Encyclopedia of Scientific Dating Methods

2015 Edition
| Editors: W. Jack Rink, Jeroen W. Thompson

Amino Acid Racemization Dating

  • Beatrice DemarchiEmail author
  • Matthew Collins
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-6304-3_73


AAR, Protein diagenesis geochronology


A method for estimating the relative age since death by assessing the extent of postmortem conversion of biological chiral forms of amino acids (l-enantiomers) to their nonbiological counterparts (d-enantiomers).


Amino acid racemization (AAR) dating is a geochronological technique with a very long history. Over the past 60 years, many researchers and laboratories around the world have been involved with the development of the method and its application to diverse environments. Its time depth and applicability to a wide range of substrates are the main strengths of this method. Its main weakness is the fact that it is a molecular- rather than an atomic-scale reaction (cf. radionuclide decay), and as a consequence the rate is sensitive to temperature. Useful review articles for understanding the principles of AAR dating are those of Miller and Brigham-Grette (1989), Mitterer (1993), Rutter and Blackwell (1995),...

This is a preview of subscription content, log in to check access.



We are truly indebted to two anonymous reviewers for their comments on this manuscript. Their insight in the earlier phases of development of the technique, which they were willing to share with us, has been of invaluable help in compiling this review. The responsibility for any errors or inaccuracies still present is entirely ours.

Kirsty Penkman and the AAR group in York are thanked for their help, support, and discussion over the years.


  1. Abelson, P., 1954. Paleobiochemistry: organic constituents of fossils. Washington DC: Carnegie Institution of Washington, Yearbook, 53, pp. 97–101.Google Scholar
  2. Allen, A. P., Kosnik, M. A., and Kaufman, D. S., 2013. Characterizing the dynamics of amino acid racemization using time-dependent reaction kinetics: a Bayesian approach to fitting age-calibration models. Quaternary Geochronology, 18, 63–77.CrossRefGoogle Scholar
  3. Andrews, J. T., Bowen, D. Q., and Kidson, C., 1979. Amino acid ratios and the correlation of raised beach deposits in south-west England and Wales. Nature, 281, 556–558.CrossRefGoogle Scholar
  4. Andrews, J. T., Miller, G. H., Davies, D. C., and Davies, K. H., 1985. Generic identification of fragmentary Quaternary molluscs by amino acid chromatography: a tool for Quaternary and palaeontological research. Geological Journal, 20, 1–20.CrossRefGoogle Scholar
  5. Bada, J., 1985. Racemization of amino acids. In Barrett, G.C. (ed.), Chemistry and Biochemistry of the Amino Acids. London: Chapman and Hall, pp. 399–414.Google Scholar
  6. Bada, J. L., 1991. Amino acid cosmogeochemistry. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 333, 349–358.CrossRefGoogle Scholar
  7. Bada, J. L., and Schroeder, R. A., 1972. Racemization of isoleucine in calcareous marine sediments: kinetics and mechanism. Earth and Planetary Science Letters, 15, 1–11.CrossRefGoogle Scholar
  8. Bada, J. L., and Schroeder, R. A., 1975. Amino acid racemization reactions and their geochemical implications. Naturwissenschaften, 62, 71–79.CrossRefGoogle Scholar
  9. Bada, J. L., Luyendyk, B. P., and Maynard, J. B., 1970. Marine sediments: dating by the racemization of amino acids. Science, 170, 730–732.CrossRefGoogle Scholar
  10. Bada, J. L., Schroeder, R. A., and Carter, G. F., 1974. New evidence for the antiquity of man in North America deduced from aspartic acid racemization. Science, 184, 791–793.CrossRefGoogle Scholar
  11. Bada, J. L., Shou, M.-Y., Man, E. H., and Schroeder, R. A., 1978. Decomposition of hydroxy amino acids in foraminiferal tests; kinetics, mechanism and geochronological implications. Earth and Planetary Science Letters, 41, 67–76.CrossRefGoogle Scholar
