Skip to main content

Amazon River Basin

  • Living reference work entry
  • Latest version View entry history
  • First Online:
The Wetland Book

Abstract

Amazonian wetlands cover an area of more than two million of kilometers squared and consist of different wetland types that vary in hydrology, water and soil fertility, and productivity. Wetlands harbor a large fraction of Amazonian biodiversity also including many endemic plant and animal species, and provide multiple ecosystem services to humans. However, few Amazonian countries have detailed wetland inventories, maps, and classification systems, and therefore also lack specific conservation and wetland management strategies. While remote and scarcely inhabited wetland types are still in a fairly pristine stage, the conservation status of most Amazonian wetlands is at high risk because of multiple threats and in particular due to the lack of national and transnational policies regarding wetland conservation. Major threats of Amazonian wetlands include land cover change, river damming for hydropower generation, pollution, ecosystem degradation and local changes in hydrology. This trend can only be mitigated by the creation of a more holistic understanding of the benefits provided by wetlands combined with integrated, transnational conservation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abell R, Allan JD, Lehner B. Unlocking the potential of protected areas for freshwaters. Biol Conserv. 2007;134:48–63.

    Article  Google Scholar 

  • Abell R, Thieme ML, Revenga C, et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience. 2008;58:403–14.

    Article  Google Scholar 

  • Adis J. Terrestrial invertebrates: survival strategies, group spectrum, dominance and activity patterns. In: Junk WJ, editor. The Central Amazonian floodplain: ecology of a pulsing system. Berlin: Springer; 1997. p. 299–318.

    Chapter  Google Scholar 

  • Adis J, Junk WJ. Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshw Biol. 2002;47:711–31.

    Article  Google Scholar 

  • Adis J, Messner B. Adaptations to life under water: tiger beetles and millipedes. In: Junk WJ, editor. The Central Amazon floodplain: ecology of pulsing system. Berlin: Springer; 1997. p. 319–30.

    Chapter  Google Scholar 

  • Agostinho AA, Pelicice FM, Gomes LC. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz J Biol. 2008;68:1119–32.

    Article  CAS  PubMed  Google Scholar 

  • Bayley PB. Central Amazon fish populations: biomass, production and some dynamic characteristics. [dissertation]. Halifax: Dalhousie University; 1983.

    Google Scholar 

  • Bayley PB, Petrere Jr M. Amazon fisheries: assessment methods, current status, and management options. Can Spec Publ Fish Aquat Sci. 1989;106:385–98.

    Google Scholar 

  • Bleich ME, Mortati AF, André T, Piedade MTF. Riparian deforestation affects the structural dynamics of headwater streams from southern Brazilian Amazonia. Trop Conserv Sci. 2014;7:657–76.

    Article  Google Scholar 

  • Brightsmith D, Bravo A. Ecology and management of nesting blue-and-yellow macaws (Ara ararauna) in Mauritia palm swamps. Biodivers Conserv. 2005;15:4271–87.

    Article  Google Scholar 

  • Castello L, McGrath DG, Hess LL, et al. The vulnerability of Amazonian freshwater ecosystems. Conserv Lett. 2013;6:217–29.

    Article  Google Scholar 

  • Coomes DA. Nutrient status of Amazonian caatinga forests in a seasonally dry area: nutrient fluxes in litter fall and analyses of soils. Can J For Res. 1997;27:831–9.

    Google Scholar 

  • da Silva JMC, Rylands AB, da Fonseca GAB. The fate of the Amazonian areas of endemism. Conserv Biol. 2005;19:689–94.

    Article  Google Scholar 

  • De Groot R, Brander L, Van der Ploeg S, et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv. 2012;1:50–61.

    Article  Google Scholar 

  • De Sousa Jr PT, Piedade MTF, Candotti E. Brazil’s forest code puts wetlands at risk. Lett Nat. 2011;478:458.

    Article  Google Scholar 

  • Dias AP. Análise especial aplicada a delimitação de áreas úmidas da planície de inundação do médio Araguaia. [master’s thesis]. Cuiabá: Faculdade de Engenharia Florestal, Universidade Federal de Mato Grosso; 2014. Portuguese.

    Google Scholar 

  • Fearnside PM. Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu River basin. Environ Manag. 2006;38:16–27.

