Skip to main content

Electrochemical Interfaces for Energy Storage and Conversion

  • 519 Accesses

Synonyms

Computer modeling of electrochemical systems; DFT-based simulations of electrified interfaces; Electrochemical energy storage and conversion; Electrodics from first principles; Modeling of batteries and fuel cells; Parameter-free study of electrochemical interfaces

Definition

Under equilibrium conditions, a bulk electrolyte is an electroneutral, isotropic, and homogeneous solution, and there are no electric fields along any preferential direction. However, at the frontier with another material with mobile free charges (ions or electrons) and a different chemical potential – e.g., the electrode – some anisotropy in the forces experienced by the particles arises, and charge redistribution occurs. Although the interfacial region remains overall neutral, either side of the boundary becomes charged to an equal and opposite extent, forming the so-called electrical double layer or electrified interface. This gives rise to a potential difference across the interface. This potential...

Keywords

  • Density Functional Theory
  • Fuel Cell
  • Solid Oxide Fuel Cell
  • Normal Hydrogen Electrode
  • Periodic Boundary Condition

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

References

  1. Parr, R.G., Yang, W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford, UK (1989)

    Google Scholar 

  2. Mueller, J.E., Fantauzzi, D., Jacob, T.: Multiscale Modeling of Electrochemical Systems Jonathan – From Electrocatalysis: Theoretical Foundations and Model Experiments, 1st edn. In: Richard C. Alkire, Ludwig A. Kibler, Dieter M. Kolb, Jacek Lipkowski (eds.) Wiley-VCH Verlag GmbH & Co. KGaA (2013)

    Google Scholar 

  3. Axel Groß, A.: The virtual chemistry lab for reactions at surfaces: is it possible? Will it be useful? Surf. Sci. 500, 347–367 (2002)

    CrossRef  Google Scholar 

  4. Keith, J.A., Anton, J., Kaghazchi, P., Jacob, T.: Modelling Catalytic Reactions on Surfaces with Density Functional Theory, pp. 1–38. Wiley-VCH, Verlag GmbH (2011)

    Google Scholar 

  5. Hammer, B., Nørskov, J.K.: Why gold is the noblest of all the metals. Nature 376, 238–240 (2002)

    CrossRef  Google Scholar 

  6. Carrasco, J., Hodgson, A., Michaelides, A.: A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667–674 (2012)

    CrossRef  Google Scholar 

  7. Groß, A. Institut für Theoretische Chemie, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany: Theory of solid/electrolyte interfaces, Ψk Scientific highlight of the month, October 2014

    Google Scholar 

  8. Spohr, E.: Some recent trends in computer simulations of aqueous DLs. Electrochim. Acta 49, 23–27 (2003); Roman, T., Groß, A.: Structure of water layers on hydrogen-covered Pt electrodes. Catal. Today 202, 183–190 (2013)

    Google Scholar 

  9. Cheng, J., Sprik, M.: Alignment of electronic energy levels at electrochemical interfaces. Phys. Chem. Chem. Phys. 14, 11245–11267 (2012)

    CrossRef  Google Scholar 

  10. Taylor, C.D., Wasileski, S.A., Filhol, J.S., Neurok, M.: First principles reaction modelling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys. Rev. B 73, 165402 (2006)

    CrossRef  Google Scholar 

  11. Lozovoi, A.Y., Alavi, A., Kohanoff, J., Lynden-Bell, R.M.: Ab initio simulation of charged slabs at constant chemical potential. J. Chem. Phys. 115, 1661–1669 (2001)

    CrossRef  Google Scholar 

  12. Rossmeisl, J., Greeley, J., Karlberg, G.: Electrocatalysis and catalyst screening from density functional theory calculations. In: Marc Koper (ed.) from Fuel Cell Catalysis: A Surface Science Approach. Andrzej Wieckowski, Wiley (2009), ISBN: 978-0-470-13116-9

    Google Scholar 

  13. Norskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Blingaard, T., Jònsson, H.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004)

    CrossRef  Google Scholar 

  14. Otani, M., Sugino, O.: First-principles calculations of charged surfaces and interfaces: a plane-wave nonrepeated slab approach. Phys. Rev. B 73, 115407 (2006)

    CrossRef  Google Scholar 

  15. Andreussi, O., Dabo, I., Marzari, N.: Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 136, 064102 (2012)

    CrossRef  Google Scholar 

  16. http://batteryuniversity.com/learn/article/global_battery_markets

    Google Scholar 

  17. Gasteiger, H.A., Markovic, N.M.: Just a dream – or future reality? Science 324, 48–49 (2009)

    CrossRef  Google Scholar 

  18. Adler, S.B., Bessler, W.G.: Elementary kinetic modelling of SOFC electrode reactions. In: Viel-stich, W. (ed.) Handbook of Fuel Cells – Fundamentals, Technology and Applications, vol. 5. Wiley, New York (2009)

    Google Scholar 

  19. Tuckerman, M.E.: Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, Oxford (2010)

    Google Scholar 

  20. Shishkin, M., Ziegler, T.: Direct modelling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview. Phys. Chem. Chem. Phys. 16, 1798–1808 (2014)

    CrossRef  Google Scholar 

  21. Cucinotta, C.S., Bernasconi, M., Parrinello, M.: Hydrogen oxidation reaction at the Ni/YSZ anode of solid oxide fuel cells from first principles. Phys. Rev. Lett. 107, 206103(1–5) (2011)

    CrossRef  Google Scholar 

  22. Lefevre, M., Proietti, E., Jaouen, F., Dedelet, J.-P.: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009)

    CrossRef  Google Scholar 

  23. Zhao, Y., Truhlar, D.G.: Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008)

    CrossRef  Google Scholar 

  24. Balaish, M., Kraytsberg, A., Ein-Eli, Y.: A critical review on lithium-air battery electrolytes. Phys. Chem. Chem. Phys. 16, 2801–2822 (2014)

    CrossRef  Google Scholar 

  25. Peled, E.: The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems -The Solid Electrolyte Interphase Model, J. Electrochem. Soc. 126, 2047–2051 (1979)

    CrossRef  Google Scholar 

  26. Laino, T., Curioni, A.: A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide. Chem. Eur. J. 18, 3510–3520 (2012)

    CrossRef  Google Scholar 

  27. Radin, M.D., Rodrigues, J.F., Tian, F., Siegel, D.J.: Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 134, 1093–1103 (2012)

    CrossRef  Google Scholar 

  28. Dathar, G.K.P., Sheppard, D., Stevenson, K.J., Henkelman, G.: Calculations of Li-ion diffusion in olivine phosphates. Chem. Mater. 23, 4032–4037 (2011)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clotilde S. Cucinotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Cucinotta, C.S., Kosa, M. (2015). Electrochemical Interfaces for Energy Storage and Conversion. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100941-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100941-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science