  12. Bada, J. L., Gillespie, R., Gowlett, J. A. J., and Hedges, R. E. M., 1984. Accelerator mass spectrometry radiocarbon ages of amino acid extracts from Californian palaeoindian skeletons. Nature, 312, 442–444.CrossRefGoogle Scholar
  13. Barbour Wood, S. L., Krause, R. A., Jr., Kowalewski, M., Wehmiller, J., and Simões, M. G., 2006. Aspartic acid racemization dating of Holocene brachiopods and bivalves from the southern Brazilian shelf, South Atlantic. Quaternary Research, 66, 323–331.CrossRefGoogle Scholar
  14. Bates, M. R., 1993. Quaternary aminostratigraphy in Northwestern France. Quaternary Science Reviews, 12, 793–809.CrossRefGoogle Scholar
  15. Bowen, D. Q., and Sykes, G. A., 1994. How old is Boxgrove man? Nature, 371, 751.CrossRefGoogle Scholar
  16. Bowen, D., Sykes, G., Miller, G., Andrews, J., Brew, J., and Hare, P., 1985. Amino acid geochronology of raised beaches in south west Britain. Quaternary Science Reviews, 4, 279–318.CrossRefGoogle Scholar
  17. Bowen, D., Sykes, G., and Turner, C., 1988. Correlation of marine events and glaciations on the Northeast Atlantic margin [and discussion]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 318, 619–635.CrossRefGoogle Scholar
  18. Bright, J., and Kaufman, D. S., 2011. Amino acid racemization in lacustrine ostracodes, part I: effect of oxidizing pre-treatments on amino acid composition. Quaternary Geochronology, 6, 154–173.CrossRefGoogle Scholar
  19. Brooks, A. S., Hare, P. E., Kokis, J. E., Miller, G. H., Ernst, R., and Wendorf, F., 1990. Dating Pleistocene archaeological sites by protein diagenesis in ostrich eggshell. Science, 248, 60–64.CrossRefGoogle Scholar
  20. Brooks, A., Hare, P., Kokis, J., and Durana, K., 1991. A burning question: differences between laboratory-induced and natural diagenesis in Ostrich eggshell proteins. Carnegie Institute of Washington Yearbook, 2250, 176–179.Google Scholar
  21. Brückner, H., Wittner, R., and Godel, H., 1991. Fully automated high-performance liquid chromatographic separation of DL-amino acids derivatized with o-phthaldialdehyde together with N-isobutyryl-cysteine. Application to food samples. Chromatographia, 32, 383–388.CrossRefGoogle Scholar
  22. Clarke, S. J., and Murray-Wallace, C. V., 2006. Mathematical expressions used in amino acid racemisation geochronology – a review. Quaternary Geochronology, 1, 261–278.CrossRefGoogle Scholar
  23. Cölfen, H., and Antonietti, M., 2005. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie International Edition, 44, 5576–5591.CrossRefGoogle Scholar
  24. Collins, M. J., and Riley, M. S., 2000. Amino acid racemization in biominerals: the impact of protein degradation and loss. In Goodfriend, G. A., Collins M. J., Fogel M. L., Macko S .A., Wehmiller J. F. (eds.), Perspectives in Amino Acid and Protein Geochemistry. Oxford: Oxford University Press, pp. 120–142.Google Scholar
  25. Collins, M. J., Westbroek, P., Muyzer, G., and de Leeuw, J. W., 1992. Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons. Geochimica et Cosmochimica Acta, 56, 1539–1544.CrossRefGoogle Scholar
  26. Crisp, M. K., 2013. Amino Acid Racemization Dating: Method Development Using African Ostrich (Struthio camelus) Eggshell. Unpublished PhD thesis, York, Department of Chemistry, University of York.Google Scholar
  27. Crisp, M., Demarchi, B., Collins, M., Morgan-Williams, M., Pilgrim, E., and Penkman, K., 2013. Isolation of the intra-crystalline proteins and kinetic studies in Struthio camelus (ostrich) eggshell for amino acid geochronology. Quaternary Geochronology, 16, 110–128.CrossRefGoogle Scholar
  28. Davies, K. H., 1983. Amino acid analysis of Pleistocene marine molluscs from the Gower Peninsula. Nature, 302, 137–139.CrossRefGoogle Scholar
