Encyclopedia of Scientific Dating Methods

2015 Edition
| Editors: W. Jack Rink, Jeroen W. Thompson

Amino Acid Racemization, Marine Sediments

  • Darrell KaufmanEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-6304-3_16


Amino acid racemization. The phenomenon of conversion of “left-handed” (l or “levo”) amino acids to their “right-handed” (d or “dextro”) form. In most living systems, 100 % of the amino acids are of the L form, and the conversion results in an equal mixture of d and l when the racemization reaction is complete.

Marine Sediment. Material that accumulates in the marine environment. This article focuses on material collected in cores from deep-sea settings.

Among the wide range of applications of amino acid geochronology, this technique is especially well suited for dating deep-sea sediments using foraminifera. Foraminifera inhabit most of the World Ocean and they contain relatively high concentrations of amino acids that are well retained by their carbonate test. The stable thermal environment of deep-sea sites minimizes the often-complicating effect of variable temperature on the long-term rate of racemization. Some of the earliest research on amino acid geochronology took...

This is a preview of subscription content, log in to check access.


  1. Bada, J. L., and Man, E. H., 1980. Amino acid diagenesis in Deep Sea Drilling Project cores; kinetics and mechanisms of some reactions and their applications in geochronology and in paleotemperature and heat flow determinations. Earth-Science Reviews, 16, 21–55.CrossRefGoogle Scholar
  2. Bada, J. L., and Schroeder, R. A., 1972. Racemization of isoleucine in calcareous marine sediments. Earth and Planetary Science Letters, 15, 1–11.CrossRefGoogle Scholar
  3. Bada, J. L., Shou, M. Y., Man, E. H., and Schroeder, R. A., 1978. Decomposition of hydroxy amino acids in foraminiferal tests; kinetics, mechanism and geochronological implications. Earth and Planetary Science Letters, 41, 67–76.CrossRefGoogle Scholar
  4. Belknap, D. F., and Doyle, L. J., 1986. Amino acid racemization dating in foraminifera from U.S. Atlantic and Gulf Coast slope cores. Abstracts – SEPM Midyear Meeting3, 8.Google Scholar
  5. Harada, N., and Handa, N., 1995. Amino acid chronology in the fossil planktonic foraminifers, Pulleniatina obliquiloculata from Pacific Ocean. Geophysical Research Letters, 22, 2353–2356.CrossRefGoogle Scholar
  6. Harada, N., Handa, N., Ito, M., Oba, T., and Matsumoto, E., 1996. Chronology of marine sediments by the racemization reaction of aspartic acid in planktonic foraminifera. Organic Geochemistry, 24, 921–930.CrossRefGoogle Scholar
  7. Hearty, P. J., O’Leary, M. J., Kaufman, D. S., Page, M., and Bright, J., 2004. Amino acid geochronology of individual foraminifer (Pulleniatina obliquiloculata) tests, north Queensland margin, Australia: a new approach to correlating and dating Quaternary tropical marine sediment cores. Paleoceanography, 19, PA4022, doi:10.1029/2004PA001059.CrossRefGoogle Scholar
  8. Johnson, B. J., Lehman, S. J., and Miller, G. H., 1990. Arrhenius parameters for the foram species Globorotalia menardii and deduction of bottom water temperature changes during the Pleistocene-Holocene transition. Abstracts with Programs – Geological Society of America, 22(7), 146.Google Scholar
  9. Kaufman, D. S., 2006. Temperature sensitivity of aspartic and glutamic acid racemization the foraminifera Pulleniatina. Quaternary Geochronology, 1, 188–207.CrossRefGoogle Scholar
  10. Kaufman, D. S., and Manley, W. F., 1998. A new procedure for determining enantiomeric (D/L) amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Science Reviews (Quaternary Geochronology), 17, 987–1000.CrossRefGoogle Scholar
  11. Kaufman, D. S., Polyak, L., Adler, R., Channell, J. E. T., and Xuan, C., 2008. Dating late Quaternary planktonic foraminifer Neogloboquadrina pachyderma from the Arctic Ocean using amino acid racemization. Paleoceanography, 23, PA3224.CrossRefGoogle Scholar
