Skip to main content

Polyethylenes and Their Blends

  • Reference work entry
  • First Online:
Polymer Blends Handbook

Abstract

Several books offer information on various aspects of polyolefin (PO) synthesis, technology, performance, as well as on the preparation, fundamentals, and degradability and recyclates of polymer alloys and blends (PAB) [Utracki and Weiss, Multiphase Polymers: Blends and Ionomers. ACS Symposium Series, vol. 395 (Washington, DC, 1989); Utracki Polymer Alloys and Blends (Hanser, Munich, 1989); J. Rheol. 35(8), 1615–1637, 1991; Encyclopaedic Dictionary of Commercial Polymer Blends (Chem Tec Pub., Toronto, 1994); Makromol. Chem. Macromol. Symp. 118, 335–345, 1997, Commercial Polymer Blends (Chapman & Hall, London, 1998); Zweifel, Stabilization of Polymeric Materials (Springer, Berlin, 1998); Moeller, Progress in Polymer Degradation and Stability Research (Nova Sci. Publ., New York, 2008); Anand (ed.), National Seminar on Emerging Trends in Plastic Recycling Technologies and Waste Management (Goa, India, 1995); Recycling and Plastics Waste Management, Proceedings of National Seminar (CIPET, Chennai, 1997); Akovali et al., Reprocessing of Commingled Polymers and Recycling of Polymer Blends. NATO ASI, vol. 351 (Kluwer, Dordrecht, 1998)]. There are also encyclopedic editions on PAB, e.g., Utracki [Encyclopaedic Dictionary of Commercial Polymer Blends (Chem Tec Pub., Toronto, 1994, 2013); Isayev (Encyclopedia of Polymer Blends (Wiley-VCH, Weinheim, 2010–2014)].

The first patent on PAB was granted to Parkes in 1846 for two natural polymers co-vulcanized during blending in the presence of CS2, i.e., a natural rubber (NR = amorphous cis-polyisoprene, IR) with gutta-percha (GP = semicrystalline trans-polyisoprene, IR). Thus, rubber PAB predates that of synthetic polymers by ca. 80 years (PMA/PVAc 1929). Notably, while the early plastics were bio-based, their usage fell to <5 wt% nowadays slowly recovering from the absolute dominance of synthetic, petroleum-based plastics.

PO is a part of the commodity resin category, where the continuous use temperature (CUT) ≤ 75 °C. Specifically, to this category belong polyethylenes (PE), polypropylenes (PP), styrenics (PS), acrylics (PMMA), and vinyls, such as poly(vinyl chloride) (PVC). The relative importance of commodity resin is evident from the data displayed in Fig. 18.1.

In the 1900s, world plastic production was about 30 kt, increasing to 300 Mt by the year 2010. Figure 18.1 shows the growth after 1960, extrapolated to 2020. Accordingly to Pardos Marketing [Pardos Marketing] plastic consumption is dominated by the commodity resins to the extent that the total consumption of plastics on the plot is indistinguishable from that of commodity resin. Notably, within the commodity resin category, PE contribution is 45–55 wt%.

The 75th anniversary of the invention of the first commercial PE seemed to be an appropriate occasion for summarizing in a (relatively) short chapter the factors that create such a vast spectrum of materials often having unexpected properties. Considering the character of the Polymer Blends Handbook – 2 (PBH-2), the Chapter provides concise, fundamental information in a historical perspective, starting with single PE resins before addressing PE blends. It also offers extensive tabulated data, useful for readers.

The chapter is divided into 19 parts, including classification of PE resin, their discovery and historical evolution, and methods and equipment of PE characterization, and then PE blends preceded by greatly abbreviated fundamentals and followed by description of various mixtures. In view of the importance of miscibility for processability and performance of PE blends, this aspect is particularly stressed.

Leszek A. Utracki: deceased.

Leszek Utracki wrote this chapter while lying in a hospital bed before he passed away in July 2012. Rather than attempt to complete what he began, out of respect for the scientist, and especially for the person that he was, and realizing that we did not know what he intended to do to complete this chapter, we have left it as he wrote it for this book. He had intended brief sections on the future evolution of PO systems and the evolution of test methods and technology. He did develop two extensive tables on the chronology of polyolefin technology, Appendix, Table 18.10, and the evolution of polymer blends, Appendix, Table 18.11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.M. Aime, G. Mention, A. Thouzeau, U.S. Patents 4,873,270, Oct 10, 1989, Appl. 9 Feb 1988, to Charbonnages De France

    Google Scholar 

  • A. Ajji, L.A. Utracki, Polym. Eng. Sci. 36, 1574 (1996); Prog. Rubber Plast. Technol. 13, 153 (1997)

    CAS  Google Scholar 

  • G. Akovali, T.T. Torun, Properties of blends prepared from surface-modified low-density polyethylene and poly(vinyl chloride). Polym. Int. 42, 307 (1997)

    CAS  Google Scholar 

  • G. Akovali, C.A. Bernardo, J. Leidner, L.A. Utracki, M. Xanthos (eds.), Reprocessing of Commingled Polymers and Recycling of Polymer Blends. NATO ASI, vol. 351 (Kluwer, Dordrecht, 1998)

    Google Scholar 

  • Y.A. Akpalu, P. Peng, Probing the melt miscibility of a commercial polyethylene blend by small-angle light scattering. Mater. Manuf. Process. 23, 269–276 (2008)

    CAS  Google Scholar 

  • R.G. Alamo, W.W. Graessley, R. Krishnamoorti, D.J. Lohse, J.D. Londono, L. Mandelkern, F.C. Stehling, G.D. Wignall, Small angle neutron scattering investigations of melt miscibility and phase segregation in blends of linear and branched polyethylenes as a function of the branch content. Macromolecules 30(3), 561–566 (1997)

    CAS  Google Scholar 

  • A.-C. Albertson, in Handbook of Polymer Degradation, ed. by S.H. Hamid, M.B. Amin, A.G. Maadhah (Marcel Dekker, New York, 1992)

    Google Scholar 

  • A.H. Ali, J.T.T. Hsieh, K.J. Kauffman, Y.V. Kissin, S. Christine Ong, G.N. Prasad, A.L. Pruden, S.D. Schregenberger, Producing blown film and blends from bimodal high density high molecular weight film resin using magnesium oxide supported Ziegler catalyst, U.S. Patent 5,284,613 of 08 Feb 1994 (filed 1992) to Mobil Oil Co.

    Google Scholar 

  • J.S. Anand, ed., National Seminar on Emerging Trends in Plastic Recycling Technologies and Waste Management (Goa, 1995)

    Google Scholar 

  • J. S. Anand, ed., Recycling and Plastics Waste Management. Proceedings of National Seminar (CIPET, Chennai, 1997; Prints India, Chennai, 1997)

    Google Scholar 

  • S. Anantawaraskul, J.B.P. Soares, M. Paula, P. Wood-Adams, Fractionation of semicrystalline polymers by crystallization analysis fractionation and temperature rising elution fractionation. Adv. Polym. Sci. 182, 1–54 (2005)

    CAS  Google Scholar 

  • S.H. Anastasiadis, Interfacial tension of immiscible polymer blends, Ph.D. thesis, University of Princeton, 1988

    Google Scholar 

  • A.L. Andrady, J.E. Pegram, S. Nakatsuka, Studies on enhanced degradable plastics: 1. The geographic variability in outdoor lifetimes of enhanced photodegradable polyethylenes. J. Environ. Polym. Degrad. 1, 31–43 (1993a)

    CAS  Google Scholar 

  • A.L. Andrady, J.E. Pegram, Y. Tropsha, Changes in carbonyl index and average molecular weight on embrittlement of enhanced-photodegradable polyethylenes. J. Environ. Polym. Degrad. 1, 171–179 (1993b)

    CAS  Google Scholar 

  • S.R. Angeli, Canadian Patent 2,059,914, 28 Aug 1992, Appl. 28 Aug 1992, U.S. Appl. 27 Feb 1991, to General Electric Company

    Google Scholar 

  • Anonymous, PLASTIC WASTES – Disposal and Recycling, Past, Present and Future in Japan (Plastic Waste Management Institute, Tokyo, 1991)

    Google Scholar 

  • Anonymous, Plast. Technol. 41(1), 12 (1995)

    Google Scholar 

  • Anonymous, Plast. Rub. Wkly. Sep. 6, p. 7 (1996a)

    Google Scholar 

  • Anonymous, Recycl. Today (12), 34 (1996b)

    Google Scholar 

  • Anonymous, Information system on plastics waste management in Western Europe – European overview, Association of Plastics Manufacturers in Europe (APME) (1997a)

    Google Scholar 

  • Anonymous, Plast. Technol. 43(4), 64 (1997b)

    Google Scholar 

  • Asahi Chemical Industry Co., Ltd., Japanese Patent 044,540, 09 Mar 1985, Appl. 19 Aug 1983

    Google Scholar 

  • R. Babrowicz, B.C. Childress, K.R. Ahlgren, G.P. Shah, Eur. Pat. Appl., 597,502, 18 May 1994, Appl. 13 Nov 1992, to W. R. Grace and Co.

    Google Scholar 

  • S.K. Bahl, P.J. Canterino, R. Shaw, British Patent 2,152,515, 07 Aug 1985, Appl. 04 Jan 1984, to Mobil Oil Corp.

    Google Scholar 

  • L. Bai, Y.-M. Li, W. Yang, M.-B. Yang, Rheological behavior and mechanical properties of high-density polyethylene blends with different molecular weights. J. Appl. Polym. Sci. 118, 1356–1363 (2010)

    CAS  Google Scholar 

  • F.W. Bailey, W.M. Whitte, Ethylene polymer blends, U.S. Patents 4,461,873, 24 July 1984, filed 22 June 1982; 4,547,551, 15 Oct 1985

    Google Scholar 

  • W.E. Baker, A.H. Simmons, Ca. Pat. Appl., 2,028,784, 16 May 1991, Appl. 29 Oct 1990, to Queen’s University at Kingston

    Google Scholar 

  • D.G.H. Ballard, The discovery of polyethylene and its effect on the evolution of polymer science, in History of Polyolefins, ed. by R.B. Seymour, T. Cheng (D. Reidel, Dordrecht, 1986)

    Google Scholar 

  • D.G.H. Ballard, A.J.P. Buckmann, PCT Int. Appl., 93 17,064, 02 Sep 1993, Appl. 28 Feb 1992, to Zeneca Limited

    Google Scholar 

  • N.P. Balsara, L.J. Fetters, N. Hadjichristidis, D.J. Lohse, C.C. Han, W.W. Graessley, R. Krishnamoorti, Thermodynamic interactions in model polyolefin blends obtained by small-angle neutron scattering. Macromolecules 25(23), 6137–6147 (1992)

    CAS  Google Scholar 

  • E. Bamberger, F. Tschirner, Ber. Dtsch. Chem. Ges. 31, 1524 (1898)

