Encyclopedia of Scientific Dating Methods

2015 Edition
| Editors: W. Jack Rink, Jeroen W. Thompson

Accelerator Mass Spectrometry

  • A. J. Timothy JullEmail author
  • George S. Burr
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-6304-3_102


Accelerator dating; AMS; Atom counting


Accelerator mass spectrometry is a technique that combines a particle accelerator with a mass spectrometer in order to measure very low levels (10−16) of cosmogenic and anthropogenic radionuclides employed for dating purposes.


Accelerator mass spectrometry (AMS) is widely used to measure rare isotope ratios of cosmogenic and anthropogenic nuclides. Cosmogenic isotopes are produced through the interaction of cosmic rays with atmospheric molecules, rocks at the earth’s surface (Dunai, 2010) and in extraterrestrial settings. AMS is the analytical tool of choice for a range of isotopes used for dating purposes, especially radiocarbon dating and surface exposure dating. Table 1 lists a number of these isotopes, hereafter referred to as AMS isotopes. These can potentially be used to date samples from years to tens of millions of years old. The chief advantage of AMS over standard mass spectrometry is that it eliminates...
This is a preview of subscription content, log in to check access.


  1. Alvarez, L., and Cornog, R., 1939. Helium and hydrogen of mass 3. Physical Review, 56, 613.CrossRefGoogle Scholar
  2. Baglin, C. M., 2008. Nuclear data sheets for A = 81. Nuclear Data Sheets, 109, 2257–2437.CrossRefGoogle Scholar
  3. Bennett, C. L., Beukens, R. P., Clover, M. R., Gove, H. E., Liebert, R. B., Litherland, A. E., Purser, K. H., and Sondheim, W. E., 1977. Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science, 198, 508–510.CrossRefGoogle Scholar
  4. Collon, P., Kutschera, W., Loosli, H. H., Lehmann, B. E., Purtschert, R., Love, A., Sampson, L., Anthony, D., Cole, D., Davids, B., Morrissey, D. J., Sherrill, B. M., Steiner, M., Pardo, R. C., and Paul, M., 2000. 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater. Earth and Planetary Science Letters, 182, 103–113.CrossRefGoogle Scholar
  5. Dunai, T., 2010. Cosmogenic Nuclides: Principles, Concepts, and Applications in the Earth Surface Sciences. New York: Cambridge University Press. 187 p.CrossRefGoogle Scholar
  6. Elmore, D., and Phillips, F. M., 1987. Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science, 236, 543–550.CrossRefGoogle Scholar
  7. Fabryka-Martin, J., Bentley, H., Elmore, D., and Airey, P. L., 1984. Natural iodine-129 as an environmental tracer. Geochimica et Cosmochimica Acta, 49, 337–347.CrossRefGoogle Scholar
  8. Fifield, L. K., and Morgenstern, U., 2009. Silicon-32 as a tool for dating the recent past. Quaternary Geochronology, 4, 400–405.CrossRefGoogle Scholar
  9. Gosse, J. C., and Phillips, F. M., 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews, 20, 1475–1560.CrossRefGoogle Scholar
  10. Granger, D. E., Lifton, N. A., and Willenbring, J. K., 2013. A cosmic trip: 25 years of cosmogenic nuclides in geology. GSA Bulletin, 125(9/10), 1379–1402.CrossRefGoogle Scholar
  11. Hellborg, R., and Skog, G., 2008. Accelerator mass spectrometry. Mass Spectrometry Reviews, 27, 398–427.CrossRefGoogle Scholar
  12. Herzog, G. F., Albrecht, A., Mai, P., Fink, D., Klein, J., Middleton, R., Bogard, D. D., Nyquist, L. E., Shih, C.-Y., Garrison, D. H., Reese, Y., Masarik, J., Reedy, R. C., Rugel, G., Faestermann, T., and Korschinek, G., 2011. Cosmic-ray exposure history of the Norton County enstatite achondrite. Meteoritics & Planetary Science, 46(2), 284–310.CrossRefGoogle Scholar
  13. Honda, M., and Imamura, M., 1971. Half-life of 53Mn. Physical Review C, 4, 1182–1188.CrossRefGoogle Scholar
  14. Jörg, G., Amelin, Y., Kossert, K., and Gostomski, L. v., 2012. Precise and direct determination of the half-life of 41Ca. Geochimica et Cosmochimica Acta, 88, 51–65.CrossRefGoogle Scholar
  15. Jull, A. J. T., 2001. Terrestrial ages of meteorites. In Peuker-Ehrenbrink, B., and Schmitz, B. (eds.), Accretion of Extraterrestrial Matter Throughout Earth’s History. New York: Kluwer/Plenum, pp. 241–266.CrossRefGoogle Scholar
  16. Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, L., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A., 2010. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B, 268, 187–191.CrossRefGoogle Scholar
  17. Kutschera, W., 2013. Applications of accelerator mass spectrometry. International Journal of Mass Spectrometry, 349–350, 203–218.CrossRefGoogle Scholar
  18. Lal, D., Goldberg, E. D., and Koide, M., 1960. Cosmic-ray-produced silicon-32 in nature. Science, 131, 332–337.CrossRefGoogle Scholar
  19. Litherland, T., Zhao, X.-L., and Kieser, W. E., 2010. Mass spectrometry with accelerators. Mass Spectrometry Reviews, 30, 1037–1072.CrossRefGoogle Scholar
  20. Muller, R. A., 1977. Radioisotope dating with a cyclotron. Science, 196, 489–494.CrossRefGoogle Scholar
  21. Nelson, D. E., Korteling, R. G., and Stott, W. R., 1977. Carbon-14: direct detection at natural concentrations. Science, 198, 507–508.CrossRefGoogle Scholar
  22. Nica, N., Cameron, J., and Singh, B., 2012. Nuclear data sheets for A = 36. Nuclear Data Sheets, 113, 1–155.CrossRefGoogle Scholar
  23. Paul, M., Fink, D., Meirav, O., Theis, S., and Englert, P., 1985. Determination of Ca-41 production for meteorite studies by accelerator mass-spectrometry. Meteoritics, 20(4), 726–727.Google Scholar
  24. Schwehr, K. A., Santschi, P. H., Moran, J. E., and Elmore, D., 2005. Near-conservative behavior of 129I in the Orange County aquifer system, California. Applied Geochemistry, 20, 1461–1472.CrossRefGoogle Scholar
  25. Suter, M., 2010. Challenging developments in three decades of accelerator mass spectrometry at ETH: from large particle accelerators to table size instruments. European Journal of Mass Spectrometry, 16(3), 471–478, doi:10.1255/ejms.1078.CrossRefGoogle Scholar
  26. Synal, H.-A., 2013. Developments in accelerator mass spectrometry. International Journal of Mass Spectrometry, 349–350, 192–202.CrossRefGoogle Scholar
  27. Tendow, Y., 1996. Nuclear data sheets for A = 129. Nuclear Data Sheets, 77, 631–770.CrossRefGoogle Scholar
  28. Tomaru, H., Lu, Z., Fehn, U., and Muramatsu, Y., 2009. Origin of hydrocarbons in the Green Tuff region of Japan: 129I results from oil field brines and hot springs in the Akita and Niigata Basins. Chemical Geology, 264, 221–231.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.NSF-Arizona AMS Laboratory, Physics BuildingUniversity of ArizonaTucsonUSA
  2. 2.NSF Arizona Accelerator Mass Spectrometry LaboratoryDepartment of Geosciences and Physics, University of ArizonaTucsonUSA
  3. 3.Department of GeosciencesNational Taiwan UniversityTaipeiTaiwan