Skip to main content

Plant Sentience

  • Living reference work entry
  • First Online:
  • 25 Accesses

Introduction

Arguably the most salient characteristic of sentience is the capacity for subjective awareness of sensations and emotional states that are pleasant or unpleasant (DeGrazia 1996, p. 99). Specifically, sentient beings have interests, preferences, and cares associated with avoiding pain, fear, and anxiety (Rowlands 2002, p. 11). They have unpleasant sensory experiences associated with actual or potential tissue damage, emotional responses to perceived threats to their physical or psychological wellbeing, and the desire to evade both.

Although it is generally assumed that only animals have these experiences, ample evidence exists to support the proposition that plants, too, are sentient. This is not a new proposition. It is a common view among animists that dates back many millennia, is a central principle of Jainism , and was defended by Aristotle’s student and subsequent director of the Lyceum, Theophrastus (Hall 2011). But it has been out of favor even among plant...

This is a preview of subscription content, log in via an institution.

References

  • Alpi, A., et al. (2007). Plant neurobiology: No brain, no gain? Trends in Plant Science, 12, 135–136.

    Article  Google Scholar 

  • Appel, H. M., & Cocroft, R. B. (2014). Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 175, 1257–1266.

    Article  Google Scholar 

  • Baluška, F. (2010). Recent surprising similarities between plant cells and neurons. Plant Signaling & Behavior, 5, 87–89.

    Article  Google Scholar 

  • Baluška, F., & Mancuso, S. (2009). Plant neurobiology: From stimulus perception to adaptive behavior of plants, via integrated chemical and electrical signaling. Plant Signaling & Behavior, 4, 475–476.

    Article  Google Scholar 

  • Baluška, F., Volkmann, D., & Menzel, D. (2005). Plant synapses: Actin-based domains for cell-to-cell communication. Trends in Plant Science, 10, 106–111.

    Article  Google Scholar 

  • Baluška, F., Volkmann, D., Hlavacka, A., Mancuso, S., & Barlow, P. W. (2006). Neurobiological view of plants and their body plan. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communication in plants: Neuronal aspects of plant life (pp. 19–23). Berlin: Springer.

    Chapter  Google Scholar 

  • Barlow, P. W. (2008). Reflections on ‘plant neurobiology’. Biosystems, 92, 132–147.

    Article  Google Scholar 

  • Bhalla, U. S., & Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science, 283, 381–387.

    Article  Google Scholar 

  • Biedrzycki, B. (2010). Kin recognition in plants: A mysterious behavior unsolved. Journal of Experimental Botany, 61, 4123–4128.

    Article  Google Scholar 

  • Brenner, E. D., Stahlberg, R., Mancuso, S., VIvanco, J., Baluška, F., & Von Volkenburgh, E. (2006). Plant neurobiology: An integrated view of plant signaling. Trends in Plant Science, 11, 413–419.

    Article  Google Scholar 

  • Brenner, E. D., Stahlberg, R., Mancuso, S., Baluška, F., & Von Volkenburgh, E. (2007). Response to Alpi et al.: Plant neurobiology: The gain is more than the name. Trends in Plant Science, 12, 285–286.

    Article  Google Scholar 

  • Buhner, S. H. (2002). The lost language of plants: The ecological importance of plant medicines to life on earth. White River Junction: Chelsea Green.

    Google Scholar 

  • Callaway, R. M. (1995). Positive interactions among plants. The Botanical Review, 61(4), 306–349.

    Article  Google Scholar 

  • Callaway, R. M. (2002). The detection of neighbors by plants. Trends in Ecology & Evolution, 17, 104–105.

    Article  Google Scholar 

  • Callaway, R. M., Pennings, S. C., & Richards, C. L. (2003). Phenotypic plasticity and interactions among plants. Ecology, 84, 1115–1128.

    Article  Google Scholar 

  • Chamowitz, D. (2012). What a plant knows. New York: Scientific American/Farrar, Straus and Giroux.

    Google Scholar 

  • Ciszak, M., Comparini, D., Mazzolai, B., Baluška, F., Arecchi, F. T., Vicsek, T., & Mancuso, S. (2012). Swarm behavior in plant roots. PLoS One, 7, e29759.