    Google Scholar 

  • C. Bastioli, in The Wiley Encyclopaedia of Packaging Technology, ed. by A.L. Brody, K.S. Marsh, 2nd edn. (Wiley, New York, 1997); NATO-ASI Frontiers in the Science and Technology of Polymer Recycling, Antalya, 16–27 June 1997

    Google Scholar 

  • C. Bastioli, V. Bellotti, L. Del Giudice, G. Gilli, J. Environ. Polym. Degrad. 1, 181 (1992a)

    Google Scholar 

  • C. Bastioli, V. Bellotti, G.F. Del Tredici, R. Lombi, A. Montino, R. Ponti, Intl. Pat. Appl., WO 92/19,680, 1992b

    Google Scholar 

  • C. Bastioli, V. Bellotti, A. Rallis, Microstructure and melt flow behavior of a starch-based polymer. Rheol. Acta 33, 307–316 (1993)

    Google Scholar 

  • C. Bastioli, V. Bellotti, M. Camia, L. Del Giudice, A. Rallis, in Biodegradable Plastics and Polymers, ed. by Y. Doi, K. Fukuda. Proceedings of the III International Scientific Workshop on Biodegradable Plastics and Polymers, Osaka, 9–11 Nov 1993 (Elsevier, Amsterdam, 1994)

    Google Scholar 

  • L. Bateman, Olefin oxidation. Q. Rev. Chem. Soc. 8, 147–167 (1954)

    CAS  Google Scholar 

  • BCC (Business Communications Co.), Norwalk, CT, News Releases of 11, 24 Feb 1997

    Google Scholar 

  • S.L. Bell, A.G. Vadagama, Polymerization process, U.S. Patent 6720396 of 13 Apr 2004, to Univation Technol

    Google Scholar 

  • E.A. Benham, M.P. McDaniel U.S. Patent 5,344,884 06 Sept 1994

    Google Scholar 

  • E.A. Benham, F.W. Bailey, J.D. Webmeyer, M.P. McDaniel 5378764 of 03 Jan 1995, all to Phillips Petroleum Co.

    Google Scholar 

  • C.L. Beyler, M.M. Hirschler, Thermal decomposition of polymers (Chap. 7), in The SFPE handbook Fire Protection Engineering, ed. by P.J. DiNenno, D. Drysdale, C.L. Beyler, W.D. Walton, 3rd edn. (NFPA, Quincy, 2002)

    Google Scholar 

  • C.A.B.. Bjoerkengren, E.S. Joensson, Swedish Patent 413,031, 31 Mar 1980, Appl. 05 Mar 1979, to Aktiebolag Akerlund och Rausing

    Google Scholar 

  • L. Boehm, H.F. Enderle, H. Jastrow, Europ. Pat. Appl., 517,222, 09 Dec 1992

    Google Scholar 

  • L. Böhm, H.-F. Enderle, H. Jarstrow, Polyethylene molding composition, U.S. Patent 5338589 of 16 Aug 1994, priority 03 June 1992, to Hoechst Aktiengesellschaft

    Google Scholar 

  • V. Bordereau, Z.-H. Shi, L.A. Utracki, P. Sammut, M. Carrega, Development of polymer blend morphology during compounding in a twin screw extruder. Part 3: experimental procedures and preliminary results. Polym. Eng. Sci. 32(24), 1846–1856 (1992)

    CAS  Google Scholar 

  • D. Bourry, L.A. Utracki, A. Luciani, The Extensional Flow Mixer (EFM). Polyblends-’95, NRCC/IMI Bi-annual Symposium and SPE-RETEC on Polymer Alloys and Blends, Boucherville, 19–20 Oct 1995

    Google Scholar 

  • M. Bousmina, J.F. Palierne, L.A. Utracki, Modeling of polymer blends’ behavior during capillary flow. Polym. Eng. Sci. 39(6), 1049–1059 (1999)

    CAS  Google Scholar 

  • M. Brookhart, M.L.H. Green, Carbon-hydrogen-transition metal bonds. J. Organomet. Chem. 250, 395–408 (1983)

    CAS  Google Scholar 

  • M. Brookhart, M.L.H. Green, G. Parkin, Agostic interactions in transition metal compounds. Proc. Natl. Acad. Sci. U. S. A. 104(17), 6908–6914 (2007)

    CAS  Google Scholar 

  • S.J. Brown, J.W. Swabey, C.J.B. Dobbin, Solution polymerization process catalyzed by a phosphinimine catalyst, CA 2347410 of 08 Sept 2009 (filed 11 May 2001); U.S. Patent 6,777,509 B2 of 17 Aug 2004 (filed 17 Apr 2002, priority 11 May 2001), to NOVA Chemicals Corporation (Canada) or Nova Chemicals (International) S.A (CH)

    Google Scholar 

  • F. Buehler, E. Schmid, H.J. Schultze, European Patent Application 536,679, 14 Apr 1993, Appl. 08 Oct 1991; U.S. Patents 5,346,936, 13 Sep 1994, Appl. 15 June 1992, Ger. Appl. 17 June 1991; P. Meier, German Patent 4,139,468, 03 June 1993, Appl. 29 Nov 1991, to Ems-Inventa Aktiengesellschaft

    Google Scholar 

  • P.J. Canterino, R.J. Martinovich, Blends of high pressure type polyethylene with cracked highly crystalline 1-olefin polymers, U.S. Patents 3,086,958, 23 April 1963, filed 17 Nov 1958, to Phillips Petroleum Co.

    Google Scholar 

  • P.J. Carreau, Rheological equation from molecular network theories. Trans. Soc. Rheol. 16, 99–127 (1972)

    CAS  Google Scholar 

  • P.J. Carreau, Ph.D. thesis, University of Wisconsin, Madison, 1968

    Google Scholar 

  • G.M. Chapman, R.H. Downie, U.S. Patents 5,352,716, 04 Oct 1994, Appl. 16 Dec 1992, to Ecostar International, L. P.

    Google Scholar 

  • Y.Y. Chen, T.P. Lodge, F.S. Bates, Entropically driven phase separation of highly branched/linear polyolefin blends. J. Polym. Sci. B: Polym. Phys. 38, 2965–2975 (2000)

    CAS  Google Scholar 

  • F. Chen, R. Shanks, G. Amarasinghe, Miscibility behavior of metallocene polyethylene blends. J. Appl. Polym. Sci. 81, 2227–2236 (2001)

    CAS  Google Scholar 

  • Y.Y. Chen, T.P. Lodge, F.S. Bates, Influence of long-chain branching on the miscibility of poly(ethylene-r-ethyl-ethylene) blends with different microstructures. J. Polym. Sci. B: Polym. Phys. 40, 466–477 (2002)

    CAS  Google Scholar 

  • K. Cho, T.-K. Ahn, B.H. Lee, S. Chor, Miscibility and processability in linear low density polyethylene and ethylene-propylene-butene-1 terpolymer binary blends. J. Appl. Polym. Sci. 63, 1265–1274 (1997)

    CAS  Google Scholar 

  • P. Choi, Molecular dynamics studies of the thermodynamics of HDPE/butene-based LLDPE blends. Polymer 41, 8741–8747 (2000)

    CAS  Google Scholar 

  • P.-W.S. Chum, R.P. Markovich, G.W. Knight, S.-Y. Lai, Ethylene polymer film made from ethylene polymer blends, U.S. Patent 5847053 of 08 Dec 1998 (filed 11 April 1997) to Dow Chem. Co.

    Google Scholar 

  • P.-W.S. Chum, R.P. Markovich, G.W. Knight, S.-Y. Lai, Fabricated articles made from ethylene polymer blends, CA 2160705 of 22 Aug 2006 (filed 19 April 1994); Ethylene polymer film made from ethylene polymer blends, U.S. Patent 5847053 of 08 Dec 1998 (filed 11 April 1997) to Dow Chem. Co.

    Google Scholar 

  • Chuo Chemical Co., Japanese Patent Application 146,953, 1992

    Google Scholar 

  • O.C. Compton, S.-B.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6(6), 711–723 (2010)

    CAS  Google Scholar 

  • W.R. Coutant, European Patent Application 588,147, 23 Mar 1994; Canadian Patent 2,099,750, 02 Mar 1994; Japanese Patent 61 82,756, 05 July 1994, Appl. 01 Sep 1992, to Phillips Petroleum Co.

    Google Scholar 

  • W.R. Coutant, J.L. Martin U.S. Patent 5,380,803, 10 Jan 1995

    Google Scholar 

  • M.A. Cowan, European Patent Application 095,299, 30 Nov 1983, to Intercontinental Plast., Inc.

    Google Scholar 

  • M.J. Cran, Characterization and optimization of polyethylene blends, Ph.D. thesis, School of Molecular Sciences, Victoria University, Australia, 2004

    Google Scholar 

  • A.L.N. Da Silva, M.C.G. Rocha, F.M.B. Coutinho, R.E.S. Bretas, C. Scuracchio, Rheological, mechanical, thermal, and morphological properties of polypropylene/ethylene-octene copolymer blends. J. Appl. Polym. Sci. 75, 692–704 (2000)

    Google Scholar 

  • A.L.N. Da Silva, M.C.G. Rocha, F.M.B. Coutinho, R.E.S. Bretas, C. Scuracchio, Rheological and thermal properties of binary blends of polypropylene and poly(ethylene-co-1-octene). J. Appl. Polym. Sci. 79, 1634–1639 (2001)

    Google Scholar 

  • S. Datta, A.C. Gadkari, C. Cozewith, Alpha-olefin/propylene copolymers and their use, U.S. Patent 6982310 of 03 Jan 2006 (filed 06 May 2005; priority 03 July 2003, U.S. Patent 6635715) to ExxonMobil Chemical Patents, Inc.