    Article  Google Scholar 

  • Fearnside PM. Emissions from tropical hydropower and the IPCC. Environ Sci Pol. 2015;50:225–39.

    Article  Google Scholar 

  • Ferreira J, Aragão LEOC, Barlow J, et al. Brazil’s environmental leadership at risk: mining and dams threaten protected areas. Science. 2014;346:706–7.

    Article  CAS  PubMed  Google Scholar 

  • Fine PVA, Mesones I, Coley PD. Herbivores promote habitat specialization by trees in Amazonian forests. Science. 2004;305:663–5.

    Article  CAS  PubMed  Google Scholar 

  • Finer M, Jenkins CN. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS One. 2012;7, e35126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco W, Dezzeo N. Soils and soil-water regime in the terra firme-caatinga forest complex near San Carlos de Rio Negro, state of Amazonas, Venezuela. Interciencia. 1994;19:305–16.

    Google Scholar 

  • Franklin E, Adis J, Woas S. The oribatid mites. In: Junk WJ, editor. The Central Amazon floodplain: ecology of a pulsing system. Berlin: Springer; 1997. p. 331–49.

    Chapter  Google Scholar 

  • Galeano A, Urrego LE, Sánchez M, Peñuela MC. Environmental drivers for regeneration of Mauritia flexuosa L.f. in Colombian Amazonian swamp forest. Aquat Bot. 2015;123:47–53.

    Article  Google Scholar 

  • Gopal B, Junk WJ, Davis JA, editors. Biodiversity in wetlands: assessment, function and conservation. Leiden: Backhuys; 2000.

    Google Scholar 

  • Goulding M, Carvalho ML, Ferreira MG. Rio Negro: rich life in poor water. Hague: SPB Academic Publ. bv; 1988.

    Google Scholar 

  • Guevara JE, Damasco G, Baraloto C. Low phylogenetic beta diversity and geographic neo-endemism in Amazonian white-sand forests. Biotropica. 2016;48:34–46.

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, et al. High-resolution global maps of 21st century forest cover change. Science. 2013;342:850–3.

    Article  CAS  PubMed  Google Scholar 

  • Haugaasen T, Peres CA. Primate assemblage structure in Amazonian flooded and unflooded forest. Am J Primatol. 2005;67:243–58.

    Article  PubMed  Google Scholar 

  • Higuchi N, Hummel AC, Freitas JV, Malinowski JR, Stokes BJ. Exploração florestal nas várzeas do Estado do Amazonas: Seleção de árvores, derrubada e transporte, Proceedings of the VIII Harvesting and Transportation of Timber Products Workshop. Curitiba: IUFRO/UFPr; 1994. p. 168–93. Portuguese.

    Google Scholar 

  • Hödl W. Call differences and calling site segregation in anuran species from Central Amazonian floating meadows. Oecologia. 1977;28:351–63.

    Article  Google Scholar 

  • Horbe AMC, Horbe MA, Suguio K. Tropical spodosols in northeastern Amazonas State Brazil. Geoderma. 2004;119:55–68.

    Article  CAS  Google Scholar 

  • Householder JE, Janovec JP, Tobler MW, Page S, Lähteenoja O. Peatlands of the Madre de Dios River of Peru: distribution, geomorphology, and habitat diversity. Wetlands. 2012;32:359–68.

    Article  Google Scholar 

  • Householder JE, Wittmann F, Tobler MW, Janovec JP. Montane bias in lowland Amazonian peatlands: plant assembly on heterogeneous landscapes and potential significance to palynological inference. Palaeogeogr Palaeoclimatol Palaeoecol. 2015;423:138–48.

    Article  Google Scholar 

  • Huber O, Gharbarran G, Funk V. Vegetation map of Guyana. Georgetown: Centre for the Study of Diversity, University of Guyana; 1995.

    Google Scholar 

  • IBGE. Indicadores de Desenvolvimento Sustentável, Estudos e Pesquisas Informação geográfica, vol. 9. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2012.

    Google Scholar 

  • IBGE. Economia do turismo – uma perspectiva macroeconômica 2003–2009. 2015. http://www.ibge.gov.br/home/estatistica/economia/industria/economia_tur_20032009. Accessed 24 Jan 2016.