  29. Demarchi, B., Williams, M. G., Milner, N., Russell, N., Bailey, G., and Penkman, K., 2011. Amino acid racemization dating of marine shells: a mound of possibilities. Quaternary International, 239, 114–124.CrossRefGoogle Scholar
  30. Demarchi, B., Rogers, K., Fa, D. A., Finlayson, C. J., Milner, N., and Penkman, K. E. H., 2013a. Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system. Quaternary Geochronology, 16, 144–157.CrossRefGoogle Scholar
  31. Demarchi, B., Collins, M. J., Tomiak, P. J., Davies, B. J., and Penkman, K. E. H., 2013b. Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part II: Breakdown and temperature sensitivity. Quaternary Geochronology, 16, 158–172.CrossRefGoogle Scholar
  32. Demarchi, B., Collins, M. J., Bergstrom, E., Dowle, A., Penkman, K. E. H., Thomas-Oates, J., and Wilson, J., 2013c. New experimental evidence for in-chain amino acid racemization of serine in a model peptide. Analytical Chemistry, 85(12), 5835–5842.CrossRefGoogle Scholar
  33. Engel, M. H., and Nagy, B., 1982. Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature, 296, 837–840.CrossRefGoogle Scholar
  34. Engel, M. H., Zumberge, J. E., and Nagy, B., 1977. Kinetics of amino acid racemization in Sequoiadendron giganteum heartwood. Analytical Biochemistry, 82, 415–422.CrossRefGoogle Scholar
  35. Freeman, C. L., Harding, J. H., Quigley, D., and Rodger, P. M., 2010. Structural control of crystal nuclei by an eggshell protein. Angewandte Chemie, International Edition, 49, 5135–5137.CrossRefGoogle Scholar
  36. Gaffey, S. J., 1988. Water in skeletal carbonates. Journal of Sedimentary Research, 58, 397–414.Google Scholar
  37. Geiger, T., and Clarke, S., 1987. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides – succinimide-linked reactions that contribute to protein-degradation. Journal of Biological Chemistry, 262, 785–794.Google Scholar
  38. Goodfriend, G. A., 1991. Patterns of racemization and epimerization of amino acids in land snail shells over the course of the Holocene. Geochimica et Cosmochimica Acta, 55, 293–302.CrossRefGoogle Scholar
  39. Goodfriend, G. A., 1992. Rapid racemization of aspartic acid in mollusc shells and potential for dating over recent centuries. Nature, 357, 399–401.CrossRefGoogle Scholar
  40. Goodfriend, G. A., Brigham-Grette, J., and Miller, G. H., 1996. Enhanced age resolution of the marine Quaternary record in the Arctic using aspartic acid racemization dating of bivalve shells. Quaternary Research, 45, 176–187.CrossRefGoogle Scholar
  41. Goodfriend, G. A., Flessa, K. W., and Hare, P., 1997. Variation in amino acid epimerization rates and amino acid composition among shell layers in the bivalve Chione from the Gulf of California. Geochimica et Cosmochimica Acta, 61, 1487–1493.CrossRefGoogle Scholar
  42. Goodfriend, G. A., Collins, M. J., Fogel, M. L., Macko, S. A., and Wehmiller, J. F. (eds.), 2000. Perspectives in Amino Acid and Protein Geochemistry. New York: Oxford University Press.Google Scholar
  43. Griffin, R., Chamberlain, A., Hotz, G., Penkman, K., and Collins, M., 2009. Age estimation of archaeological remains using amino acid racemization in dental enamel: a comparison of morphological, biochemical, and known ages‐at‐death. American Journal of Physical Anthropology, 140, 244–252.CrossRefGoogle Scholar
  44. Harada, N., Kondo, T., Fukuma, K., Uchida, M., Nakamura, T., Iwai, M., Murayama, M., Sugawara, T., and Kusakabe, M., 2002. Is amino acid chronology applicable to the estimation of the geological age of siliceous sediments? Earth and Planetary Science Letters, 198, 257–266.CrossRefGoogle Scholar
  45. Hare, P., 1988. Organic geochemistry of bone and its relation to the survival of bone in the natural environment. In Behrensmeyer, A., and Hill, A. P. (eds.), Fossils in the Making: Vertebrate Taphonomy and Paleoecology. Chicago: Chicago University Press, pp. 208–219.Google Scholar