    Google Scholar 

  • S.C. Davis, U.S. Patents 5,372,980, 13 Dec 1994, Appl. 03 June 1993, to Polysar

    Google Scholar 

  • G.T. Dee, D.J. Walsh, Equations of state for polymer liquids. Macromolecules 21, 811–815 (1988); A modified cell model equation of state for polymer liquids, Macromolecules 21, 815–817 (1988)

    CAS  Google Scholar 

  • C. Dehennau, T. Depireux, I. Claeys, European Patent Application 587,216, 16 Mar 1994; Japanese Patent 62 07,046, 26 July 1994, Appl. 01 Sep 1992, to Solvay et Cie

    Google Scholar 

  • I. Delaby, B. Ernst, Y. Germain, R. Muller, J. Rheol. 38, 1705 (1994)

    CAS  Google Scholar 

  • L. Delamare, B. Vergnes, Computation of the morphological changes of a polymer blend along a twin-screw extruder. Polym. Eng. Sci. 36(12), 1685–1693 (1996)

    CAS  Google Scholar 

  • C. Delfolie, L.C. Dickinson, K.F. Freed, J. Dudowicz, W.J. MacKnight, Molecular factors affecting the miscibility behavior of cycloolefin copolymers. Macromolecules 32(23), 7781–7789 (1999)

    CAS  Google Scholar 

  • O. Delgadillo-Velázquez, S.G. Hatzikiriakos, M. Sentmanat, Thermorheological properties of LLDPE/LDPE blends. Rheol. Acta 47, 19–31 (2008a)

    Google Scholar 

  • O. Delgadillo-Velázquez, S.G. Hatzikiriakos, M. Sentmanat, Thermorheological properties of LLDPE/LDPE blends: effects of production technology of LLDPE. J. Polym. Sci. B: Polym. Phys. 46, 1669–1683 (2008b)

    Google Scholar 

  • V. Dolle et al., Macromol. Chem. Phys. 212, 959–970 (2011)

    CAS  Google Scholar 

  • B. Dubrulle D’Orhcel, Recycling PVC and Mixed Plastics (ChemTec, Toronto, 1996)

    Google Scholar 

  • J. Dudowicz, K.F. Freed, Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions: 1. Lattice cluster theory of compressible systems. Macromolecules 24(18), 5076–5095 (1991)

    CAS  Google Scholar 

  • J. Dudowicz, K.F. Freed, Pressure dependence of polymer fluids: application of the lattice cluster theory. Macromolecules 28(19), 6625–6641 (1995)

    CAS  Google Scholar 

  • J. Dudowicz, K.F. Freed, Influence of monomer structure and interaction asymmetries on the miscibility and interfacial properties of polyolefin blends. Macromolecules 29(27), 8960–8972 (1996)

    CAS  Google Scholar 

  • J. Dudowicz, K.F. Freed, Energetically driven asymmetries in random copolymer miscibilities and their pressure dependence. Macromolecules 30(18), 5506–5519 (1997)

    CAS  Google Scholar 

  • J. Dudowicz, K.F. Freed, Molecular influences on miscibility patterns in random copolymer/homopolymer binary blends. Macromolecules 30(15), 5094–5104 (1998)

    Google Scholar 

  • J. Dudowicz, K.F. Freed, Explanation for the inversion of an UCST phase diagram to a LCST diagram in binary polybutadiene blends. Macromolecules 33(26), 9777–9781 (2000a)

    CAS  Google Scholar 

  • J. Dudowicz, K.F. Freed, Lattice cluster theory for pedestrian. 2. Random copolymer systems. Macromolecules 33(9), 3467–3477 (2000b)

    CAS  Google Scholar 

  • J. Dudowicz, M.S. Freed, K.F. Freed, Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions: 2. Application to binary blends. Macromolecules 24(18), 5096–5111 (1991)

    CAS  Google Scholar 

  • J. Dudowicz, K.F. Freed, J.F. Douglas, Modification of the phase stability of polymer blends by diblock copolymer additives. Macromolecules 28(7), 2276–2287 (1995)

    CAS  Google Scholar 

  • J. Dudowicz, K.F. Freed, J.F. Douglas, Beyond Flory-Huggins theory: new classes of blend miscibility associated with monomer structural asymmetry. Phys. Rev. Lett. 88(9), 955031–955034 (2002a)

    Google Scholar 

  • J. Dudowicz, K.F. Freed, J.F. Douglas, New patterns of polymer blend miscibility associated with monomer shape and size asymmetry. J. Chem. Phys. 116(22), 9983–9996 (2002b)

    CAS  Google Scholar 

  • J.R.M. Duhaime, W.E. Baker, Plast. Rubber Compos. Process. Appl. 15, 87 (1991)

    CAS  Google Scholar 

  • M.M. Dumoulin, L.A. Utracki, Time-temperature superposition for polyethylene/polypropylene blends (Chap. 8), in Rheology and Polymer Processing, ed. by A.A. Collyer, L.A. Utracki (Elsevier, Barking, 1990)

    Google Scholar 

  • M.M. Dumoulin, L.A. Utracki, P.J. Carreau, Polym. Eng. Sci. 27, 1627 (1987)

    CAS  Google Scholar 

  • M.M. Dumoulin, L.A. Utracki, P.J. Carreau, Rheol. Acta Suppl. 26, 215 (1988)

    Google Scholar 

  • M.M. Dumoulin, L.A. Utracki, P.J. Carreau, Melt rheology and morphology of linear low density polyethylene/polypropylene blends (Chap. 7), in Two Phase Polymer Systems, ed. by L.A. Utracki. Progress in Polymer Processing Series (Hanser, Munich, 1991), pp. 185–212

    Google Scholar 

  • P.H.M. Elemans, Ph.D. thesis, Technische Universiteit Eindhoven, 1989

    Google Scholar 

  • C.T. Elston, Process for preparation of homogenous random partly crystalline copolymers of ethylene with other α-olefins, U.S. Patent 3645992 of 29 Feb 1972; CA Patent 703704 of 09 Feb 1965 to Du Pont of Canada Ltd.

    Google Scholar 

  • L. Erwin, in Mixing in Polymer Processing, ed. by C. Rauwendaal (Marcel Dekker, New York, 1991)

    Google Scholar 

  • F.A. Escobedo, J.J. de Pablo, On the scaling of the upper critical solution temperature of binary polymer blends with chain length. Macromolecules 32, 900 (1999)

    CAS  Google Scholar 

  • S.A. Fabrique Nationale Herstal, Netherland Patent Application 007,963, 18 Sep 1977, Appl. 18 Sep 1975

    Google Scholar 

  • Z.J. Fan, M.C. Williams, P. Choi, A molecular study of the effects of branching characteristics of LDPE on its miscibility with HDPE. Polymer 43, 1497–1502 (2002)

    CAS  Google Scholar 

  • Y. Fang, P.J. Carreau, P.G. Lafleur, Thermal and rheological properties of m-LLDPE/LDPE Blends. Polym. Eng. Sci. 45, 1254–1264 (2005)

    CAS  Google Scholar 

  • R. Fayt, R. Jérôme, P. Teyssié, Makromol. Chem. 187, 837 (1986)

    CAS  Google Scholar 

  • R. Feigenbaum, Recycl. Today 35(12), 70 (1997)

    Google Scholar 

  • G.J. Field, P. Micic, S.N. Bhattacharya, Melt strength and film bubble instability of LLDPE/LDPE blends. Polym. Int. 48, 461–466 (1999)

    CAS  Google Scholar 

  • P.J. Flory, J. Chem. Phys. 9, 660 (1941); Discuss. Faraday Soc. 49, 7 (1970)

    CAS  Google Scholar 

  • S. Floyd, T. Heiskanen, T.W. Taylor, G.E. Mann, W.H. Ray, J. Appl. Polym. Sci. 33, 1021 (1987)

    CAS  Google Scholar 

  • S. Floyd, T. Heiskanen, T.W. Taylor, G.E. Mann, W.H. Ray, J. Appl. Polym. Sci. 41, 1933 (1990)

    CAS  Google Scholar 

  • K.W. Foreman, K.F. Freed, Influence of stiffness, monomer structure, and energetic asymmetries on polymer blend miscibilities: applications to polyolefins. Macromolecules 30(23), 7279–7295 (1997)

    CAS  Google Scholar 

  • Fraser et al. 1997

    Google Scholar 

  • C. Frederix, J.M. Lefebvre, C. Rochas, R. Séguéla, G. Stoclet, Binary blends of linear ethylene copolymers over a wide crystallinity range: rheology, crystallization, melting and structure properties. Polymer 51, 2903–2917 (2010)

    CAS  Google Scholar 

  • G.H. Fredrickson, A.J. Liu, Design of miscible polyolefin copolymer blends. J. Polym. Sci. B: Polym. Phys. 33, 1203–1212 (1995)

    CAS  Google Scholar 

  • G.H. Fredrickson, A.J. Liu, F.S. Bates, Entropic corrections to the Flory-Huggins theory of polymer blends: architectural and conformational effects. Macromolecules 27, 2503–2511 (1994)

    CAS  Google Scholar 

  • K.F. Freed, M.G. Bawendi, Lattice theories of polymeric fluids. J. Phys. Chem. 93, 2194–2203 (1989)

    CAS  Google Scholar 

  • K.F. Freed, J. Dudowicz, A lattice-model molecular theory for the properties of polymer blends. Trends Polym. Sci. 3(8), 248–255 (1995)

    CAS  Google Scholar 

  • K.F. Freed, J. Dudowicz, Influence of short chain branching on the miscibility of binary polymer blends: application to polyolefin mixtures. Macromolecules 29(2), 625–636 (1996)

    CAS  Google Scholar 

  • K.F. Freed, J. Dudowicz, Lattice cluster theory for pedestrians: the incompressible limit and the miscibility of polyolefin blends. Macromolecules 31(19), 6681–6690 (1998)

    CAS  Google Scholar 

  • K.F. Freed, J. Dudowicz, Influence of monomer molecular structure on the miscibility of polymer blends. Adv. Polym. Sci. 183, 63–126 (2005)

    CAS  Google Scholar 

  • K.F. Freed, J. Dudowicz, K.W. Foreman, Molecular mechanisms for disparate miscibilities of poly(propylene) and head-to-head poly(propylene) with other polyolefins. J. Chem. Phys. 108(18), 7881–7886 (1998)

    CAS  Google Scholar 

  • E.M. Friedman, R.S. Porter, Polymer viscosity-molecular weight distribution correlation via blending: for high molecular weight poly(dimethyl siloxanes) and for polystyrene. Trans. Soc. Rheol. 19, 493 (1975)

    CAS  Google Scholar 

  • Fukui et al. 1983

    Google Scholar 

  • R. Gätcher, H. Müller, Kunststoff-Additive. Plastics Additives Handbook, vol. 3 (Hanser, Munich, 1989)

    Google Scholar 

  • P.M. German, J.M. Farley, R.W. Halle, G. Panagopoulous, Polyethylene blends, European Patent Office (EPO) Patent EP1373404, 02 April 2004, Appl. 22 June 2001, to ExxonMobil Chem. Pats.

    Google Scholar 

  • K.J. Godbey, P.G. Martin, U.S. Patent 5,264,219, 23 Nov 1993, Appl. 07 Aug 1992, to Minnesota Mining and Mfg. Co.