  • INPE. Satellite monitoring of Brazil’s Amazon forest (PRODES). São José dos Campos: Brazilian National Agency for Space Research; 2014. http://www.obt.inpe.br/prodes/.

    Google Scholar 

  • Irion G, Mello JASN, Morais J, Piedade MTF, Junk WJ, Garming L. Development of the Amazon valley during the middle to late quaternary: sedimentological and climatological observations. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Amazonian floodplain forest: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 27–42.

    Chapter  Google Scholar 

  • Irmler U. Überlebensstrategien von Tieren im saisonal überfluteten amazonischen Überschwemmungswald. Zool Anz Jena. 1981;206:26–38.

    Google Scholar 

  • Junk WJ. Wetlands of tropical South America. In: Wigham D, Hejny S, Dykyjowa D, editors. Wetlands of the world. Dordrecht: Junk Publications; 1993. p. 679–739.

    Google Scholar 

  • Junk WJ. Freshwater fishes of South America: their biodiversity, fisheries, and habitats – a synthesis. Aquat Ecosyst Health Manag. 2007;10:228–42.

    Article  Google Scholar 

  • Junk WJ. Current state of knowledge regarding South America wetlands and their future under global climate change. Aquat Sci. 2013;75:113–31.

    Article  Google Scholar 

  • Junk WJ, da Silva VMF. Mammals, reptiles and amphibians. In: Junk WJ, editor. The Central Amazon floodplain: ecology of a pulsing system. Ecological studies. Berlin: Springer; 1997. p. 409–17.

    Chapter  Google Scholar 

  • Junk WJ, Piedade MTF. Herbaceous plants in the floodplain near Manaus: species diversity and adaptations to the flood pulse. Amazoniana. 1993;12:467–84.

    Google Scholar 

  • Junk WJ, Robertson B. Aquatic invertebrates. In: Junk WJ, editor. The Central Amazon floodplain: ecology of a pulsing system. Ecological studies. Berlin: Springer; 1997. p. 279–98.

    Chapter  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE. The flood pulse concept in river-floodplain systems. Proceedings of the International Large River Symposium, Ottawa. Can Spec Publ Fish Aquat Sci. 1989;106:110–27.

    Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann F. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands. 2011;31:623–40.

    Article  Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Wittmann F. A classification of major natural habitats of Amazonian white-water river floodplains (várzea). Wetlands Ecol Manag. 2012;20:461–75.

    Article  Google Scholar 

  • Junk WJ, Wittmann F, Schöngart J, Piedade MTF. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol Manag. 2015;23:677–93.

    Article  CAS  Google Scholar 

  • Kahn F. Los nombres mas comunes de palmeras de la Amazonia. Biota. 1991;15:17–32.

    Google Scholar 

  • Kemenes A, Forsberg BR, Melack JM. CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). J Geophys Res: Biogeosci. 2011;116, G03004.

    Article  Google Scholar 

  • Kern J, Kreibich H, Koschorreck M, Darwich A. Nitrogen balance of a floodplain forest of the Amazon River: the role of nitrogen fixation. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 281–99.

    Chapter  Google Scholar 

  • Klinge H, Medina E. Rio Negro caatingas and campinas, Amazonas States of Venezuela and Brazil. In: Specht RL, editor. Heatlands and related shrublands. Ecosystems of the world, vol. 9a. Amsterdam: Elsevier; 1979. p. 483–8.

    Google Scholar 

  • Kubitzki K. The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol. 1989;63:285–304.

    Article  Google Scholar 

  • Lähteenoja O, Ruokolainen K, Schulman L, Oinonen M. Amazonian peatlands: an ignored C sink and potential source. Glob Chang Biol. 2009;15:2311–20.

    Article  Google Scholar 

  • Latrubesse EM. Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology. 2008;101:130–45.

    Article  Google Scholar 

  • Lees AC, Peres CA. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv Biol. 2008;22:439–49.

    Article  PubMed  Google Scholar 

  • Lehner B, Liermann CR, Revenga C, et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ. 2011;9:494–502.

    Article  Google Scholar 

  • Luizão FJ, Luizão RCC, Proctor J. Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecol. 2007;192:209–24.

    Article  Google Scholar 

  • Macedo MN, Coe MT, Defries R, Uriarte M, Brando PM, Neill C, Walker WS. Land-use-driven stream warming in southeastern Amazonia. Phil Trans R Soc B: Biol Sci. 2013;368:20120153.