  46. Hare, P. E., and Mitterer, R. M., 1969. Laboratory simulation of amino acid diagenesis in fossils. Carnegie Institute of Washington Yearbook, 67, 205–208.Google Scholar
  47. Hare, P. E., Hoering, T. C., and King, K., Jr. (eds.), 1980. Biogeochemistry of Amino Acids. New York: Wiley.Google Scholar
  48. Hearty, P. J., and Kaufman, D. S., 2000. Whole-rock aminostratigraphy and Quaternary sea-level history of the Bahamas. Quaternary Research, 54, 163–173.CrossRefGoogle Scholar
  49. Hearty, P. J., Miller, G. H., Stearns, C. E., and Szabo, B. J., 1986. Aminostratigraphy of Quaternary shorelines in the Mediterranean basin. Geological Society of America Bulletin, 97, 850–858.CrossRefGoogle Scholar
  50. Hendy, E. J., Tomiak, P. J., Collins, M. J., Hellstrom, J., Tudhope, A. W., Lough, J. M., and Penkman, K. E. H., 2012. Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications. Geochimica and Cosmochimica Acta, 86, 338–353.CrossRefGoogle Scholar
  51. Hsu, J. T., Leonard, E. M., and Wehmiller, J. F., 1989. Aminostratigraphy of Peruvian and Chilean Quaternary marine terraces. Quaternary Science Reviews, 8, 255–262.CrossRefGoogle Scholar
  52. Hudson, J., 1967. The elemental composition of the organic fraction, and the water content, of some recent and fossil mollusc shells. Geochimica et Cosmochimica Acta, 31, 2361–2378.CrossRefGoogle Scholar
  53. Johnson, B. J., and Miller, G. H., 1997. Archaeological applications of amino acid racemization. Archaeometry, 39, 265–287.CrossRefGoogle Scholar
  54. Kahne, D., and Still, W. C., 1988. Hydrolysis of a peptide bond in neutral water. Journal of the American Chemical Society, 110, 7529–7534.CrossRefGoogle Scholar
  55. Kaufman, D. S., 2003. Amino acid paleothermometry of Quaternary ostracodes from the Bonneville Basin, Utah. Quaternary Science Reviews, 22, 899–914.CrossRefGoogle Scholar
  56. Kaufman, D. S., and Brigham-Grette, J., 1993. Aminostratigraphic correlations and paleotemperature implications, Pliocene-Pleistocene high-sea-level deposits, northwestern Alaska. Quaternary Science Reviews, 12, 21–33.CrossRefGoogle Scholar
  57. Kaufman, D. S., and Manley, W. F., 1998. A new procedure for determining dl amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Science Reviews, 17, 987–1000.CrossRefGoogle Scholar
  58. Kaufman, D. S., and Sejrup, H.-P., 1995. Isoleucine epimerization in the high-molecular-weight fraction of pleistocene Arctica. Quaternary Science Reviews, 14, 337–350.CrossRefGoogle Scholar
  59. Kaufman, D. S., Miller, G. H., and Andrews, J. T., 1992. Amino acid composition as a taxonomic tool for molluscan fossils: an example from Pliocene-Pleistocene Arctic marine deposits. Geochimica et Cosmochimica Acta, 56, 2445–2453.CrossRefGoogle Scholar
  60. Kaufman, D.S., Polyak, L., Adler, R., Channell, J. E., and Xuan, C., 2008. Dating late Quaternary planktonic foraminifer Neogloboquadrina pachyderma from the Arctic Ocean using amino acid racemization. Paleoceanography, 23, PA3224, doi:10.1029/2008PA001618.Google Scholar
  61. Kaufman, D. S., Cooper, K., Behl, R., Billups, K., Bright, J., Gardner, K., Hearty, P., Jakobsson, M., Mendes, I., O'Leary, M., Polyak, L., Rasmussen, T., Rosa, F., and Schmidt, M., 2013. Amino acid racemization in mono-specific foraminifera from Quaternary deep-sea sediments. Quaternary Geochronology, 16, 50–61.CrossRefGoogle Scholar
  62. Kennedy, G. L., Lajoie, K. R., and Wehmiller, J. F., 1982. Aminostratigraphy and faunal correlations of late Quaternary marine terraces, Pacific Coast, USA. Nature, 299, 545–547.CrossRefGoogle Scholar
  63. Kimber, R., Kennedy, N., and Milnes, A., 1994. Amino acid racemization dating of a 140,000 year old tephra‐loess‐palaeosol sequence on the Mamaku Plateau near Rotorua, New Zealand. Australian Journal of Earth Sciences, 41, 19–26.CrossRefGoogle Scholar