    Google Scholar 

  • K.J. Godbey, P.G. Martin, PCT Int. Appl., WO 94 03,539, 17 Feb 1994

    Google Scholar 

  • L.A. Goettler, Polym. Compos. 5, 60 (1984)

    CAS  Google Scholar 

  • R.C. Golike, Belgian Patent 619,351, 27 Dec 1962

    Google Scholar 

  • A. Golovoy, M.F. Cheung, K.R. Carduner, M.J. Rokosz, Polym. Eng. Sci. 29, 1226 (1989)

    CAS  Google Scholar 

  • V. Gorianov, H.A. Butlerov, Ann. Rev. Mar. Sci. 169, 146 (1873)

    Google Scholar 

  • M. Gownder, Branching of LLDPE as studied by crystallization-fractionation and its effect on mechanical properties of films. J. Plast. Film Sheet. 17, 53–61 (2001)

    CAS  Google Scholar 

  • W.W. Graessley, R. Krishnamoorti, N.P. Balsara, R.J. Butera, L.J. Fetters, D.J. Lohse, D.N. Schulz, J.A. Sissano, Thermodynamics of mixing for blends of model ethylene-butene copolymers. Macromolecules 27(14), 3896–3901 (1994)

    CAS  Google Scholar 

  • W.W. Graessley, R. Krishnamoorti, G.C. Reichart, N.P. Balsara, L.J. Fetters, D.J. Lohse, Regular and irregular mixing in blends of saturated hydrocarbon polymers. Macromolecules 28(4), 1260–1270 (1995)

    CAS  Google Scholar 

  • J. Grande, Mod. Plast. Int. (7), 26 (1996)

    Google Scholar 

  • N. Grassie, ed., Developments in Polymer Degradation. Applied Science (London, 1982, 1998)

    Google Scholar 

  • G.J.L. Griffin, U.S. Patents 4,016,117, 1977

    Google Scholar 

  • G.J.L. Griffin, Polyethylenes 1933–1983 (Plastics & Rubber Institute, 1983)

    Google Scholar 

  • E. Grünschloss, Polymer Processing Society European Meeting, Stuttgart, 26–28 Sept 1995

    Google Scholar 

  • F. Gugumus, Kunststoff-Additive. Plastics Additives Handbook, vol. 3 (Hanser, Munich, 1989)

    Google Scholar 

  • J.E. Guillet, in Polymer Science and Technology, ed. by J.E. Guillet, vol. 3 (1973), pp. 1–26

    Google Scholar 

  • G.G. Gusavage, T.A. Hessen, T.R. Hardy, H.G. Schirmer, S.R. Flye, U.S. Patents 5,118,561, June 1992, Appl. 01 Oct 1990; U.S. Patents 5,330,596, 19 July 1994, Appl. 13 May 1992

    Google Scholar 

  • W. Gutowski, Controlled Interfaces in Composite Materials (Elsevier, New York, 1990)

    Google Scholar 

  • A. Guttag, U.S. Patents 5,120,089, 1992, Appl. 28 Feb 1990; U.S. Patents 5,346,929, 13 Sep 1994, Appl. 18 Mar 1992

    Google Scholar 

  • H.H. Lank, E.L. Williams, The Du Pont Canada History (Du Pont Canada, Incorporated, 1982)

    Google Scholar 

  • A. Haas, French Patent Application 2,526,803, 18 Nov 1983, Appl. 14 May 1982, to Societé Chimique des Charbonnages, S. A.

    Google Scholar 

  • A. Haas, F. Raviola, European Patent Application 042,743, 13 Jan 1982, to Societé Chimique des Charbonnages S. A.

    Google Scholar 

  • R.W. Halle, Downgauge Paper Overwrap Films Using m-LLDPE Blends, TAPPI Corrugated Container Division’s Conference, Chicago, 2–5 Nov 1999. http://www.tappi.org/content/events/10PLACE/papers/halle.pdf

  • T. Hameed, I.A. Hussein, Effect of short chain branching of LDPE on its miscibility with linear HDPE. Macromol. Mater. Eng. 289(2), 198–203 (2004)

    CAS  Google Scholar 

  • T. Hameed, I.A. Hussein, Melt miscibility and solid-state properties of metallocene LLDPE blends with HDPE: influence of MM of LLDPE, J. Cent. South Univ. Technol. s1−0183−05 (2007)

    Google Scholar 

  • S.H. Hamid, M. Atiqullah, J. M. S.: Rev. Macromol. Chem. Phys. C35, 495 (1995)

    CAS  Google Scholar 

  • S.H. Hamid, M.B. Amin, A.G. Maadhah (eds.), Handbook of Polymer Degradation (Marcel Dekker, New York, 1992)

    Google Scholar 

  • A.E. Hamielec, J.B.P. Soares, Polymerization reaction engineering – metallocene catalysts. Prog. Polym. Sci. 21, 651–706 (1996)

    CAS  Google Scholar 

  • G.H. Hartley, J.E. Guillet, Macromolecules 1, 165 (1968)

    CAS  Google Scholar 

  • L.G. Hazlitt, D.G. Moldovan, High temperature continuous viscometry coupled with analytic temperature rising elution fractionation for evaluating crystalline and semi-crystalline polymers, U.S. Patent 4,798,081 of 22 Dec 1989, filed 17 Jan 1989, to Dow Chem. Co.

    Google Scholar 

  • C. Heinz, H. Pasch, Polymer 46, 12040 (2005)

    CAS  Google Scholar 

  • E. Helfand, A.M. Sapse, J. Chem. Phys. 62, 1327 (1975)

    CAS  Google Scholar 

  • E. Helfand, Y. Tagami, J. Polym. Sci. Polym. Lett. 9, 741 (1971)

    CAS  Google Scholar 

  • E. Helfand, Z.R. Wasserman, Macromolecules 9, 879 (1976)

    CAS  Google Scholar 

  • H. Herbst, K. Hoffmann, R. Pfaendner, F. Sitek, Quality Improvement of Recycled Plastics Through Additive (Stabilizers). National Seminar on Emerging Trends in Plastic Recycling Technologies and Waste Management, Goa, 27–28 May 1995.

    Google Scholar 

  • H. Herbst, K. Hoffmann, R. Pfaendner, H. Zweifel, Upgrading of Recyclates – The Solution for High Value Applications: Restabilization and Repair. NATO-ASI Frontiers in the Science and Technology of Polymer Recycling, Antalya, 16–27 June 1997. NATO ASI Series, E351 73–103 (Kluwer, Lampertheim, 1997, 1998)

    Google Scholar 

  • M. Hert, French Patent 2,528,054, 09 Dec 1983, Appl. 03 June 1982, to Societé Chimique des Charbonnages, S. A.

    Google Scholar 

  • M.J. Hill, Liquid-liquid phase separation in binary blends of a branched polyethylene with linear polyethylenes of differing molecular weight. Polymer 35(9), 1991–1993 (1994)

    CAS  Google Scholar 

  • E. Hinderman, Dissertation, Zürich, 1897

    Google Scholar 

  • K. Ho, L. Kale, S. Montgomery, Melt strength of linear low-density polyethylene/low-density polyethylene blends. J. Appl. Polym. Sci. 85, 1408–1418 (2002)

    CAS  Google Scholar 

  • G.H. Hofmann, U.S. Patents 5,352,735, 04 Oct 1994, Appl. 19 Aug 1993, Appl. 23 July 1991, to E. I. du Pont de Nemours & Company

    Google Scholar 

  • F. Hofmann, M. Otto, U.S. Patents 1,811,130, 23 June 1931, to I. G. Farbenindustrie Aktiengesellschaft

    Google Scholar 

  • J.P. Hogan, R.L. Banks, Belgian Patent 530,617, Jan 24 1955; U.S. Patent Application 333,576, 27 Jan 1953, to Phillips Petroleum Company

    Google Scholar 

  • J.P. Hogan, R.L. Banks, in History of Polyolefins, ed. by R.B. Seymour, T. Cheng (D. Reidel, Dordrecht, 1985)

    Google Scholar 

  • G. Holden, L.H. Gouw, European Patent Application 004,685, 17 Oct 1979, Appl. 30 Mar 1978, to Shell International Research Maatschappij B. V.

    Google Scholar 

  • P.A. Holmes, A.B.. Newton, F.M. Willmouth, European Patent Application 052,460, 26 May 1982, Appl. 18 Nov 1980, to Imperial Chemical Industries

    Google Scholar 

  • S. Hosoda, Structural distribution of linear low-density polyethylene. Polym. J. 20(5), 383–397 (1988)

    CAS  Google Scholar 

  • D.J. Hourston, Degradation of Plastics and Polymers, ed. by J.A. Brysdon, This article is a revision of the 3rd edition, vol. 2 (Elsevier, 2010), pp. 18:53–18:77

    Google Scholar 

  • H.-W. Hsu, S.-C. Liuo, S.-F. Jiang, J.-H. Chen, H.-M. Lin, H.-D. Hwu, M.-L. Chen, M.-S. Lee, T. Hu, U.S. Patents 5,308,897, 14 Jan 1994, Appl. 03 May 1993, to Industrial Technology Research Institute, Taiwan

    Google Scholar 

  • J.C.-K. Huang, P.A. Sipos, L.T. Kale, P.R. Thomas, J.A. Auger, Shrink films, U.S. Patent 6340532 of 22 Jan 2002 (filed 31 Jan 2001) to Nova Chem. Intl.

    Google Scholar 

  • B. Huckestein, Plastics Recycling – Today and the Future. Proceedings Polymer Processing Society European Meeting, Stuttgart, 26–28 Sep 1995

    Google Scholar 

  • M.L. Huggins, J. Chem. Phys. 9, 440 (1941)

    CAS  Google Scholar 

  • P.M. Hughes, European Patent Application 045,455, 10 Feb 1982, Appl. 1980, to Shell Oil Company

    Google Scholar 

  • M.A. Huneault, Z.-H. Shi, L.A. Utracki, Development of polymer blend morphology during compounding in a twin screw extruder. Part IV: a new computational model with coalescence. Polym. Eng. Sci. 35(1), 115–127 (1995)

    CAS  Google Scholar 

  • I.A. Hussein, Influence of composition distribution and branch content on the miscibility of m-LLDPE and HDPE blends: rheological investigation. Macromolecules 36, 2024–2031 (2003)

    CAS  Google Scholar 

  • I.A. Hussein, M.C. Williams, Rheological study of heterogeneities in melt blends of ZN-LLDPE and LDPE: influence of M w and comonomer type, and implications for miscibility. Rheol. Acta 43, 602–614 (2004a)

    CAS  Google Scholar 

  • I.A. Hussein, M.C. Williams, Rheological study of the influence of branch content on the miscibility of octene m-LLDPE and ZN-LLDPE in LDPE. Polym. Eng. Sci. 44, 660–672 (2004b)

    CAS  Google Scholar 

  • I.A. Hussein, T. Hameed, B.F. Abu Sharkh, K. Mezghani, Miscibility of hexene-LLDPE and LDPE blends: influence of branch content and composition distribution. Polymer 44, 4665–4672 (2003)

    CAS  Google Scholar 

  • V.N. Ipatiev, O. Rutala, Polymerisation des Äthylens bei hoher Temperatur und Druck in Gegenwart von Katalysatoren. Ber. Dtsch. Chem. Ges. 46, 1748–1755 (1913)

    Google Scholar 

  • A.I. Isayev, ed., Encyclopedia of Polymer Blends, 5 vols. (Wiley-VCH, Weinheim, 2010–2014). ISBN-10:3-527-31928-X; ISBN-13:978-3-527-31928-2 (2010–2014)

    Google Scholar 

  • S.D. Ittel, L.K. Johnson, M. Brookhart, Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 100, 1169–1203 (2000); K.P. Bryliakov, Post-metallocene catalysis for olefin polymerization, Russian Chem. Rev. 76(3), 253–277 (2007)

