Skip to main content

Bottom Simulating Seismic Reflectors (BSR)

  • Reference work entry
  • First Online:
Encyclopedia of Marine Geosciences

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

A seismic reflection occurring in the upper few hundred meters of marine sediments mimicking the seafloor, crosscutting sediment layers, and showing a phase reversal is known as a “bottom-simulating reflector.” Such a gas hydrate-related BSR originates from a large impedance contrast between a layer of gas-hydrated sediment above and a free gas layer below. A diagenetic-related BSR occurs at the opal-A/opal-CT transition zone, lies often deep and outside the base of the gas hydrate stability zone, shows no phase reversal, and does not always mimic the seafloor.

Introduction

The intent of this article is to describe the two most commonly observed bottom-simulating reflectors (BSRs). The term BSR stems from their principal characteristic that these reflectors mimic the seafloor topography in marine seismic reflection data thereby crosscutting sedimentary strata. BSRs are known to occur in continental margin sediments in regions of gas hydrate and free gas (Shipley et al., 1979...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Berndt, C., Bünz, S., Clayton, T., Mienert, J., and Saunders, M., 2004. Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin. Marine and Petroleum Geology, 21, 723–733.

    Article  Google Scholar 

  • Biastoch, A., Treude, T., Rüpke, L. H., Riebesell, U., Roth, C., Burwicz, E. B., Park, W., Latif, M., Böning, C. W., Madec, G., and Wallmann, K., 2011. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, 38, L08602.

    Article  Google Scholar 

  • Brekke, H., 2000. The tectonic evolution of the Norwegian Sea continental margin with emphasis on the Vøring and More basins. In Nottvedt, A. (ed.), Dynamics of the Norwegian Margin. Geological Society of London Special Publication 167. London: Geological Society, pp. 327–378.

    Google Scholar 

  • Bünz, S., Mienert, J., and Berndt, C., 2003. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth and Planetary Science Letters, 209(3–4), 291–307.

    Article  Google Scholar 

  • Cartwright, J. A., and Dewhurst, D. N., 1998. Layer-bound compaction faults in fine-grained sediments. Bulletin of the Geological Society of America, 110(10), 1242–1257.

    Article  Google Scholar 

  • Chand, S., Mienert, J., Andreassem, K., Knies, J., Plassen, L., and Fotland, B., 2008. Gas hydrate stability zone modelling in areas of salt tectonics and pockmarks of the Barents Sea suggest an active hydrocarbon venting system. Marine and Petroleum Geology, 25, 625–636.

    Article  Google Scholar 

  • Davies, R. J., and Cartwright, J. A., 2002. A fossilized opal-A to opal C/T transformation on the northeast Atlantic margin: support for a significantly elevated paleogeothermal gradient during the Neogene? Basin Research, 14, 467–486.

    Article  Google Scholar 

  • Depreiter, D., Poort, J., Van Rensbergen, P., and Henriet, J. P., 2005. Geophysical evidence of gas hydrates in shallow submarine mud volcanoes on the Moroccan margin. Journal of Geophysical Research, 110, B10103, doi:10.1029/2005JB003622.

    Article  Google Scholar 

  • Dickens, G. R., and Quinby-Hunt, M. S., 1997. Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications. Journal of Geophysical Research, 102, 773–783.

    Article  Google Scholar 

  • Ferré, B., Mienert, J., and Feseker, T., 2012. Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales. Journal of Geophysical Research, Oceans, 117, C10017.

    Google Scholar 

  • Grevemeyer, I., and Villinger, H., 2001. Gas hydrate stability and the assessment of heat flow through continental margins. Geophysical Journal International, 145, 647–660.

    Article  Google Scholar 

  • Hein, J. R., Scholl, D. W., Barron, J. A., Jones, M. G., and Miller, J. J., 1978. Diagenesis of Late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea. Sedimentology, 25, 155–181.

    Article  Google Scholar 

  • Hesse, R., 1989. Silica diagenesis: origin of inorganic and replacement cherts. Earth-Science Reviews, 26, 253–284.

    Article  Google Scholar 

  • Holland, H. D., and Turekian, K. K., 2003. Treatise on Geochemistry. Elsevier Pergamon, Elsevier Ltd. The Boulevard, Langford Lane, Kidlington, Oxford, QX5 IGB, UK, ISBN 978-0-08-043751-4.

