Encyclopedia of Scientific Dating Methods

2015 Edition
| Editors: W. Jack Rink, Jeroen W. Thompson

Amino Acid Racemization, Fluvial and Lacustrine Sediments (AAR)

  • John F. Wehmiller
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-6304-3_114

Synonyms

Climate history; Fossils; Geochronology; Lakes; Rivers

Definition

Amino acid racemization. The phenomenon of conversion of “left-handed” (L or “levo”) amino acids to their “right-handed” (D or “dextro”) form. In most living systems, 100 % of the amino acids are of the L form, and the conversion results in an equal mixture of D and L when the racemization reaction is complete.

Fluvial sediments, lacustrine sediments. Sedimentary material that accumulates and is preserved in river, stream, or lake environments. These can include sediments dominated by biological material (shells) and those dominated by inorganic material that may form by cementation or evaporation, such as carbonates or evaporates and mud or clay. Sediments range in age (time since deposition) from days to millions of years and are found in a variety of terrestrial sedimentary environments.

Introduction

Amino acid racemization (AAR) studies of fluvial and lacustrine deposits usually require the analysis of a...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Bowen, D. Q., 2000. Revised aminostratigraphy for land-sea correlations from the northeastern North Atlantic margin. In Goodfriend, G. A., Collins, M. J., Fogel, M. L., Macko, S. A., and Wehmiller, J. F. (eds.), Perspectives in Amino acid and Protein Geochemistry. Oxford/New York: Oxford University Press, pp. 252–262.Google Scholar
  2. Bowen, D. Q., Hughes, S., Sykes, G. A., and Miller, G. H., 1989. Land-sea correlations in the pleistocene based on isoleucine epimerization in non-marine molluscs. Nature, 340, 49–51.CrossRefGoogle Scholar
  3. Bright, J., and Kaufman, D. S., 2011. Amino acids in lacustrine ostracodes, part III: effects of pH and taxonomy on racemization and leaching. Quaternary Geochronology, 6, 574–597.CrossRefGoogle Scholar
  4. Bright, J., Kaufman, D. S., Forman, S. L., McIntosh, W. C., Mead, J. I., and Baez, A., 2010. Comparative dating of a Bison-bearing late Pleistocene deposit, Térapa, Sonora, Mexico. Quaternary Geochronology, 5, 631–643.CrossRefGoogle Scholar
  5. Clark, P. U., Nelson, A. R., McCoy, W. D., Miller, B. B., and Barnes, D. K., 1989. Quaternary aminostratigraphy of Mississippi Valley loess. Bulletin of the Geological Society of America, 101, 918–926.CrossRefGoogle Scholar
  6. Dethier, D. P., and McCoy, W. D., 1993. Aminostratigraphic relations and age of Quaternary deposits, northern Espanola basin, New Mexico. Quaternary Research, 39, 222–230.CrossRefGoogle Scholar
  7. Ellis, G. L., Goodfriend, G. A., Abbott, J. T., Hare, P. E., and von Endt, D. W., 1996. Assessment of integrity and geochronology of archaeological sites using amino acid racemization in land snail shells: examples from Central Texas. Geoarchaeology, 11, 189–213.CrossRefGoogle Scholar
  8. Goodfriend, G. A., 1987. Chronostratigraphic studies of sediments in the Negev desert, using amino acid epimerization analysis of land snail shells. Quaternary Research, 28, 374–392.CrossRefGoogle Scholar
  9. Goodfriend, G. A., and Mitterer, R. M., 1993. A 45,000-yr record of a tropical lowland biota: the land snail fauna from cave sediments at Coco Ree, Jamaica. Bulletin of the Geological Society of America, 105, 18–29.CrossRefGoogle Scholar
  10. Goodfriend, G. A., and Stanley, D. J., 1996. Reworking and discontinuities in Holocene sedimentation in the Nile Delta; documentation from amino acid racemization and stable isotopes in mollusk shells. Marine Geology, 129, 271–283.CrossRefGoogle Scholar