    CAS  Google Scholar 

  • S.S. Ivanchev, A.V. Yakimansky, N.I. Ivancheva, I.I. Oleinik, G.A. Tolstikov, Ethylene polymerization using catalysts based on binuclear phenoxyimine titanium halide complexes. Europ. Polym. J. 48, 191–199 (2012)

    CAS  Google Scholar 

  • H. Jager, E.J. Vorenkamp, G. Challa, LCST behaviour in blends of PMMA with PVC. Polym. Commun. 24(10), 290–292 (1983)

    CAS  Google Scholar 

  • M.O. Jejelowo, U.S. Patents 5,359,015, 25 Oct 1994, Appl. 01 Feb 1994, 07 Nov 1991, to Exxon Chemical Patents, Incorporated

    Google Scholar 

  • W. Kaminsky, Discovery of methylaluminoxane as cocatalyst for olefin polymerization. Macromolecules 45, 3289–3297 (2012)

    CAS  Google Scholar 

  • W. Kaminsky, A. Funck, K. Wiemann, Nanocomposites by in situ polymerization of olefins with metallocene catalysts. Macromol. Symp. 239, 1–6 (2006)

    CAS  Google Scholar 

  • E.C. Kelusky, C.T. Elston, R.E. Murray, Characterizing polyethylene-based blends with temperature rising elution fractionation (TREF) techniques. Polym. Eng. Sci. 27(20), 1562–1571 (1987)

    CAS  Google Scholar 

  • C. Kennedy, ICI, the company that changed our lives (Hutchinson Limited, London, 1986)

    Google Scholar 

  • K. Khait, SPE Techn. Pap. 40, 1752 (1994); 41, 2066 (1995)

    Google Scholar 

  • K. Khait, Recycling of Post-consumer Plastic Waste via New Solid-State Shear Extrusion Pulverization Process. Proceedings Polymer Processing Society and American Institute of Chemical Engineers Joint Meeting, Chicago, 11–14 Nov 1996

    Google Scholar 

  • G.B. Kharas, S.P. Nemphos, European Patent Application 515,203, 25 Nov 1992, Appl. 24 May 1991, to Novacor Chemicals

    Google Scholar 

  • B.K. Kim, M.S. Kim, H.M. Jeong, K.J. Kim, J.K. Jang, Angew. Makromol. Chem. 194, 91 (1992)

    CAS  Google Scholar 

  • M. Knights, Plast. Technol. 42(8), 34 (1996)

    Google Scholar 

  • M. Knights, Plast. Technol. 43(12), 24 (1997)

    Google Scholar 

  • D.C. Knobeloch, L. Wild, SPE Polyolefins IV Conf. Prepr. 427 (1984)

    Google Scholar 

  • R. Koningsveld, The influence of polymolecularity on thermodynamic properties of macromolecular systems. Polym. Eng. Sci. 25(17), 1118–1119 (1985)

    CAS  Google Scholar 

  • R. Koningsveld, L.A. Kleintjens, Liquid-liquid phase equilibria, in Polymer Blends, NATO ASI Series, Series E: Applied Sciences, vol. 89 (1985), pp. 89–115

    CAS  Google Scholar 

  • R. Koningsveld, L.A. Kleintjens, A.M. Leblans-Vinck, Mean-field lattice equations of state. 1. Possible molecular basis for empirical parameters. J. Phys. Chem. 91, 6423–6428 (1987)

    CAS  Google Scholar 

  • L. Koskan, Ind. Bioprocess. (5), 1 (1992)

    Google Scholar 

  • T. Kotani, T. Taka, Y. Saito, High density polyethylene type transparent film and process for production thereof, U.S. Patent 4,954,391 of 04 Sept 1990, priority 1986, to Showa Denim Kabushiki Kaisha

    Google Scholar 

  • S. Kozo, I. Sumio, U.S. Patents 4,132,633, 02 Jan 1979, Appl. 14 Mar 1975, to Mitsui Mining & Smelting Co.

    Google Scholar 

  • R. Krishnamoorti, W.W. Graessley, N.P. Balsara, D.J. Lohse, Structural origin of thermodynamic interactions in blends of saturated hydrocarbon polymers. Macromolecules 27(11), 3073–3081 (1994a)

    CAS  Google Scholar 

  • R. Krishnamoorti, W.W. Graessley, N.P. Balsara, D.J. Lohse, The compositional dependence of thermodynamic interactions in blends of model polyolefins. J. Chem. Phys. 100(5), 3894–3904 (1994b)

    CAS  Google Scholar 

  • R. Krishnamoorti, W.W. Graessley, L.J. Fetters, R.T. Garner, D.J. Lohse, Anomalous mixing behavior of polyisobutylene with other polyolefins. Macromolecules 28(4), 1252–1259 (1995)

    CAS  Google Scholar 

  • R. Krishnamoorti, W.W. Graessley, G.T. Dee, D.J. Walsh, L.J. Fetters, D.J. Lohse, Pure component properties and mixing behavior in polyolefin blends. Macromolecules 29(1), 367–376 (1996)

    CAS  Google Scholar 

  • E.E. La Fleur, R.M. Amici, W.J. Work, U.S. Patents 5,189,097; 5,322,892, 21 June 1994, Appl. 25 Nov 1992, Appl. 07 Dec 1990, Appl. 22 Oct 1991, to Rohm & Haas Company

    Google Scholar 

  • F.P. La Mantia, Degradation of polymer blends, in Handbook of Polymer Degradation, ed. by S.H. Hamid, M.B. Amin, A.G. Maadhah (Marcel Dekker, New York, 1992)

    Google Scholar 

  • F.P. La Mantia, Reprocessing of Poly(vinyl chloride), Polycarbonate and Polyethyleneterephthalate. NATO-ASI Frontiers in the Science and Technology of Polymer Recycling, Antalya, 16–27 June 1997. NATO ASI Series, E351 249–270 (Kluwer, Lampertheim, 1997, 1998)

    Google Scholar 

  • F.P. La Mantia, M. Marrone, B. Dubrulle D’Orhcel, Polym. Recycl. 2, 3 (1996)

    Google Scholar 

  • C.H. Lai, J.M. Brady, European Patent Application 582,383, 09 Feb 1994; Canadian Patent 2,099,924, 17 Jan 1994, Appl. 16 July 1992, to Rohm & Haas Company

    Google Scholar 

  • S.-Y. Lai, M.S. Edmondson, Polyolefin blends and their solid state processing, U.S. Patents 5,408,004, 18 April 1995, Appl. 17 Aug 1993, to Dow Chem. Co.

    Google Scholar 

  • S.-Y. Lai, S. Land, J.R. Wilson, G.W. Knight, J.C. Stevens, P.-W. Chum, U.S. Patents 5,272,236, 21 Dec 1993, Appl. 15 Oct 1991, to Dow Chemical Company

    Google Scholar 

  • S.-Y. Lai, S. Land, J.R. Wilson, G.W. Knight, and J.C. Stevens, U.S. Patents 5,278,272, 11 Jan 1994, Appl. 02 Sep 1992, to Dow Chemical Company

    Google Scholar 

  • X.-Y. Lai, D.-F. Zhao, F. Lai, U.S. Patents 5,344,895, 06 Sep 1994, Appl. 01 Apr 1993, to University of Massachusetts Lowell

    Google Scholar 

  • O.E. Larsen, Canadian Patent 1,120,630, 23 Mar 1982, Appl. 12 Oct 1977, to Phillips Petroleum Co.

    Google Scholar 

  • H.M. Laun, H. Schuch, J. Rheol. 33, 119 (1989)

    CAS  Google Scholar 

  • J.J. Laverty, R.L. Bullach, T.S. Ellis, T.E. Mcminn, Polym. Recycl. 2(3), 159 (1996)

    CAS  Google Scholar 

  • R.D. Leaversuch, Mod. Plast. 63(4), 108 (1986)

    Google Scholar 

  • R.D. Leaversuch, Mod. Plast. 68(10), 46 (1991)

    Google Scholar 

  • R.D. Leaversuch, Mod. Plast. Intl. 22(7), 34 (1992); 23(10), 37, 56 (1993)

    Google Scholar 

  • S.-T. Lee, Polyethylene blend compositions and methods for making same, U.S. Patents 5,428,093, 27 June 1995, Appl. 05 Nov 1993, to Sealed Air Corporation

    Google Scholar 

  • H.S. Lee, M.M. Denn, Blends of linear and branched polyethylenes. Polym. Eng. Sci. 40(5), 1132–1142 (2000)

    CAS  Google Scholar 

  • L. Leibler, Macromolecules 13, 1602 (1980); Makromol. Chem., Macromol, Symp. 16, 1 (1988)

    CAS  Google Scholar 

  • J. Leidner, PLASTIC WASTE, Recovery of Economic Value (Marcel Dekker, New York, 1981)

    Google Scholar 

  • J. Leidner, NATO-ASI Frontiers in the Science and Technology of Polymer Recycling, Antalya, 16–27 June 1997

    Google Scholar 

  • R.W. Lenz, Adv. Polym. Sci. 107, 1 (1993)

    CAS  Google Scholar 

  • M. Lieberman, U.S. Patents 5,424,013, 13 June 1995, Appl. 09 Aug 1993

    Google Scholar 

  • M. Lifschitz, J. Dudowicz, K.F. Freed, Limits of validity for mean field description of compressible binary polymer blends. J. Chem. Phys. 100(5), 3957–3978 (1994)

    Google Scholar 

  • J.T. Lindt, A.K. Ghosh, Fluid mechanics of the formation of polymer blends. 1. Formation of lamellar structures. Polym. Eng. Sci. 32, 1802 (1992)

    CAS  Google Scholar 

  • C. Liu, J. Wang, J. He, Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE. Polymer 43(13), 3811–3818 (2002)

    CAS  Google Scholar 

  • A. Luciani, L.A. Utracki, The extensional flow mixer, EFM. Int. Polym. Process. 11, 299–309 (1996)

    CAS  Google Scholar 

  • A. Luciani, M.F. Champagne, L.A. Utracki, Interfacial tension determination by retraction of ellipsoidal drops. J. Polym. Sci. B. Polym. Phys. Ed. 35(9), 1393–1403 (1997)

    CAS  Google Scholar 

  • C.-T. Lue, T.H. Kwalk, Low haze high strength polyethylene compositions, U.S. Patent 6870010 B1, of 22 Mar 2005, filed 01 Dec 2003, to Univation Technologies, LLC

    Google Scholar 

  • J. Lyngaae-Jørgensen, L.A. Utracki, Dual phase continuity in polymer blends. Makromol. Chem. Macromol. Symp. 48/49, 189–209 (1991)

    Google Scholar 

  • J. Lyngaae-Jørgensen, K. Søndergaard, L.A. Utracki, A. Valenza, Formation of ellipsoidal drops in simple shear flow: transient behavior. Poly. Netw. Blends 3(4), 167–181 (1993)