    Article  Google Scholar 

  • McGrath DG, Cardoso A, Almeida OT, Pezzuti J. Constructing a policy and institutional framework for an ecosystem-based approach to managing the lower Amazon floodplain. Environ Dev Sustain. 2008;10:677–95.

    Article  Google Scholar 

  • Melack JM, Fisher TR. Comparative limnology of tropical floodplain lakes with an emphasis on the Central Amazon. Acta Limnologica Brasiliensia. 1990;3:1–48.

    Google Scholar 

  • Melack JM, Hess LL. Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Amazonian floodplain forest: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 27–42.

    Google Scholar 

  • MME. Plano decenal de expansão de energia 2023. Brasília: Ministério de Minas e Energia; MME/EPE Empresa de Pesquisa Energética; 2014.

    Google Scholar 

  • Mori S. A Família da Castanha-do-Pará: Símbolo do Rio Negro. In: Oliveira AA, Daly DC, editors. Florestas do Rio Negro. São Paulo: UNIP, NYBG e Companhia das Letras; 2001. p. 119–42.

    Google Scholar 

  • Navarro G, Maldonado M. Geografía ecológica de Bolivia: Vegetación y Ambientes acuáticos. Santa Cruz de la Sierra: Centro de Ecología Aplicada Simón I. Patiño, Departamento de Difusión; 2002.

    Google Scholar 

  • Nepstad D, McGrath D, Stickler C, et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science. 2014;344:1118–23.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson C, Berggren K. Alterations of riparian ecosystems caused by river regulation. BioScience. 2000;50:783–92.

    Article  Google Scholar 

  • Nilsson C, Reidy CA, Dynesius M, Revenga C. Fragmentation and flow regulation of the world’s large river systems. Science. 2005;308:405–8.

    Article  CAS  PubMed  Google Scholar 

  • Pelicice FM, Pompeu PS, Agostinho AA. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish Fish. 2014;16:697–715.

    Article  Google Scholar 

  • Peres CA, Terborgh JW. Amazonian nature reserves – an analysis of the defensibility status of existing conservation units and design criteria for the future. Conserv Biol. 1995;9:34–46.

    Article  Google Scholar 

  • Petermann P. The birds. In: Junk WJ, editor. The Central Amazon floodplain: ecology of a pulsing system. Berlin: Springer; 1997. p. 419–52.

    Chapter  Google Scholar 

  • Petermann P. The birds of the Pantanal. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM, editors. The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia: Pensoft; 2011. p. 523–64.

    Google Scholar 

  • Piedade MTF, Junk WJ, Long SP. The productivity of the C4 grass Echinochloa polystachia on the Amazon floodplain. Ecology. 1991;72:1456–63.

    Article  Google Scholar 

  • Pitman NCA, Andino JEG, Aulestia M, et al. Distribution and abundance of tree species in swamp forests of Amazonian Ecuador. Ecography. 2014;37:902–15.

    Article  Google Scholar 

  • Pouilly M, Beck SG, Ibenes C. Biodiversidad biológica en la Llanura de inundación del Rio Marmoré. Importancia ecológica de la dinamica fluvial. Santa Cruz de la Sierra: Centro de Ecologia Aplicada Simón I. Patiño; 2004.

    Google Scholar 

  • Prance GT. Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia. 1979;3:26–38.

    Article  Google Scholar 

  • Queiroz JAL, Mochiutti S, Machado SA, Galvão F. Composição florística e estrutura de floresta em várzea alta estuarina Amazônica. Floresta. 2005;35:41–56.

    Article  Google Scholar 

  • Rede Globo. Pescadores matam boto rosa para usar de isca na pesca de peixe. 2014. http://g1.globo.com/fantastico/noticia/2014/07/pescadores-matam-boto-rosa-para-usar-de-isca-na-pesca-de-peixe.html. Accessed 27 Jan 2016.

  • Renó VF, Novo EMLM, Suemitsu C, Renó CD, Silva TSF. Assessment of deforestation in the lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sens Environ. 2011;115:3446–56.

    Article  Google Scholar 

  • Rosenberg DM, Bodaly RA, Usher PJ. Environmental and social impacts of large-scale hydroelectric development: who is listening? Glob Environ Chang. 1995;5:127–48.