  11. Goodfriend, G. A., and Stanley, D. J., 1999. Rapid strand-plain accretion in the northeastern Nile Delta in the 9th century A.D. and the demise of the port of Pelusium. Geology, 27, 147–150.CrossRefGoogle Scholar
  12. Johnson, B. J., and Miller, G. H., 1997. Archaeological applications of amino acid racemization. Archaeometry, 39, 265–287.CrossRefGoogle Scholar
  13. Karrow, P. F., 2004. Late Quaternary stratigraphic comparisons in south-central Ontario and western New York and the OIS 5E to early 3 interval. Northeastern Geology and Environmental Sciences, 26, 202–210.Google Scholar
  14. Karrow, P. F., Seymour, K. L., Miller, B. B., and Mirecki, J. E., 1997. Pre-late Wisconsinan Pleistocene biota from southeastern Michigan, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 133, 81–101.CrossRefGoogle Scholar
  15. Kaufman, D. S., 2003a. Dating deep-lake sediments by using amino acid racemization in fossil ostracodes. Geology, 31, 1049–1052.CrossRefGoogle Scholar
  16. Kaufman, D. S., 2003b. Amino acid paleothermometry of Quaternary ostracodes from the Bonneville Basin, Utah. Quaternary Science Reviews, 22, 899–914.CrossRefGoogle Scholar
  17. Kaufman, D. S., Forman, S. L., and Bright, J., 2001. Age of the Cutler Dam Alloformation (late Pleistocene), Bonneville Basin, Utah. Quaternary Research, 56, 322–334.CrossRefGoogle Scholar
  18. Kaufman, D. S., O’Brien, G., Mead, J. I., Bright, J., and Umhoefer, P., 2002. Late Quaternary spring-fed deposits of the Grand Canyon and their implication for deep lava-dammed lakes. Quaternary Research, 58, 329–340.CrossRefGoogle Scholar
  19. Kowalewski, M., Serrano, G., Flessa, K. W., and Goodfriend, G. A., 2000. Dead delta’s former productivity: two trillion shells at the mouth of the Colorado river. Geology, 28, 1059–1062.CrossRefGoogle Scholar
  20. Magee, J. W., Bowler, J. M., Miller, G. H., and Williams, D., 1995. Stratigraphy, sedimentology, chronology and palaeohydrology of Quaternary lacustrine deposits at Madigan Gulf, Lake Eyre, South Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 113, 3–42.CrossRefGoogle Scholar
  21. McCoy, W. D., 1987. Quaternary aminostratigraphy of the Bonneville Basin, western United States. Bulletin of the Geological Society of America, 98, 99–112.CrossRefGoogle Scholar
  22. Meijer, T., and Cleveringa, P., 2009. Aminostratigraphy of middle and late Pleistocene deposits in the Netherlands and the southern part of the North Sea basin. Global and Planetary Change, 68, 326–345.CrossRefGoogle Scholar
  23. Miller, G. H., and Brigham-Grette, J., 1989. Amino acid geochronology: resolution and precision in carbonate fossils. Quaternary International, 1, 111–128.CrossRefGoogle Scholar
  24. Miller, B. B., McCoy, W. D., Wayne, W. J., and Brockman, C. S., 1992. Ages of the Whitewater and Fairhaven tills in southwestern Ohio and southeastern Indiana. In Clark, P. U., and Lea, P. D. (eds.), The Last Interglacial-Glacial transition in North America. Boulder: Geological Society of America. Geological Society of America Special Paper, Vol. 270, pp. 89–98.CrossRefGoogle Scholar
  25. Miller, B. B., Palmer, D. F., McCoy, W. D., Smith, A. J., and Colburn, M. L., 1993. A pre-Illinoian Pleistocene fossil assemblage from near Connersville, southeastern Indiana. Quaternary Research, 40, 254–261.CrossRefGoogle Scholar
  26. Miller, G. H., Magee, J. W., and Jull, A. J. T., 1997. Low-latitude glacial cooling in the Southern Hemisphere from amino-acid racemization in emu eggshells. Nature, 385, 241–244.CrossRefGoogle Scholar
  27. Occhietti, S., Balescu, S., Lamothe, M., Clet, M., Cronin, T., Ferland, P., and Pichet, P., 1996. Late stage 5 glacio-isostatic sea in the St. Lawrence Valley, Canada and United States. Quaternary Research, 45, 128–137.CrossRefGoogle Scholar