    Google Scholar 

  • A. Maani, M.-C. Heuzey, P.J. Carreau, Coalescence in thermoplastic olefin (TPO) blends under shear flow. Rheol. Acta 50, 881–895 (2011)

    CAS  Google Scholar 

  • T. Macko, H. Pasch, Macromolecules 42, 6063 (2009)

    CAS  Google Scholar 

  • V.J. Maddever, in Handbook of Polymer Degradation, ed. by S.H. Hamid, M.B. Amin, A.G. Maadhah (Marcel Dekker, New York, 1992)

    Google Scholar 

  • S.L. Madorsky, Thermal Degradation of Organic Polymers (Wiley, New York, 1964)

    Google Scholar 

  • H. Mahdavi, M.E. Nook, Characterization and microstructure study of low-density polyethylene by Fourier transform infrared spectroscopy and temperature rising elution fractionation. J. Appl. Polym. Sci. 109, 3492–3501 (2008)

    CAS  Google Scholar 

  • H. Makio, T. Fujita, Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation. Acc. Chem. Res. 42(10), 1532–1544 (2009)

    CAS  Google Scholar 

  • H. Makio, H. Terao, A. Iwashita, T. Fujita, FI catalysts for olefin polymerization – a comprehensive treatment. Chem. Rev. 111, 2363–2449 (2011)

    CAS  Google Scholar 

  • L. Manolis-Sherman, Plast. Technol. 27 (1996); Plast. Rubber Wkly. 12 (1996)

    Google Scholar 

  • J.K. Maranas, M. Mondello, G.S. Grest, S.K. Kumar, P.G. Debenedetti, W.W. Graessley, Liquid structure, thermodynamics, and mixing behavior of saturated hydrocarbon polymers. 1. Cohesive energy density and internal pressure. Macromolecules 31(20), 6991–6997 (1998)

    CAS  Google Scholar 

  • J.L. Martin, M.B. Welch, W.R. Coutant, M.P. McDaniel, U.S. Patent 5,306,775, 26 Apr 1994, Appl. 16 Apr 1993; 5,319,029, 07 June 1994, Appl. 16 Apr 1993

    Google Scholar 

  • S.K. Mathur, in Recycling and Plastics Waste Management, ed. by J.S. Anand (CIPET, Chennai, 1997)

    Google Scholar 

  • K. Matoishi, K. Nakai, N. Nagai, H. Terao, T. Fujita, Value-added olefin-based materials originating from FI catalysis: production of vinyl- and Al-terminated PEs, end-functionalized PEs, and PE/polyethylene glycol hybrid materials. Catal. Today 164, 2–8 (2011). doi:10.1016/j.cattod.2010.11.078

    CAS  Google Scholar 

  • S. Matsui, T. Fujita, FI catalysts: super active new ethylene polymerization catalysts. Catal. Today 66(1), 63–73 (2001)

    CAS  Google Scholar 

  • H. Mavridis, Films of polyethylene blends, U.S. Patent 201110160403 A1, 30 June 2011, to Equistar Chemicals LP

    Google Scholar 

  • P. Meier, German Patent 4,139,468, 03 June 1993, Appl. 29 Nov 1991, to EMS-Inventa Aktiengesellschaft

    Google Scholar 

  • G. Menges, IUPAC Pure Appl. Chem. 68, 1809 (1996)

    CAS  Google Scholar 

  • F. Mighri, M.A. Huneault, Visualization of dispersion of model fluids in a transparent Couette flow cell. J. Rheol. 45(3), 783–797 (2001)

    CAS  Google Scholar 

  • F. Mighri, M.A. Huneault, Drop deformation and breakup mechanisms in viscoelastic model fluid systems and polymer blends. Canad. J. Chem. Eng. 80, 1028–1035 (2002)

    CAS  Google Scholar 

  • F.M. Mirabella, E.A. Ford, Characterization of linear low-density polyethylene: cross-fractionation according to copolymer composition and molecular weight. J. Polym. Sci. B: Polym. Phys. 25(4), 777–790 (1987)

    CAS  Google Scholar 

  • H.W. Moeller (ed.), Progress in Polymer Degradation and Stability Research (Nova Science, New York, 2008)

    Google Scholar 

  • B. Monrabal, Crystallization analysis fractionization, U.S. Patent 5222390 of 29 June 1993, filed 20 Sep 1991 to Dow Chem. Co.

    Google Scholar 

  • B. Monrabal, Crystallization analysis fractionation: a new technique for the analysis of branching distribution in polyolefins. J. Appl. Polym. Sci. 52(4), 491–499 (1994)

    CAS  Google Scholar 

  • B. Monrabal, Temperature rising elution fractionation and crystallization analysis fractionation, in Encyclopedia of Analytical Chemistry, ed. by B. Monrabal, R.A. Meyers (Wiley, New York, 2000)

    Google Scholar 

  • B. Monrabal, Method for separating and purifying crystallisable organic compounds, U.S. Patent 8071714 of 06 Dec 2011, priority 15 Mar 2006, to Polymer Characterization, S.A.

    Google Scholar 

  • B. Monrabal, P. del Hierro, Characterization of polypropylene-polyethylene blends by temperature rising elution and crystallization analysis fractionation. Anal. Bioanal. Chem. 399, 1557–1561 (2011)

    CAS  Google Scholar 

  • B. Monrabal, J. Sancho-Tello, N. Maya, L. Romero, Crystallization elution fractionation. A new separation process for polyolefin resins, in Encyclopedia of analytical chemistry, ed. by R.A. Meyers (Wiley, New York, 2000), pp. 71–79

    Google Scholar 

  • B. Monrabal, J. Sancho-Tello, N. Mayo, L. Romero, Crystallization elution fractionation. A new separation process for polyolefin resins. Macromol. Symp. 257, 71–79 (2007)

    CAS  Google Scholar 

  • S.J. Monte, Polyblends – ’97. NRCC/IMI Bi-annual Symposium and SPE-RETEC on Polymer Blends, Alloys and Filled Systems, Boucherville, 9–10 Oct 1997

    Google Scholar 

  • Montell Impact Copolymer Polypropylene Commercial Information, https://polymers.lyondellbasell.com/portal/site/basell/menuitem.81bd1022b7c8ec5bbaabbd10e5548a0c/?VCMChannelID=71f6746516cf4110VgnVCM100000646f3c14____&productQueryText=&filterType=resin&resin=7&market=&region= (2012)

  • D.R. Morrow, T.J. Nosker, K.E. VanNess, R.W. Renfree, U.S. Patents 5,298,214, 29 Mar 1994, Appl. 30 Oct 1990, to Rutgers State University

    Google Scholar 

  • H. Moss, J.G. Modigh, U.S. Patent 5,320,887, 14 June 1994, Appl. 04 Mar 1993, GB Appl. 27 Feb 1992, to Euro-matic Ltd.

    Google Scholar 

  • P. Moulinié, L.A. Utracki, Equations of state and free volume content (Chap. 6), in Polymer Physics, ed. by L.A. Utracki, A.M. Jamieson (Wiley, New York, 2010)

    Google Scholar 

  • M. Müller, K. Binder, Computer simulation of asymmetric polymer mixtures. Macromolecules 28, 1825–1834 (1995)

    Google Scholar 

  • A.J. Müller, V. Balsamo, C.M. Rosales, On the miscibility and mechanical compatibility of low density and linear low density polyethylene blends. Polym. Netw. Blends 2(4), 215–223 (1992)

    Google Scholar 

  • W.G. Munk, Ger. Offen. 4,204,083 A1, 04 Mar 1993, Appl. 09 Aug 1991, to Nordmann Rassmann GmbH & Company

    Google Scholar 

  • L.C. Muschiatti, B.A. Smillie, U.S. Patents 5,391,582, 21 Feb 1995, Appl. 19 Mar 1994, to du Pont

    Google Scholar 

  • V.M. Nadkarni, J.P. Jog, Crystallization behavior of polymer blends, in Two-Phase Polymer Systems, ed. by L.A. Utracki (Hanser, Munich, 1991)

    Google Scholar 

  • M. Naitove, PP/acetal blends are recyclable. Plast. Technol. 42(4), 53 (1996)

    Google Scholar 

  • S. Nakano, Y. Goto, J. Appl. Polym. Sci. 26, 4217 (1981)

    CAS  Google Scholar 

  • W.M. Nelson, Belgian Patent 647,311, 29 Oct 1964, filed 1963, to Phillips Petroleum Co.

    Google Scholar 

  • X.Q. Nguyen, L.A. Utracki, Extensional flow mixer, U.S. Patent 5,451,106, 19 Sept 1995, Appl. 08 Aug 1984, Canadian Patent Application, 1994; to National Research Council Canada

    Google Scholar 

  • E. Nies, A. Stroeks, R. Simha, R.K. Jain, Colloid Polym. Sci. 268, 731 (1990)

    CAS  Google Scholar 

  • T. Nishio, T. Sanada, K. Higashi, Sen-i Gakkaishi 48, 446 (1992)

    Google Scholar 

  • J. Noolandi, Polym. Eng. Sci. 24, 70 (1984)

    CAS  Google Scholar 

  • T.E. Nowlin, Low pressure manufacture of polyethylene. Prog. Polym. Sci. 11, 29–55 (1985)

    CAS  Google Scholar 

  • S. Ohnishi, T. Fukuda, European Patent Application 548,565, 30 June 1993, Appl. 12 Dec 1991, to Mitsubishi Yuka Industrial Products Corp.