    Article  Google Scholar 

  • Darwin, C. (1880). The power of movement in plants. London: J. Murray.

    Book  Google Scholar 

  • de Kroon, H., & Hutchings, M. J. (1995). Morphological plasticity in clonal plants: The foraging concept reconsidered. Journal of Ecology, 83, 143–152.

    Article  Google Scholar 

  • DeGrazia, D. (1996). Taking animals seriously. New York: Cambridge University Press.

    Book  Google Scholar 

  • Dicke, M. J., & Bruin, J. (2001). Chemical information transfer between damaged and undamaged plants. Biochemical Systematics and Ecology, 29, 979–1113.

    Article  Google Scholar 

  • Dziubinska, H. (2003). Ways of signal transmission and the physiological role of electrical potentials in plants. Acta Societatis Botanicorum Poloniae, 72, 309–318.

    Article  Google Scholar 

  • Farmer, E. E., & Ryan, C. A. (1990). Interplant communication: Airborne methyl Jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences of the USA, 87, 7713–7716.

    Article  Google Scholar 

  • Firn, R. (2004). Plant intelligence: An alternative point of view. Annals of Botany, 93, 345–351.

    Article  Google Scholar 

  • Fromm, J., & Lautner, S. (2007). Electrical signals and their physiological significance in plants. Plant, Cell & Environment, 30, 249–257.

    Article  Google Scholar 

  • Gagliano, M., et al. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 175, 63–72.

    Article  Google Scholar 

  • Garzón, P. C., & Keijzer, F. (2009). Cognition in Plants. In F. Baluška (Ed.), Plant–environment interactions (pp. 247–266). Berlin: Springer.

    Google Scholar 

  • Geber, M. A., Watson, M. A. & de Kroon, H. (1997). Organ preformation, development, and resource allocation in perennials. In: Bazzaz, F. A. & Grace, J. (Eds.), Plant resource allocation (pp. 113–143). San Diego: Academic.

    Google Scholar 

  • Gersani, M., et al. (2001). Tragedy of the commons as a result of root competition. Ecology, 89, 660–669.

    Article  Google Scholar 

  • Grime, J. P., & Mackey, J. M. L. (2002). The role of plasticity in resource capture by plants. Evolutionary Ecology, 16, 299–307.

    Article  Google Scholar 

  • Gruntman, M., & Novoplansky, A. (2004). Physiologically mediated self/nonself discrimination in roots. PNAS, 101, 2863–3867.

    Article  Google Scholar 

  • Hall, M. (2011). Plants as persons. New York: Columbia University Press.

    Google Scholar 

  • Hutchings, M. J., & de Kroon, H. (1994). Foraging in plants: The role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159–238.

    Article  Google Scholar 

  • Izaguiree, M. M., et al. (2006). Remote sensing of future competitors: Impacts on plant Defences. PNAS, 103, 7170–7174.

    Article  Google Scholar 

  • Jackson, R. B., & Caldwell, M. M. (1996). Integrating resource heterogeneity and plant plasticity: Modeling nitrate and phosphate uptake in a patchy soil environment. Journal of Ecology, 84, 891–903.

    Article  Google Scholar 

  • Karban, R., & Shiojiri, K. (2009). Self-recognition affects plant communication and defense. Ecology Letters, 12, 502–506.

    Article  Google Scholar 

  • Kelly, C. L. (1990). Plant foraging: A marginal value model and coiling response in Cuscuta Subinclusa. Ecology, 71, 1916–1925.

    Article  Google Scholar 

  • Lyon, P. (2006). The biogenic approach to cognition. Cognitive Processing, 7(1), 11–29.

    Article  Google Scholar 

  • Maina, G. G., Brown, J. S., & Gersani, M. (2002). Intra-plant versus inter-plant competition in beans: Avoidance resource matching or tragedy of the commons. Plant Ecology, 160, 235–247.

    Article  Google Scholar 

  • Marder, M. (2012). Plant intentionality and the phenomenological framework of plant intelligence. Plant Signaling & Behavior, 7, 1365–1372.

    Article  Google Scholar 

  • Marder, M. (2013). Plant-thinking. New York: Columbia University Press.

    Google Scholar 

  • Marder, M. (2014). The Philosopher’s plant: An intellectual herbarium. New York: Columbia University Press.

