Skip to main content

Accelerator Mass Spectrometry

  • Reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 588 Accesses

Synonyms

Accelerator dating; AMS; Atom counting

Definition

Accelerator mass spectrometry is a technique that combines a particle accelerator with a mass spectrometer in order to measure very low levels (10−16) of cosmogenic and anthropogenic radionuclides employed for dating purposes.

Introduction

Accelerator mass spectrometry (AMS) is widely used to measure rare isotope ratios of cosmogenic and anthropogenic nuclides. Cosmogenic isotopes are produced through the interaction of cosmic rays with atmospheric molecules, rocks at the earth’s surface (Dunai, 2010) and in extraterrestrial settings. AMS is the analytical tool of choice for a range of isotopes used for dating purposes, especially radiocarbon dating and surface exposure dating. Table 1 lists a number of these isotopes, hereafter referred to as AMS isotopes. These can potentially be used to date samples from years to tens of millions of years old. The chief advantage of AMS over standard mass spectrometry is that it eliminates...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Alvarez, L., and Cornog, R., 1939. Helium and hydrogen of mass 3. Physical Review, 56, 613.

    Article  Google Scholar 

  • Baglin, C. M., 2008. Nuclear data sheets for A = 81. Nuclear Data Sheets, 109, 2257–2437.

    Article  Google Scholar 

  • Bennett, C. L., Beukens, R. P., Clover, M. R., Gove, H. E., Liebert, R. B., Litherland, A. E., Purser, K. H., and Sondheim, W. E., 1977. Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science, 198, 508–510.

    Article  Google Scholar 

  • Collon, P., Kutschera, W., Loosli, H. H., Lehmann, B. E., Purtschert, R., Love, A., Sampson, L., Anthony, D., Cole, D., Davids, B., Morrissey, D. J., Sherrill, B. M., Steiner, M., Pardo, R. C., and Paul, M., 2000. 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater. Earth and Planetary Science Letters, 182, 103–113.

    Article  Google Scholar 

  • Dunai, T., 2010. Cosmogenic Nuclides: Principles, Concepts, and Applications in the Earth Surface Sciences. New York: Cambridge University Press. 187 p.

    Book  Google Scholar 

  • Elmore, D., and Phillips, F. M., 1987. Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science, 236, 543–550.

    Article  Google Scholar 

  • Fabryka-Martin, J., Bentley, H., Elmore, D., and Airey, P. L., 1984. Natural iodine-129 as an environmental tracer. Geochimica et Cosmochimica Acta, 49, 337–347.

    Article  Google Scholar 

  • Fifield, L. K., and Morgenstern, U., 2009. Silicon-32 as a tool for dating the recent past. Quaternary Geochronology, 4, 400–405.

    Article  Google Scholar 

  • Gosse, J. C., and Phillips, F. M., 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews, 20, 1475–1560.

    Article  Google Scholar 

  • Granger, D. E., Lifton, N. A., and Willenbring, J. K., 2013. A cosmic trip: 25 years of cosmogenic nuclides in geology. GSA Bulletin, 125(9/10), 1379–1402.

    Article  Google Scholar 

  • Hellborg, R., and Skog, G., 2008. Accelerator mass spectrometry. Mass Spectrometry Reviews, 27, 398–427.

    Article  Google Scholar 

  • Herzog, G. F., Albrecht, A., Mai, P., Fink, D., Klein, J., Middleton, R., Bogard, D. D., Nyquist, L. E., Shih, C.-Y., Garrison, D. H., Reese, Y., Masarik, J., Reedy, R. C., Rugel, G., Faestermann, T., and Korschinek, G., 2011. Cosmic-ray exposure history of the Norton County enstatite achondrite. Meteoritics & Planetary Science, 46(2), 284–310.

    Article  Google Scholar 

  • Honda, M., and Imamura, M., 1971. Half-life of 53Mn. Physical Review C, 4, 1182–1188.

    Article  Google Scholar 

  • Jörg, G., Amelin, Y., Kossert, K., and Gostomski, L. v., 2012. Precise and direct determination of the half-life of 41Ca. Geochimica et Cosmochimica Acta, 88, 51–65.

    Article  Google Scholar 

  • Jull, A. J. T., 2001. Terrestrial ages of meteorites. In Peuker-Ehrenbrink, B., and Schmitz, B. (eds.), Accretion of Extraterrestrial Matter Throughout Earth’s History. New York: Kluwer/Plenum, pp. 241–266.

    Chapter  Google Scholar 

  • Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, L., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A., 2010. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B, 268, 187–191.

    Article  Google Scholar 

  • Kutschera, W., 2013. Applications of accelerator mass spectrometry. International Journal of Mass Spectrometry, 349–350, 203–218.

    Article  Google Scholar 

  • Lal, D., Goldberg, E. D., and Koide, M., 1960. Cosmic-ray-produced silicon-32 in nature. Science, 131, 332–337.

    Article  Google Scholar 

  • Litherland, T., Zhao, X.-L., and Kieser, W. E., 2010. Mass spectrometry with accelerators. Mass Spectrometry Reviews, 30, 1037–1072.

    Article  Google Scholar 

  • Muller, R. A., 1977. Radioisotope dating with a cyclotron. Science, 196, 489–494.

    Article  Google Scholar 

  • Nelson, D. E., Korteling, R. G., and Stott, W. R., 1977. Carbon-14: direct detection at natural concentrations. Science, 198, 507–508.

    Article  Google Scholar 

  • Nica, N., Cameron, J., and Singh, B., 2012. Nuclear data sheets for A = 36. Nuclear Data Sheets, 113, 1–155.

    Article  Google Scholar 

  • Paul, M., Fink, D., Meirav, O., Theis, S., and Englert, P., 1985. Determination of Ca-41 production for meteorite studies by accelerator mass-spectrometry. Meteoritics, 20(4), 726–727.

    Google Scholar 

  • Schwehr, K. A., Santschi, P. H., Moran, J. E., and Elmore, D., 2005. Near-conservative behavior of 129I in the Orange County aquifer system, California. Applied Geochemistry, 20, 1461–1472.

    Article  Google Scholar 

  • Suter, M., 2010. Challenging developments in three decades of accelerator mass spectrometry at ETH: from large particle accelerators to table size instruments. European Journal of Mass Spectrometry, 16(3), 471–478, doi:10.1255/ejms.1078.

    Article  Google Scholar 

  • Synal, H.-A., 2013. Developments in accelerator mass spectrometry. International Journal of Mass Spectrometry, 349–350, 192–202.

    Article  Google Scholar 

  • Tendow, Y., 1996. Nuclear data sheets for A = 129. Nuclear Data Sheets, 77, 631–770.

    Article  Google Scholar 

  • Tomaru, H., Lu, Z., Fehn, U., and Muramatsu, Y., 2009. Origin of hydrocarbons in the Green Tuff region of Japan: 129I results from oil field brines and hot springs in the Akita and Niigata Basins. Chemical Geology, 264, 221–231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Timothy Jull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Jull, A.J.T., Burr, G.S. (2015). Accelerator Mass Spectrometry. In: Jack Rink, W., Thompson, J.W. (eds) Encyclopedia of Scientific Dating Methods. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6304-3_102

Download citation

Publish with us

Policies and ethics