    Google Scholar 

  • A. Okada, U.S. Patents 5,352,727, 04 Oct 1994, Appl. 09 Sep 1993, Jap. Appl. 10 Sep 1992, to Idemitsu Kosan

    Google Scholar 

  • A. Okada, A. Masuyama, U.S. Patents 5,326,813, 05 July 1994, Appl. 10 Dec 1992, Jap. Appl. 10 Dec 1991, to Idemitsu Kosan Compan

    Google Scholar 

  • A. Okada, A. Fukushima, M. Kawasumi, S. Inagaki, A. Usuki, S. Sugiyama, T. Kurauchi, O. Kamigaito, U.S. Patent 4739007 (1988, priority 1985), Toyota Chuo Kenkyuusho

    Google Scholar 

  • O. Olabisi, L.M. Robeson, M.Y. Shaw, Polymer-Polymer Miscibility (Academic, New York, 1979)

    Google Scholar 

  • A. Ortin et al., Macromol. Symp. 257, 13 (2007)

    CAS  Google Scholar 

  • A. Ortín, B. Monrabal, P. del Hierro, Polymer Char Application Notebook of 01 Sept 2010

    Google Scholar 

  • F.H. Otey, U.S. Patents 4,133,784, 1979

    Google Scholar 

  • F.H. Otey, in Starch: Chemistry and Technology, ed. by R.L. Whistler, J.N. BeMillr, E.F. Paschall, 2nd edn. (Academic, New York, 1984)

    Google Scholar 

  • J.M. Ottino, The Kinematics of Mixing: Stretching, Chaos and Transport (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  • E.D. Owen (ed.), Degradation and Stabilization of PVC (Elsevier, New York, 1984)

    Google Scholar 

  • J.F. Palierne, Linear rheology of viscoelastic emulsions with interfacial tension. Rheol. Acta 29, 204–214 (1990); Erratum, Rheol. Acta 30, 497 (1991)

    CAS  Google Scholar 

  • J. Pan, W.J.D. Shaw, Microstruct. Sci. 20, 351 (1993); 21, 95 (1994)

    CAS  Google Scholar 

  • Pardos Marketting. http://www.pardos-marketing.com/paper_g04.htm

  • J. Park, M. Hong, H. Kim, A new equation of state based on Hole theory: mixtures. Fluid Phase Equilib. 161, 265–270 (1999)

    CAS  Google Scholar 

  • Parkes Alexander of Birmingham, Artist in the County of Warwick, British Patent 1,147, 25 Mar 1846; 1,313, 07 Nov 1865

    Google Scholar 

  • H. Pasch, R. Brüll, U. Wahner, B. Monrabal, Analysis of complex polymers by MALDI-TOF mass spectrometry. Macromol. Mater. Eng. 279, 46–51 (2000)

    CAS  Google Scholar 

  • H. Pasch et al., Macromol. Symp. 282, 71–80 (2009)

    CAS  Google Scholar 

  • G.A.R. Patfoort, Belgian Patent 833,543, 18 Mar 1976

    Google Scholar 

  • J.-R. Pauquet, F. Sitek, R. Todesco, Process for stabilizing recycled mixed plastics, U.S. Patents 5,298,540, 29 Mar 1994, Appl. 25 Mar 1992, priority 27 Mar 1991, to Ciba-Geigy Corp.

    Google Scholar 

  • J. Peón, C. Domínguez, J.F. Vega, M. Aroca, J. Martínez-Salazar, Viscoelastic behaviour of metallocene-catalysed polyethylene and low density polyethylene blends: use of the double reptation and Palierne viscoelastic models. J. Mater. Sci. 38, 4757–4764 (2003)

    Google Scholar 

  • R. Pérez, E. Rojo, M. Fernández, V. Leal, P. Lafuente, A. Santamaría, Basic and applied rheology of m-LLDPE/LDPE blends: miscibility and processing features. Polymer 46, 8045–8053 (2005)

    Google Scholar 

  • R.J. Petcavich, U.S. Patents 5,367,003, 22 Nov 1994, Appl. 18 June 1992, 23 Apr 1991

    Google Scholar 

  • M. Petro, S.H. Nguyen, E.D. Carlson, Methods for characterization of polymers using multi-dimensional liquid chromatography with parallel second-dimension, U.S. Patent 6,855,258 of 15 Feb 2005, filed 28 Aug 2002, to Symyx Technologies

    Google Scholar 

  • Plast. Rubber Wkly. (9), 9 (1996)

    Google Scholar 

  • A. Poitou, Ph.D. thesis, École des Mines de Paris, 1988

    Google Scholar 

  • R.S. Porter, L.-H. Wang, Polymer 33, 2019 (1992)

    CAS  Google Scholar 

  • J. Preiss, U.S. Patents 5,566,889, 22 Oct 1996, Appl. 20 May 1993, to Montell Inc.

    Google Scholar 

  • M. Rabeony, D.J. Lohse, R.T. Garner, S.J. Han, W.W. Graessley, K.B. Migler, Effect of pressure on polymer blend miscibility: a temperature-pressure superposition. Macromolecules 31(19), 6511–6514 (1998)

    CAS  Google Scholar 

  • H.-J. Radusch, J. Ding, NATO-ASI Frontiers in the Science and Technology of Polymer Recycling, Antalya, 16–27 June 1997

    Google Scholar 

  • R. Ramachandran et al., Polymer 52, 2661–2666 (2011)

    CAS  Google Scholar 

  • B.A. Ramsay, I. Saracova, J.A. Ramsay, R.H. Marchessault, Appl. Environ. Microbiol. 57, 625 (1991)

    CAS  Google Scholar 

  • D. Rana, H.L. Kim, K. Hanjin, J. Rhee, K. Cho, T. Woo, B.H. Lee, S. Choe, Blends of ethylene 1-octene copolymer synthesized by Ziegler–Natta and metallocene catalysts. II. Rheology and morphological behaviors. J. Appl. Polym. Sci. 76, 1950–1964 (2000)

    CAS  Google Scholar 

  • O.P. Ratra, in Recycling and Plastics Waste Management, ed. by J.S. Anand. CIPET National Seminar, 24–26 Sept 1997

    Google Scholar 

  • C. Rauwendaal, Polymer Extrusion (Hanser, Munich, 1986)

    Google Scholar 

  • G.C. Reichart, W.W. Graessley, R.A. Register, R. Krishnamoorti, D.J. Lohse, Measurement of thermodynamic interactions in ternary polymer blends by small-angle neutron scattering. Macromolecules 30(11), 3363–3368 (1997)

    CAS  Google Scholar 

  • G.C. Reichart, W.W. Graessley, R.A. Register, D.J. Lohse, Thermodynamics of mixing for statistical copolymers of ethylene and α-olefins. Macromolecules 31(22), 7886–7894 (1998)

    CAS  Google Scholar 

  • J.A. Resch, U. Keßner, F.J. Stadler, Thermorheological behavior of polyethylene: a sensitive probe to molecular structure. Rheol. Acta 50, 559–575 (2011)

    CAS  Google Scholar 

  • W.D. Richards, J.F. Kelly, European Patent Application 491,187, 24 June 1992; U.S. Patents 5,324,769, 28 June 1994, Appl. 25 Oct 1993, Appl. 12 Mar 1990, Appl. 17 Dec 1990, to General Electric

    Google Scholar 

  • W.D. Richards, J.E. Pickett, U.S. Patents 5,384,360, 24 Jan 1995, Appl. 20 Sep 1993, Appl. 12 Mar 1990, Appl. 17 Dec 1990, to General Electric Company

    Google Scholar 

  • W.D. Richards, D.M. White, European Patent Application 592,144, 13 Apr 1994; Japanese Patent 62 07,049, 26 July 1994, Appl. 07 Oct 1992, to General Electric Company

    Google Scholar 

  • R.-E. Riemann, H.-J. Cantow, C. Friedrich, Polym. Bull. 36, 637 (1996)

    CAS  Google Scholar 

  • W. Ritter, R. Bergner, M. Schäfer, Ger. Offen. 4,121,111 A1, 07 Jan 1993, Appl. 26 June 1991, to Henkel K.-G.a.A.

    Google Scholar 

  • N. Robledo, J.F. Vega, J. Nieto, J. Martínez-Salazar, The role of the interface in melt linear viscoelastic properties of LLDPE/LDPE blends: effect of the molecular architecture of the matrix. J. Appl. Polym. Sci. 114, 420–429 (2009)

    CAS  Google Scholar 

  • M.J. Roedel, The molecular structure of polyethylene. I. Chain branching in polyethylene during polymerization. J. Am. Chem. Soc. 75(24), 6110–6112 (1953)

    CAS  Google Scholar 

  • M.J. Roedel, Blends of high density and low density ethylene polymers and films thereof, U.S. Patent 2983704 of 09 May 1961, priority 28 April 1955 to du Pont de Nemours

    Google Scholar 

  • A. Roy et al., Macromolecules 43, 3710–3720 (2010)

    CAS  Google Scholar 

  • A.V.S. Sainath, M. Isokawa, M. Suzuki, S. Ishii, S. Matsuura, N. Nagai, T. Fujita, Synthesis and characteristics of succinic anhydride and disodium succinate-terminated low molecular weight polyethylenes. Macromolecules 42, 4356–4358 (2009). doi:10.1021/ma900858e

    CAS  Google Scholar 

  • S. Sakane, K. Minato, M. Takashige, Japanese Patent 000,052, 05 Jan 1979, Appl. 03 June 1977, to Idemitsu Petrochemical Co.

    Google Scholar 

  • A. Sariban, K. Binder, Critical properties of the Flory-Huggins lattice model of polymer mixtures. J. Chem. Phys. 86, 5859–5873 (1987)

    CAS  Google Scholar 

  • G. Sarkhel, A. Banerjee, P. Bhattacharya, Rheological and mechanical properties of LDPE/HDPE blends. Polym. Plast. Technol. Eng. 45(6), 713–718 (2006)

    CAS  Google Scholar 

  • B. Schlund, L.A. Utracki, Linear low density polyethylenes and their blends: linear low density polyethylenes and their blends. Part 1: molecular characterization. Polym. Eng. Sci. 27(5), 359–366 (1987a)

    CAS  Google Scholar 

  • B. Schlund, L.A. Utracki, Linear low density polyethylenes and their blends: linear low density polyethylenes and their blends. Part 3: extensional flow of LLDPE’s. Polym. Eng. Sci. 27(5), 380–386 (1987b)

    CAS  Google Scholar 

  • B. Schlund, L.A. Utracki, Linear low density polyethylenes and their blends. Part 5: extensional flow of LLDPE blends. Polym. Eng. Sci. 27(20), 1523–1529 (1987c)

    CAS  Google Scholar 

  • J.H. Schut, Plast. World (12), 29 (1996)

    Google Scholar 

  • K.S. Schweizer, J.G. Curro, PRISM theory of the structure, thermodynamics, and phase transitions of polymer liquids and alloys. Adv. Polym. Sci. 116, 320–377 (1994)

    Google Scholar 

  • K.S. Schweizer, J.G. Curro, Integral equation theories of the structure, thermodynamics, and phase transitions of polymer fluids. Adv. Chem. Phys. 98, 1–142 (1997)

    CAS  Google Scholar 

  • R.B. Seymour, T. Cheng (eds.), History of Polyolefins (D. Reidel, Dordrecht, 1985); Advances in Polyolefins. ACS Symposium, Miami Beach Spring 1985 (Plenum, New York, 1987)

    Google Scholar 

  • W.J.D. Shaw, Canadian Patent Application 2,071,707, 20 Dec 1993, Appl. 19 June 1992, to University (of Calgary) Technologies International, Incorporated

    Google Scholar 

  • W.J.D. Shaw, J. Pan, M.A. Gowler, Proceedings of Second International Conference on Structural Applications of Mechanical Alloying, Vancouver, 20–22 Sept 1993

    Google Scholar 

  • L.M. Sherman, Plast. Technol. 42(3), 27 (1996)

    Google Scholar 

  • L.M. Sherman, Plast. Technol. 43(12), 35 (1997)

    Google Scholar 

  • Z.-H. Shi, L.A. Utracki, Development of polymer blend morphology during compounding in a twin screw extruder. Part 2: theoretical prediction on morphology development during extrusion. Polym. Eng. Sci. 32(24), 1834–1845 (1992); in Proceedings of the Canadian Society of Chemical Engineering Annual Meeting, Toronto, Oct 1992