  64. Kosnik, M. A., Kaufman, D. S., and Hua, Q., 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: I. Age calibration curves. Quaternary Geochronology, 3, 308–327.CrossRefGoogle Scholar
  65. Kosnik, M. A., Kaufman, D. S., and Hua, Q., 2013. Radiocarbon-calibrated multiple amino acid geochronology of Holocene molluscs from Bramble and Rib Reefs (Great Barrier Reef, Australia). Quaternary Geochronology, 16, 73–86.CrossRefGoogle Scholar
  66. Krause, R. A., Jr., Barbour, S. L., Kowalewski, M., Kaufman, D. S., Romanek, C. S., Simões, M. G., and Wehmiller, J. F., 2010. Quantitative comparisons and models of time-averaging in bivalve and brachiopod shell accumulations. Paleobiology, 36, 428–452.CrossRefGoogle Scholar
  67. Kvenvolden, K. A., Peterson, E., Wehmiller, J., and Hare, P., 1973. Racemization of amino acids in marine sediments determined by gas chromatography. Geochimica et Cosmochimica Acta, 37, 2215–2225.CrossRefGoogle Scholar
  68. Lajoie, K. R., Wehmiller, J. F., and Kennedy, G. L., 1980. Inter- and intra-generic trends in apparent racemization kinetics of amino acids in Quaternary mollusks. In Hare, P. E., Hoering, T., and King, K. (eds.), Biogeochemistry of Amino Acids. New York: Wiley, pp. 305–340.Google Scholar
  69. Li, H., Xin, H. L., Kunitake, M. E., Keene, E. C., Muller, D. A., and Estroff, L. A., 2011. Calcite prisms from Mollusk shells (Atrina rigida): swiss‐cheese‐like organic–inorganic single‐crystal composites. Advanced Functional Materials, 21, 2028–2034.CrossRefGoogle Scholar
  70. Marshall, E., 1990. Racemization dating: great expectations. Science, 247, 799.CrossRefGoogle Scholar
  71. Masters, P. M., and Bada, J. L., 1977. Racemization of isoleucine in fossil molluscs from Indian middens and interglacial terraces in southern California. Earth and Planetary Science Letters, 37, 173–183.CrossRefGoogle Scholar
  72. Masters, P. M., and Bada, J. L., 1978. Amino acid racemization dating of bone and shell. Advances in Chemistry Series, 171, 117–138.CrossRefGoogle Scholar
  73. Meijer, T., and Cleveringa, P., 2009. Aminostratigraphy of Middle and Late Pleistocene deposits in The Netherlands and the southern part of the North Sea Basin. Global and Planetary Change, 68, 326–345.CrossRefGoogle Scholar
  74. Miller, G. H., and Brigham-Grette, J., 1989. Amino acid geochronology: resolution and precision in carbonate fossils. Quaternary International, 1, 111–128.CrossRefGoogle Scholar
  75. Miller, G. H., and Hare, P., 1980. Amino acid geochronology: integrity of the carbonate matrix and potential of molluscan fossils. In Hare, P. E., Hoering, T. C., and King, K., Jr. (eds.), Biogeochemistry of Amino Acids. New York: Wiley, pp. 415–443.Google Scholar
  76. Miller, G. H., Hollin, J. T., and Andrews, J. T., 1979. Aminostratigraphy of UK Pleistocene deposits. Nature, 281, 539–543.CrossRefGoogle Scholar
  77. Miller, G. H., Sejrup, H. P., Mangerud, J., and Andersen, B. G., 1983. Amino acid ratios in Quaternary molluscs and foraminifera from western Norway: correlation, geochronology and paleotemperature estimates. Boreas, 12, 107–124.CrossRefGoogle Scholar
  78. Miller, G. H., Magee, J. W., and Jull, A., 1997. Low-latitude glacial cooling in the Southern Hemisphere from amino-acid racemization in emu eggshells. Nature, 385, 241–244.CrossRefGoogle Scholar
  79. Miller, G. H., Beaumont, P. B., Deacon, H. J., Brooks, A. S., Hare, P. E., and Jull, A., 1999. Earliest modern humans in southern Africa dated by isoleucine epimerization in ostrich eggshell. Quaternary Science Reviews, 18, 1537–1548.CrossRefGoogle Scholar
  80. Miller, G. H., Fogel, M. L., Magee, J. W., Gagan, M. K., Clarke, S. J., and Johnson, B. J., 2005. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science, 309, 287–290.CrossRefGoogle Scholar