  28. Oches, E. A., McCoy, W. D., and Clark, P. U., 1996. Amino acid estimates of latitudinal temperature gradients and geochronology of loess deposition during the last glaciation, Mississippi Valley, United States. Geological Society of America Bulletin, 108, 892–892.CrossRefGoogle Scholar
  29. Ortiz, J. E., Torres, T., Delgado, A., Julia`, R., Llamas, F. J., Soler, V., and Delgado, J., 2004. Numerical dating algorithms of amino acid racemization ratios analyzed in continental ostracodes of the Iberian Peninsula (Spain). Application to Guadix-Baza Basin (southern Spain). Quaternary Science Reviews, 23, 717–730.CrossRefGoogle Scholar
  30. Ortiz, J. E., Torres, T., Delgado, A., Reyes, E., and Díaz-Bautista, A., 2009. A review of the Tagus river tufa deposits (central Spain): age and paleoenvironmental record. Quaternary Science Reviews, 28, 947–963.CrossRefGoogle Scholar
  31. Oviatt, C. G., McCoy, W. D., and Reider, R. G., 1987. Evidence for a shallow early or middle Wisconsin-age lake in the Bonneville Basin, Utah. Quaternary Research, 27, 248–262.CrossRefGoogle Scholar
  32. Oviatt, C. G., Thompson, R. S., Kaufman, D. S., Bright, J. E., and Forester, R. M., 1999. Reinterpretation of the Burmester core, Bonneville basin, Utah. Quaternary Research, 52, 180–184.CrossRefGoogle Scholar
  33. Owen, L. A., Bright, J., Finkel, R. C., Jaiswal, M. K., Kaufman, D. S., Mahan, S., Radtke, U., Schneider, J. S., Sharp, W., Singhvi, A. K., and Waren, C. N., 2007. Numerical dating of a late Quaternary spit-shoreline complex at the northern end of Silver Lake, Mojave Desert, California: testing the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series, and amino acid racemization. Quaternary International, 166, 87–110.CrossRefGoogle Scholar
  34. Penkman, K. E. H., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T., Parfitt, S. A., White, T. S., and Collins, M. J., 2011. A chronological framework for the British Quaternary based on Bithynia opercula. Nature, 476, 446–449.CrossRefGoogle Scholar
  35. Penkman, K. E. H., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T., Parfitt, S. A., White, T. S., and Collins, M. J., 2013. An aminostratigraphy for the British Quaternary based on Bithynia opercula. Quaternary Science Reviews, 61, 111–134.CrossRefGoogle Scholar
  36. Reheis, M. C., Bright, J., Lund, S. P., Miller, D. M., Skipp, G., and Fleck, R. J., 2012. A half-million-year record of paleoclimate from the Lake Manix Core, Mojave Desert, California. Palaeogeography, Palaeoclimatology, Palaeoecology, 365–366, 11–37.CrossRefGoogle Scholar
  37. Reichert, K. L., Licciardi, L., and Kaufman, D. S., 2011. Amino acid racemization in lacustrine ostracodes, part II: paleothermometry in Pleistocene sediments at Summer Lake, Oregon. Quaternary Geochronology, 6, 174–185.CrossRefGoogle Scholar
  38. Torres, T., Ortiz, J. E., Garcia de la Morena, M. A., Llamas, F. J., and Goodfriend, G. A., 2005. Ostracode-based aminostratigraphy and aminochronology of a tufa system in central Spain. Quaternary International, 135, 21–33.CrossRefGoogle Scholar
  39. Wehmiller, J. F., 1977. Amino acid studies of the Del Mar, California midden site: apparent rate constants, ground temperature models, and chronological implications. Earth and Planetary Science Letters, 37, 184–196.CrossRefGoogle Scholar
  40. Wehmiller, J. F., Stecher, H. A., III, York, L. L., and Friedman, I., 2000. The thermal environment of fossils: effective ground temperatures at aminostratigraphic sites on the U. S. Atlantic coastal plain. In Goodfriend, G. A., Collins, M. J., Fogel, M. L., Macko, S. A., and Wehmiller, J. F. (eds.), Perspectives in Amino Acid and Protein Geochemistry. Oxford/New York: Oxford University Press, pp. 219–250.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of DelawareNewarkUSA