    Book  Google Scholar 

  • Molinier, J., Ries, G., Zipfel, C., & Hohn, B. (2006). Transgeneration memory of stress in plants. Nature, 442, 1046–1049.

    Article  Google Scholar 

  • Noble, D. (2006). The music of life. New York: Oxford University Press.

    Google Scholar 

  • Paré, P. W., & Tumlinson, J. H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiology, 121, 325–332.

    Article  Google Scholar 

  • Phillips, H. (2002, July 27). Not just a pretty face: They may be green, but plants aren’t stupid. Helen Phillips Picks Their Brains. New Scientist 175, p. 40.

    Google Scholar 

  • Pollan, M. (2013, December 23). The Intelligent Plant. The New Yorker 89, p. 92.

    Google Scholar 

  • Rachels, J. (2004). The basic argument for vegetarianism. In S. F. Sapontzis (Ed.), Food for thought (pp. 70–80). Amherst: Prometheus.

    Google Scholar 

  • Rowlands, M. (2002). Animals like us. New York: Verso Press.

    Google Scholar 

  • Schull, J. (1990). Are species intelligent? Behavioral and Brain Sciences, 13, 63–108.

    Article  Google Scholar 

  • Seeley, T. D., & Levien, R. A. (1987). A Colony of mind: The beehive as thinking machine. The Sciences, 27, 39–42.

    Article  Google Scholar 

  • Stenhouse, D. (1974). The evolution of intelligence. New York: Harper & Row.

    Google Scholar 

  • Struik, P. C., Yin, X., & Meinke, H. (2008). Plant neurobiology and green plant intelligence: Science, metaphor, and nonsense. Journal of the Science of Food and Agriculture, 88, 363–370.

    Article  Google Scholar 

  • Sung, S., & Amasino, R. M. (2000). Molecular genetic study of the memory of winter. Journal of Experimental Botany, 57, 3369–3377.

    Google Scholar 

  • Sung, S., & Amasino, R. M. (2004). Vernalisation and epigenetics: How plants remember winter. Current Opinion in Plant Biology, 7, 4–10.

    Article  Google Scholar 

  • Thaler, J. S. (1999). Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature, 399, 686–688.

    Article  Google Scholar 

  • Thompson, M. V., & Holbrook, N. M. (2004). Scaling Phloem Transport: Information Transmission. Plant, Cell & Environment, 27, 509–519.

    Google Scholar 

  • Trewavas, A. (2005). Plant intelligence. Naturwissenschaften, 92, 401–413.

    Article  Google Scholar 

  • Trewavas, A. (2007). Response to Alpi et al.: Plant neurobiology – All metaphors have value. Trends in Plant Science, 12, 231–233.

    Article  Google Scholar 

  • Trewavas, A. (2009). What is plant behaviour? Plant, Cell & Environment, 32, 606–616.

    Article  Google Scholar 

  • Trewavas, A. (2012). Plants are intelligent too. EMBO Reports, 13, 772–773.

    Article  Google Scholar 

  • van Hoven, W. (1991). Mortalities in kudu (Tragelaphus Strepsiceros) populations related to chemical defence in trees. Journal of African Zoology, 105, 141–145.

    Google Scholar 

  • Vertosick, F. T., Jr. (2002). The genius within. Boston: Houghton Mifflin Harcourt.

    Google Scholar 

  • Volkov, A. G. (2000). Green plants: Electrochemical interfaces. Journal of Electroanalytical Chemistry, 483, 150–156.

    Article  Google Scholar 

  • Warwick, K. (2001). QI: The quest for intelligence. London: Piatkus.

    Google Scholar 

  • Weiler, W. E. (2003). Sensory principles of higher plants. Angewandte Chemie International Edition, 42, 392–411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew F. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Smith, A.F. (2018). Plant Sentience. In: Thompson, P., Kaplan, D. (eds) Encyclopedia of Food and Agricultural Ethics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6167-4_621-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6167-4_621-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6167-4

  • Online ISBN: 978-94-007-6167-4

  • eBook Packages: Springer Reference Religion and PhilosophyReference Module Humanities and Social SciencesReference Module Humanities

Publish with us

Policies and ethics