  81. Mitterer, R. M., 1993. The diagenesis of proteins and amino acids in fossil shells. In Engel, M. H., and Macko, S. A. (eds.), Organic Geochemistry. New York: Springer, pp. 739–753.Google Scholar
  82. Mitterer, R. M., and Kriausakul, N., 1984. Comparison of rates and degrees of isoleucine epimerization in dipeptides and tripeptides. Organic Geochemistry, 7, 91–98.CrossRefGoogle Scholar
  83. Moini, M., Klauenberg, K., and Ballard, M., 2011. Dating silk by capillary electrophoresis mass spectrometry. Analytical Chemistry, 83, 7577–7581.CrossRefGoogle Scholar
  84. Müller, P., 1984. Isoleucine epimerization in Quaternary planktonic foraminifera: effects of diagenetic hydrolysis and leaching, and Atlantic–Pacific intercore correlations. Meteor Forschungsergebnisse Reihe C Geologie und Geophysik, 38, 25–47.Google Scholar
  85. Murray‐Wallace, C., and Kimber, R., 1987. Evaluation of the amino acid racemization reaction in studies of Quaternary marine sediments in South Australia. Australian Journal of Earth Sciences, 34, 279–292.CrossRefGoogle Scholar
  86. Murray-Wallace, C., Belperio, A., Gostin, V., and Cann, J., 1993. Amino acid racemization and radiocarbon dating of interstadial marine strata (oxygen isotope stage 3), Gulf St. Vincent, South Australia. Marine Geology, 110, 83–92.CrossRefGoogle Scholar
  87. Murray-Wallace, C., Brooke, B., Cann, J., Belperio, A., and Bourman, R., 2001. Whole-rock aminostratigraphy of the Coorong Coastal Plain, South Australia: towards a 1 million year record of sea-level highstands. Journal of the Geological Society, 158, 111–124.CrossRefGoogle Scholar
  88. Nardi, S., Binda, P. L., Baccelle, L. S., and Concheri, G., 1994. Amino acids of Proterozoic and Ordovician sulphide-coated grains from western Canada: record of biologically-mediated pyrite precipitation. Chemical Geology, 111, 1–15.CrossRefGoogle Scholar
  89. Neuberger, A., 1948. Stereochemistry of amino acids. Advances in Protein Chemistry, 4, 297–383.CrossRefGoogle Scholar
  90. Oches, E. A., and McCoy, W. D., 2001. Historical developments and recent advances in amino acid geochronology applied to loess research: examples from North America, Europe, and China. Earth-Science Reviews, 54, 173–192.CrossRefGoogle Scholar
  91. Ohtani, S., and Yamamoto, K., 1991. Age estimation using the racemization of amino acid in human dentin. Journal of Forensic Sciences, 36, 792–800.CrossRefGoogle Scholar
  92. Okumura, T., Suzuki, M., Nagasawa, H., and Kogure, T., 2013. Microstructural control of calcite via incorporation of intracrystalline organic molecules in shells. Journal of Crystal Growth, 381, 114–120.CrossRefGoogle Scholar
  93. Ortiz, J. E., Torres, T., and Pérez-González, A., 2013. Amino acid racemization in four species of ostracodes: taxonomic, environmental, and microstructural controls. Quaternary Geochronology, 16, 129–143.CrossRefGoogle Scholar
  94. Penkman, K. E. H., Preece, R. C., Keen, D. H., Maddy, D., Schreve, D. C., and Collins, M. J., 2007. Testing the aminostratigraphy of fluvial archives: the evidence from intra-crystalline proteins within freshwater shells. Quaternary Science Reviews, 26, 2958–2969.CrossRefGoogle Scholar
  95. Penkman, K. E. H., Kaufman, D. S., Maddy, D., and Collins, M. J., 2008. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quaternary Geochronology, 3, 2–25.CrossRefGoogle Scholar
  96. Penkman, K. E., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T., Parfitt, S. A., White, T. S., and Collins, M. J., 2011. A chronological framework for the British Quaternary based on Bithynia opercula. Nature, 476, 446–449.CrossRefGoogle Scholar
  97. Penkman, K. E. H., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T., Parfitt, S. A., White, T. S., and Collins, M. J., 2013. An aminostratigraphy for the British Quaternary based on Bithynia opercula. Quaternary Science Reviews, 61, 111–134.CrossRefGoogle Scholar