    Article  Google Scholar 

  • Salo J, Kalliola R, Häkkinen L, Mäkinen Y, Niemelä P, Puhakka M, Coley PD. River dynamics and the diversity of the Amazon lowland forest. Nature. 1986;322:254–8.

    Article  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M. Biomass and NPP of Central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 347–88.

    Chapter  Google Scholar 

  • Sioli H. Beiträge zur regionalen Limnologie des Amazonasgebietes. Arch Hydrobiol. 1954;45:267–83.

    Google Scholar 

  • Soares MGM, Junk WJ. Commercial fishery and fish culture of the state of Amazonas: status and perspectives. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM, editors. The Central Amazon floodplain: actual use and options for a sustainable management. Leiden: Backhuys Publ; 2000. p. 433–61.

    Google Scholar 

  • Soares-Filho B, Moutinho P, Nepstad D, et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc Natl Acad Sci. 2010;107:10821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strüssmann C, Prado CPA, Ferreira VL, Ribeiro RAK. Diversity, ecology, management and conservation of amphibians and reptiles of the Brazilian Pantanal: a review. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM, editors. The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia: Pensoft; 2011. p. 497–521.

    Google Scholar 

  • Takeuchi M. A estrutura da vegetação na Amazônia: III – A mata de campina na região do rio Negro. Bol Mus Paraense Emilio Goeldi. 1960;8:1–13.

    Google Scholar 

  • Targhetta N, Kesselmeier J, Wittmann F. Effects of the hydroedaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the central Amazon basin. Folia Geobotanica. 2015;50:185–205.

    Article  Google Scholar 

  • Ter Steege H, Pitman N, Sabatier D, et al. A spatial model of tree α-diversity and -density for the Amazon region. Biodivers Conserv. 2003;12:2255–77.

    Article  Google Scholar 

  • Ter Steege H, Pitman NCA, Sabatier D, et al. Hyper-dominance in the Amazonian tree flora. Science. 2013;342:325–34.

    Google Scholar 

  • Tobler M, Janovec JP, Cornejo F. Frugivory and seed dispersal by the lowland Tapir (Tapirus terrestris) in the Peruvian Amazon. Biotropica. 2009;42:215–22.

    Article  Google Scholar 

  • Tomas WM, Cáceres NC, Nunes AP, Fischer E, Mourão G, Campos Z. Mammals in the Pantanal wetland, Brazil. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM, editors. The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia: Pensoft; 2011. p. 565–97.

    Google Scholar 

  • Wittmann F, Oliveira Wittmann A. Use of Amazonian floodplain trees. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 389–418.

    Chapter  Google Scholar 

  • Wittmann F, Schöngart J, Montero JC, Motzer T, Junk WJ, Piedade MTF, Queiroz HL, Worbes M. Tree species composition and diversity gradients in white-water forests across the Amazon basin. J Biogeogr. 2006;33:1334–47.

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Junk WJ. Phytogeography, species diversity, community structure and dynamics of Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 61–104.

    Chapter  Google Scholar 

  • Wittmann F, Householder E, Piedade MTF, Assis RL, Schöngart J, Parolin P, Junk WJ. Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography. 2013;36:690–707.

    Article  Google Scholar 

  • Wittmann F, Householder E, Oliveira Wittmann A, Lopes A, Junk WJ, Piedade MTF. Implementation of the Ramsar convention on South American wetlands: an update. Res Rep Biodivers Stud. 2015;4:47–58.

    Article  Google Scholar 

  • Yin L, Fu R, Zhang Y-F, et al. What controls the interannual variation of the wet season onsets over the Amazon? J Geophys Res: Atmos. 2014;119:2314–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Wittmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media B.V.

About this entry

Cite this entry

Wittmann, F., Junk, W.J. (2016). Amazon River Basin. In: Finlayson, C., Milton, G., Prentice, R., Davidson, N. (eds) The Wetland Book. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6173-5_83-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6173-5_83-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6173-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Amazon River Basin
    Published:
    22 November 2016

    DOI: https://doi.org/10.1007/978-94-007-6173-5_83-2

  2. Original

    The Amazon River Basin
    Published:
    28 July 2016

    DOI: https://doi.org/10.1007/978-94-007-6173-5_83-1