    Google Scholar 

  • Hornbach, M. J., Holbrook, W. S., Gorman, A. R., Hackwith, K. L., Lizarralde, D., and Pecher, I., 2003. Direct seismic detection of methane hydrate on the Blake Ridge. Geophysics, 68(1), 92–100.

    Article  Google Scholar 

  • Hurd, D. C., and Birdwhistell, S., 1983. On producing a more general model for biogenic silica dissolution. American Journal of Science, 283, 1–28.

    Article  Google Scholar 

  • Hyndman, R. D., and Spence, G. D., 1992. A seismic study of methane hydrate marine bottom simulating reflectors. Journal of Geophysical Research – Solid Earth, 97, 6683–6698.

    Article  Google Scholar 

  • Knauth, L. P., 1994. Petrogenesis of chert. Reviews of Mineralogy, 29, 233–258.

    Google Scholar 

  • Kotelnikova, S., 2002. Microbial production and oxidation of methane in deep subsurface. Earth-Science Reviews, 58, 367–395.

    Article  Google Scholar 

  • Kvenvolden, K. A., 1993. Gas hydrates – geological perspective and global change. Reviews of Geophysics, 31, 173–187.

    Article  Google Scholar 

  • Mienert, J., Vanneste, M., Bunz, S., Andreassen, K., Haflidason, H., and Sejrup, H. P., 2005. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Marine and Petroleum Geology, 22, 233–244.

    Article  Google Scholar 

  • Nouzé, H., Cosquer, E., Collot, J., Foucher, L. P., Klingelhoefer, F., Lafoy, Y., and Géli, L., 2009. Geophysical characterization of bottom simulating reflectors in the Fairway Basin (off New Caledonia, Southwest Pacific), based on high resolution seismic profiles and heat flow data. Marine Geology, 266(1–4), 80–90.

    Article  Google Scholar 

  • Phrampus, B. J., and Hornbach, M. J., 2012. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature, 490(7421), 527–530.

    Article  Google Scholar 

  • Rajan, A., Bünz, S., Mienert, J., and Smith, A. J., 2013. Gas hydrate in petroleum provinces of the SW-Barents Sea. Marine and Petroleum Geology, 46, 92–106.

    Article  Google Scholar 

  • Rempel, A. W., and Buffett, B. A., 1997. Formation and accumulation of gas hydrate in porous media. Journal of Geophysical Research, 102, 10151–10164.

    Article  Google Scholar 

  • Shipley, T. H., Houston, M. H., Buffler, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W., and Worzel, J. L., 1979. Seismic reflection evidence for the widespread occurrence of possible gas-hydrate horizons on continental slopes and rises. American Association of Petroleum Geologists Bulletin, 63, 2204–2213.

    Google Scholar 

  • Sloan, D. R., 2003. Fundamental principles and applications of natural gas hydrates. Nature, 426, 353–359.

    Article  Google Scholar 

  • Tribble, J. S., Mackenzie, F. T., Urmos, J., O’Brien, D. K., and Manghnani, M. H., 1992. Effects of biogenic silica on acoustic and physical properties of clay-rich marine sediments. American Association of Petroleum Geologists Bulletin, 76, 792–804.

    Google Scholar 

  • Vogt, P. R., and Jung, W. Y., 2002. Holocene mass wasting on upper non-Polar continental slopes – due to post-Glacial ocean warming and hydrate dissociation? Geophysical Research Letters, 29, 55-1–55-4.

    Google Scholar 

  • Wood, W. T., Gettrust, J. F., Chapman, N. R., Spence, G. D., and Hyndman, R. D., 2002. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness. Nature, 420, 656–660.

    Article  Google Scholar 

  • Zatsepina, O. Y., and Buffett, B. A., 1998. Thermodynamic conditions for the stability of gas hydrate in the seafloor. Journal of Geophysical Research, 103, 24127–24139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Mienert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Mienert, J., Bünz, S. (2016). Bottom Simulating Seismic Reflectors (BSR). In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6238-1_133

Download citation

Publish with us

Policies and ethics