  98. Powell, J., Collins, M. J., Cussens, J., MacLeod, N., and Penkman, K. E. H., 2013. Results from an amino acid racemization inter-laboratory proficiency study; design and performance evaluation. Quaternary Geochronology, 16, 183–197.CrossRefGoogle Scholar
  99. Ritz-Timme, S., and Collins, M. J., 2002. Racemization of aspartic acid in human proteins. Ageing Research Reviews, 1, 43–59.CrossRefGoogle Scholar
  100. Ritz-Timme, S., Rochholz, G., Schütz, H., Collins, M., Waite, E., Cattaneo, C., and Kaatsch, H.-J., 2000. Quality assurance in age estimation based on aspartic acid racemisation. International Journal of Legal Medicine, 114, 83–86.CrossRefGoogle Scholar
  101. Rockwell, T. K., 1992. Ages and deformation of marine terraces between point conception and Gaviota: Western Transverse Ranges, California. In Fletcher, C. H. I., and Wehmiller, J. F. (eds.), Quaternary Coasts of the United States, Marine and Lacustrine Systems. Tulsa: SEPM, pp. 333–341.CrossRefGoogle Scholar
  102. Rutter, N. W., and Blackwell, B., 1995. Amino acid racemization dating. In Rutter, N. W., and Catto, N. R. (eds.), Dating Methods for Quaternary Deposits. St. John’s: Geological Association of Canada, pp. 125–167.Google Scholar
  103. Rutter, N., Schnack, E. J., Rio, J. D., Fasano, J. L., Isla, F. I., and Radtke, U., 1989. Correlation and dating of Quaternary littoral zones along the Patagonian coast, Argentina. Quaternary Science Reviews, 8, 213–234.CrossRefGoogle Scholar
  104. Salamon, M., Tuross, N., Arensburg, B., and Weiner, S., 2005. Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proceedings of the National Academy of Sciences of the United States of America, 102, 13783–13788.CrossRefGoogle Scholar
  105. Sejrup, H. P., and Haugen, J.-E., 1994. Amino acid diagenesis in the marine bivalve Arctica islandica Linné from northwest European sites: only time and temperature? Journal of Quaternary Science, 9, 301–309.CrossRefGoogle Scholar
  106. Steinberg, S., and Bada, J. L., 1981. Diketopiperazine formation during investigations of amino acid racemization in dipeptides. Science, 213, 544–545.CrossRefGoogle Scholar
  107. Suzuki, M., Okumura, T., Nagasawa, H., and Kogure, T., 2011. Localization of intracrystalline organic macromolecules in mollusk shells. Journal of Crystal Growth, 337, 24–29.CrossRefGoogle Scholar
  108. Sykes, G. A., Collins, M. J., and Walton, D. I., 1995. The significance of a geochemically isolated intracrystalline organic fraction within biominerals. Organic Geochemistry, 23, 1059–1065.CrossRefGoogle Scholar
  109. Tomiak, P. J., Penkman, K. E. H., Hendy, E. J., Demarchi, B., Murrells, S., Davis, S. A., McCullagh, P., and Collins, M. J., 2013. Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons. Quaternary Geochronology, 16, 87–109.CrossRefGoogle Scholar
  110. Torres, T., Llamas, J., Canoira, L., Coello, F., García-Alonso, P., and Ortiz, J., 2000. Aminostratigraphy of two Pleistocene marine sequences from the Mediterranean coast of Spain: Cabo de Huertas (Alicante) and Garrucha (Almería). In Goodfriend, G. A., Collins, M. J., Fogel, M. L., Macko, S. A., and Wehmiller, J. F. (eds.), Perspectives in Amino Acids and Protein Geochemistry. Oxford: Oxford University Press, pp. 263–278.Google Scholar
  111. Towe, K. M., and Thompson, G. R., 1972. The structure of some bivalve shell carbonates prepared by ion-beam thinning. Calcified Tissue Research, 10, 38–48.CrossRefGoogle Scholar
  112. Walton, D., 1998. Degradation of intracrystalline proteins and amino acids in fossil brachiopods. Organic Geochemistry, 28, 389–410.CrossRefGoogle Scholar
  113. Wehmiller, J., 1976. Amino acids in fossil corals: racemization (epimerization) reactions and their implications for diagenetic models and geochronological studies. Geochimica and Cosmochimica Acta, 40, 763–776.CrossRefGoogle Scholar