  12. Kaufman, D. S., Cooper, K., Behl, R., Billups, K., Bright, J., Gardner, K., Hearty, P., Jokobbson, M., Mendes, I., O’Leary, M., Polyak, L., Rasmussen, T., Rosa, F., and Schmidt, M., 2013. Amino acid racemization in mono-specific foraminifera from Quaternary deep-sea sediments. Quaternary Geochronology, 16, 50–61.CrossRefGoogle Scholar
  13. King, K. J., 1980. Applications of amino acid biogeochemistry for marine sediments. In Hare, P. E., Hoering, T. C., and King, K., Jr. (eds.), Biogeochemistry of Amino Acids. Wiley, pp. 377–391.Google Scholar
  14. King, K., Jr., and Hare, P. E., 1972. Amino acid composition of the test as a taxonomic character for living and fossil planktonic foraminifera. Micropaleontology, 18, 285–293.CrossRefGoogle Scholar
  15. King, K., Jr., and Neville, C., 1977. Isoleucine epimerization for dating marine sediments: importance of analyzing monospecific foramiferal samples. Science, 195, 1333–1335.CrossRefGoogle Scholar
  16. Knudsen, K. L., and Sejrup, H. P., 1993. Pleistocene stratigraphy in the Devils Hole area, central North Sea; foraminiferal and amino-acid evidence. Journal of Quaternary Science, 8, 1–14.CrossRefGoogle Scholar
  17. Kosnik, M. A., and Kaufman, D. S., 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: II. Data screening. Quaternary Geochronology, 3(4), 328–341.CrossRefGoogle Scholar
  18. Kvenvolden, K. A., Peterson, E., Wehmiller, J., and Hare, P. E., 1973. Racemization of amino acids in marine sediments determined by gas chromatography. Geochimica et Cosmochimica Acta, 37, 2215–2225.CrossRefGoogle Scholar
  19. Lehman, S. J., Miller, G. H., and Jones, G. A., 1988. Glacial Holocene bottom water temperature changes deduced from epimerization rate changes in foraminifers. Eos, Transactions American Geophysical Union, 69(44), 1229.Google Scholar
  20. Macko, S. A., and Aksu, A. E., 1986. Amino acid epimerization in planktonic foraminifera suggests slow sedimentation rates for Alpha Ridge, Arctic Ocean. Nature, 322, 730–732.CrossRefGoogle Scholar
  21. Müller, P. J., 1984. Isoleucine epimerization in Quaternary planktonic foraminifera; effects of diagenetic hydrolysis and leaching, and Atlantic-Pacific intercore correlations. Meteor-Forschungsergebnisse Reihe C. Geologie und Geophysik, 38, 25–47.Google Scholar
  22. Murray-Wallace, C. V., and Belperio, A. P., 1994. Identification of remanié fossils using amino acid racemization. Alcheringa, 18, 219–227.CrossRefGoogle Scholar
  23. Penkman, K. E. H., Kaufman, D. S., Maddy, D., and Collins, M. J., 2008. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusk shells. Quaternary Geochronology, 3, 2–25.CrossRefGoogle Scholar
  24. Robbins, L. L., and Brew, K., 1990. Proteins from the organic matrix of core-top and fossil planktonic foraminifera. Geochimica et Cosmochimica Acta, 54, 2285–2292.CrossRefGoogle Scholar
  25. Schroeder, R. A., and Bada, J. L., 1977. Kinetics and mechanism of the epimerization and decomposition of threonine in fossil foraminifera. Geochimica et Cosmochimica Acta, 41, 1087–1095.CrossRefGoogle Scholar
  26. Sejrup, H. P., and Haugen, J. E., 1992. Foraminiferal amino acid stratigraphy of the Nordic seas; geological data and pyrolysis experiments. Deep-Sea Research, Part A. Oceanographic Research Papers, 39(Supplement 2A), 603–623.CrossRefGoogle Scholar
  27. Sejrup, H. P., Rokoengen, K., and Miller, G. H., 1984. Isoleucine epimerization in Quaternary benthonic foraminifera from the Norwegian continental shelf: a pilot study. Marine Geology, 56, 227–239.CrossRefGoogle Scholar
  28. Stathoplos, L., and Hare, P. E., 1993. Bleach removes labile amino acids from deep sea foraminiferal shells. Journal of Foraminiferal Research, 23, 102–107.CrossRefGoogle Scholar
  29. Stathopolos, L., Hare, P. E., and Kennett, J. P., 1987. Modeling amino acid diagenesis in fossilforaminiferal tests. Eos, Transactions American Geophysical Union, 68(44), 1333–1334.Google Scholar
  30. Wehmiller, J., and Hare, P. E., 1971. Racemization of amino acids in marine sediments. Science, 173, 907–911.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Earth Sciences and Environmental SustainabilityNorthern Arizona UniversityFlagstaffUSA