albolatin, a novel snake venom metalloprotease from green pit viper (Trimeresurus albolabris), and expression of its disintegrin domain. Toxicon. 2007;50(8):1192–200.

    Article  CAS  PubMed  Google Scholar 

  • Smith JM, Amara RR, Campbell D, Xu Y, Patel M, Sharma S, et al. DNA/MVA vaccine for HIV type 1: effects of codon-optimization and the expression of aggregates or virus-like particles on the immunogenicity of the DNA prime. AIDS Res Hum Retroviruses. 2004;20(12):1335–47.

    Article  CAS  PubMed  Google Scholar 

  • Snow RW, Bronzan R, Roques T, Nyamawi C, Murphy S, Marsh K. The prevalence and morbidity of snake bite and treatment-seeking behaviour among a rural Kenyan population. Ann Trop Med Parasitol. 1994;88(6):665–71.

    CAS  PubMed  Google Scholar 

  • Suntravat M, Jia Y, Lucena SE, Sanchez EE, Perez JC. CDNA cloning of a snake venom metalloproteinase from the eastern diamondback rattlesnake (Crotalus adamanteus), and the expression of its disintegrin domain with anti-platelet effects. Toxicon. 2013;64:43–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356(6365):152–4.

    Article  CAS  PubMed  Google Scholar 

  • Theakston RD, Warrell DA. Crisis in snake antivenom supply for Africa. Lancet. 2000;356(9247):2104.

    Article  CAS  PubMed  Google Scholar 

  • Valente RH, Guimaraes PR, Junqueira M, Neves-Ferreira AG, Soares MR, Chapeaurouge A, et al. Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data. J Proteomics. 2009;72(2):241–55.

    Article  CAS  PubMed  Google Scholar 

  • Wagstaff SC, Harrison RA. Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9beta1 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases. Gene. 2006;377:21–32.

    Article  CAS  PubMed  Google Scholar 

  • Wagstaff SC, Laing GD, Theakston RD, Papaspyridis C, Harrison RA. Bioinformatics and multiepitope DNA immunization to design rational snake antivenom. PLoS Med. 2006;3(6):e184.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–8.

    Article  CAS  PubMed  Google Scholar 

  • Yadava A, Ockenhouse CF. Effect of codon optimization on expression levels of a functionally folded malaria vaccine candidate in prokaryotic and eukaryotic expression systems. Infect Immun. 2003;71(9):4961–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan J, Yoon H, Kumar S, Ramanathan MP, Corbitt N, Kutzler M, et al. Enhanced cellular immune responses elicited by an engineered HIV-1 subtype B consensus-based envelope DNA vaccine. Mol Ther. 2007;15(2):411–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Roman Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ramos, H.R., Ho, P.L. (2015). Developing Snake Antivenom Sera by Genetic Immunization: A Review. In: Gopalakrishnakone, P., Faiz, A., Fernando, R., Gnanathasan, C., Habib, A., Yang, CC. (eds) Clinical Toxinology in Asia Pacific and Africa. Toxinology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6386-9_36

Download citation

Publish with us

Policies and ethics