  114. Wehmiller, J. F., 1977. Amino acid studies of the Del Mar, California, midden site: apparent rate constants, ground temperature models, and chronological implications. Earth and Planetary Science Letters, 37, 184–196.CrossRefGoogle Scholar
  115. Wehmiller, J. F., 1980. Intergeneric differences in apparent racemization kinetics in mollusks and foraminifera: implications for models of diagenetic racemization. In Hare, P. E., Hoering, T., and King, K. (eds.), Biogeochemistry of Amino Acids. New York: Wiley, pp. 341–345.Google Scholar
  116. Wehmiller, J. F., 1982. A review of amino acid racemization studies in Quaternary mollusks: Stratigraphic and chronologic applications in coastal and interglacial sites, pacific and Atlantic coasts, United States, United Kingdom, Baffin Island, and tropical islands. Quaternary Science Reviews, 1, 83–120.CrossRefGoogle Scholar
  117. Wehmiller, J. F., 1984. Interlaboratory comparison of amino acid enantiomeric ratios in fossil Pleistocene mollusks. Quaternary Research, 22, 109–120.CrossRefGoogle Scholar
  118. Wehmiller, J. F., 1989. Amino acid racemization: applications in chemical taxonomy and chronostratigraphy of Quaternary fossils. Short Courses in Geology, 5, 287–313.Google Scholar
  119. Wehmiller, J. F., 2013. Interlaboratory comparison of amino acid enantiomeric ratios in Pleistocene fossils. Quaternary Geochronology, 16, 173–182.CrossRefGoogle Scholar
  120. Wehmiller, J., and Belknap, D., 1982. Amino acid age estimates, Quaternary Atlantic coastal plain: comparison with U-series dates, biostratigraphy, and paleomagnetic control. Quaternary Research, 18, 311–336.CrossRefGoogle Scholar
  121. Wehmiller, J., and Hare, P., 1971. Racemization of amino acids in marine sediments. Science, 173, 907–911.CrossRefGoogle Scholar
  122. Wehmiller, J. F., and Miller, G. H., 2000. Aminostratigraphic dating methods in Quaternary Geology. In Noller, J. S., Sowers, J. M., and Lettis, W. R. (eds.), Quaternary Geochronology: Methods and Applications. Washington DC: American Geophysical Union, pp. 187–222.Google Scholar
  123. Wehmiller, J. F., Lajoie, K. R., Kvenvolden, K. A., Peterson, E., Belknap, D. F., Kennedy, G. L., Addicott, W. O., Vedder, J. G., and Wright, R. W., 1977. Correlation and chronology of Pacific Coast marine terrace deposits of continental United States by fossil Amino Acid Stereochemistry – technique, evaluation, relative ages, kinetic model ages, and geological implications, U.S. Geological Survey. Open-file report, pp. 77–680.Google Scholar
  124. Wehmiller, J. F., York, L. L., and Bart, M. L., 1995. Amino acid racemization geochronology of reworked Quaternary mollusks on U.S. Atlantic coast beaches: implications for chronostratigraphy, taphonomy, and coastal sediment transport. Marine Geology, 124, 303–337.CrossRefGoogle Scholar
  125. Wehmiller, J. F., Harris, W. B., Boutin, B. S., and Farrell, K. M., 2012. Calibration of amino acid racemization (AAR) kinetics in United States mid-Atlantic Coastal Plain Quaternary mollusks using 87Sr/86Sr analyses: evaluation of kinetic models and estimation of regional Late Pleistocene temperature history. Quaternary Geochronology, 7, 21–36.CrossRefGoogle Scholar
  126. Wilson, L., and Pollard, A. M., 2002. Here today, gone tomorrow? Integrated experimentation and geochemical modeling in studies of archaeological diagenetic change. Accounts of Chemical Research, 35, 644–651.CrossRefGoogle Scholar
  127. York, L. L., and Wehmiller, J. F., 1992. Aminostratigraphic results from Cape Lookout, NC, and their relation to the preserved Quaternary marine record of SE North Carolina. Sedimentary Geology, 80, 279–291.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.BioArCh, Department of ArchaeologyUniversity of YorkYorkUK