    CAS  Google Scholar 

  • Z.-H. Shi, P. Sammut, V. Bordereau, L.A. Utracki, Morphological study of polyethylene/ polystyrene blending in a twin – screw extruder. SPE Techn. Pap. 38, 1818–1821 (1992)

    Google Scholar 

  • C.-K. Shih, D.G. Tynan, D.A. Denelsbeck, Polym. Eng. Sci. 31, 1670 (1991)

    CAS  Google Scholar 

  • S.-Y.A. Shin, L.C. Simona, J.B.P. Soares, G. Scholz, Polyethylene–clay hybrid nanocomposites: in situ polymerization using bifunctional organic modifiers. Polymer 44, 5317–5321 (2003)

    CAS  Google Scholar 

  • K. Shin, N.B. Uk, J. Bang, J.Y. Jho, Melt-state miscibility of poly(ethylene-co-1-octene) and linear polyethylene. J. Appl. Polym. Sci. 107, 2584–2587 (2008)

    CAS  Google Scholar 

  • Shin-Kobe Electric Machinery Co., Ltd., Japanese Patent 096,156, 02 June 1984, Appl. 24 Nov 1982

    Google Scholar 

  • K. Shinoda, Principles of Solutions and Solubility (Marcel Dekker, New York, 1978)

    Google Scholar 

  • K. Shirayama et al., J. Polym. Sci. A3, 907 (1965)

    Google Scholar 

  • K.K. Showa Denko, Japanese Patent 059,242, 08 Apr 1983, Appl. 05 Oct 1981

    Google Scholar 

  • R. Simha, T. Somcynsky, On the statistical thermodynamics of spherical and chain molecule fluids. Macromolecules 2, 342–350 (1969); T. Somcynsky, R. Simha, J Appl. Phys. 42, 4545–4548 (1971)

    CAS  Google Scholar 

  • A. Sirohi, S. Ramanathan, Design issues in converting to super-condensed mode operation for polyethylene. Presented at AIChE Spring 98 Meeting, New Orleans, 1998

    Google Scholar 

  • F.A. Sitek, Mod. Plast. Int. 10, 74 (1993)

    Google Scholar 

  • J.B.P. Soares, A.E. Hamielec, Temperature rising elution fractionation, in Modern Techniques for Polymer Characterization, ed. by R. A. Pethrick, J.V. Dawkins (Wiley, New York/Chichester, 1999)

    Google Scholar 

  • J.B.P. Soares, B. Monrabal, J. Nieto, B.J. Javier, Crystallization analysis fractionation (CRYSTAF) of poly(ethylene-co-1-octene) made with single-site-type catalysts: a mathematical model for the dependence of composition distribution on molecular weight. Macromol. Chem. Phys. 199, 1917–1926 (1998)

    CAS  Google Scholar 

  • W. Soontaranun, J.S. Higgins, T.D. Papathanasiou, Shear flow and the phase behaviour of polymer blends. Fluid Phase Equilib. 121, 273–292 (1996)

    CAS  Google Scholar 

  • F.C. Stehling, C.S. Speed, C.H. Welborn Jr., U.S. Patent 5,382,630; 5,382,631, 17 Jan 1995, Appl. 04 Feb 1993, 25 May 1990, to Exxon Chemical Patents, Inc.

    Google Scholar 

  • R.A. Steinkamp, T.J. Grail, U.S. Patent 3953655, 27 Apr 1976, Appl. 09 Apr 1971, to Exxon Research and Engineering Co.

    Google Scholar 

  • C.H. Stephens, A. Hiltner, E. Baer, Phase behavior of partially miscible blends of linear and branched polyethylenes. Macromolecules 36(8), 2733–2741 (2003)

    CAS  Google Scholar 

  • A.M. Striegel, ed., Multiple Detection in Size-Exclusion Chromatography. ACS Symposium Series, vol. 893 (2004)

    Google Scholar 

  • J.P. Sullivan, M.B. Hoyt, U.S. Patents 5,565,158, 15 Oct 1996, Appl. 16 Nov 1994, to BASF Corporation

    Google Scholar 

  • K. Suriya, S. Anantawaraskul, J.B.P. Soares, Cocrystallization of ethylene/1-octene copolymer blends during crystallization analysis fractionation and crystallization elution fractionation. J. Polym. Sci. B: Polym. Phys. 49, 678–684 (2011)

    CAS  Google Scholar 

  • A. Tabtiang, B. Parchana, R.A. Venables, T. Inoue, Melt-flow-induced phase morphologies of a high-density polyethylene/poly(ethylene-co-1-octene) blend. J. Polym. Sci. B: Polym. Phys. 39, 380–389 (2001)

    CAS  Google Scholar 

  • Z. Tadmor, P. Hold, L. Valsamis, SPE Techn. Pap. 25, 193 (1979)

    Google Scholar 

  • T. Taka, K. Shishido, T. Ohkubo, Low temperature heat shrinkable film, U.S. Patent 4913977 of 03 April 1990, priority 1984, to Showa Denim Kabushiki Kaisha

    Google Scholar 

  • E. Takiyama, T. Fujimaki, in Biodegradable Plastics and Polymers, ed. Y. Doi, K. Fukuda. Proceedings of the III International Scientific Workshop on Biodegradable Plastics and Polymers, Osaka, 9–11 Nov 1993 (Elsevier, Amsterdam, 1994)

    Google Scholar 

  • T. Tang, B. Huang, Polymer 35, 281 (1994)

    CAS  Google Scholar 

  • B. Tekkanat, H. Faust, B.L. McKinney, European Patent Application 533,304, 24 Mar 1993; U.S. Patents 5,280,066, 18 Jan 1994, Appl. 18 Sep 1991, to Johnson Service Company, Globe-Union Inc.

    Google Scholar 

  • A.M. Thayer, Metallocene catalysts initiate new era in polymer synthesis, Chem. Eng. News (Sept 11 1995)

    Google Scholar 

  • R. Timmermann, R. Dujardin, P. Orth, E. Ostlinning, H. Schulte, R. Dhein, E. Grigat, European Patent Application 583,595, 23 Feb 1994; Japanese Patent 61 92,570, 12 July 1994, Appl. 20 July 1992, to Bayer

    Google Scholar 

  • I. Tomka, Ger. Offen. 4,116,404, 19 Nov 1992, Appl. 18 May 1991; I. Tomka, J. Meissner, R. Menard, Ger. Offen. 4,134,190, 22 Apr 1993, Appl. 16 Oct 1991

    Google Scholar 

  • H. Tompa, Polymer Solutions (Butterworths, London, 1956)

    Google Scholar 

  • C.L. Tucker, P. Moldenaers, Microstructural evolution in polymer blends. Annu. Rev. Fluid Mech. 34, 177–210 (2002)

    Google Scholar 

  • B.L. Turtle, European Patent Application 095,253, 30 Nov 1983, to British Petroleum Company

    Google Scholar 

  • Univation Technologies, LLC, Capacity expansion technology, 05–2008, © 2003–2008

    Google Scholar 

  • T. Usami, Y. Gotoh, S. Takayama, Generation mechanism of short-chain branching distribution in linear low-density polyethylenes. Macromolecules 19(11), 2722–2726 (1986)

    CAS  Google Scholar 

  • L.A. Utracki, Pressure dependence of Newtonian viscosity. Polym. Eng. Sci. 23, 446–452 (1983)

    CAS  Google Scholar 

  • L.A. Utracki, Polymer Alloys and Blends (Hanser, Munich, 1989a) [Japanese translation Tokyo Kagaku Dozin, Tokyo (1991)]

    Google Scholar 

  • L.A. Utracki, Melt flow of polyethylene blends, in Multiphase Polymers: Blends and Ionomers, ed. L A. Utracki, R.A. Weiss. ACS Symposium Series, vol. 395 (Washington, DC, 1989b)

    Google Scholar 

  • L.A. Utracki, On the viscosity – concentration dependence of immiscible polymer blends. J. Rheol. 35(8), 1615–1637 (1991)

    CAS  Google Scholar 

  • L.A. Utracki (ed.), Encyclopaedic Dictionary of Commercial Polymer Blends (ChemTec Pub, Toronto, 1994)

    Google Scholar 

  • L.A. Utracki, The rheology of multiphase systems, in Rheological Fundamentals of Polymer Processing, ed. by J.A. Covas, J.F. Agassant, A.C. Diogo, J. Vlachopoulos, K. Walters (Kluwer, Dordrecht, 1995)

    Google Scholar 

  • L.A. Utracki, Polyolefin alloys and blends. Makromol. Chem. Macromol. Symp. 118, 335–345 (1997a)

    CAS  Google Scholar 

  • L.A. Utracki, Commercial Polymer Blends (Chapman & Hall, London, 1997b)

    Google Scholar 

  • L.A. Utracki, Polymer blend’s technology for plastics recycling, in Frontiers in the Science and Technology of Polymer Recycling, ed. by G. Akovali, C.A. Bernardo, J. Leidner, L.A. Utracki, M. Xanthos. Proceedings of the NATO Advanced Study Institute on Frontiers in the Science and Technology of Polymer Recycling, Antalya, 16–27 June 1997, vol. E351 (Kluwer, Dordrecht, 1997c)

    Google Scholar 

  • L.A. Utracki, Commercial Polymer Blends (Chapman & Hall, London, 1998)

    Google Scholar 

  • L.A. Utracki, Thermodynamics of polymer blends (Chap. 2), in Polymer Blends Handbook (Kluwer, Dordrecht, 2002)

    Google Scholar 

  • L.A. Utracki, Clay-Containing Polymeric Nanocomposites. Monograph (RAPRA, Shrewsbury, 2004), p. 786

    Google Scholar 

  • L.A. Utracki, Pressure-volume-temperature dependencies of polystyrenes. Polymer 46, 11548–11556 (2005)

    CAS  Google Scholar 

  • L.A. Utracki, Rheology of polymer blends (Chap. 2), in Encyclopedia of Polymer Blends, ed. by A. Isayev, vol. 2 (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  • L.A. Utracki, M.M. Dumoulin, Polypropylene alloys and blends with thermoplastics, in Polypropylene: Structure, Blends and Composites, ed. by J. Karger-Kocsis, vol. 2 (Elsevier, Barking, 1994), pp. 50–94

    Google Scholar 

  • L.A. Utracki, A. Luciani, Int. Plast. Eng. Technol. 2, 37 (1996); “Extensional flow mixer”, Canadian Patent application, 1997; to National Research Council of Canada, Ottawa, Canada

    Google Scholar 

  • L.A. Utracki, P. Sammut, Dynamic mechanical and capillary flow behavior of LLDPE/PC blends. SPE Techn. Pap. 35, 1205–1208 (1989)

    Google Scholar 

  • L.A. Utracki, P. Sammut, On the uniaxial extensional flow of polystyrene/polyethylene blends. Polym. Eng. Sci. 30(17), 1019–1026 (1990a)

    CAS  Google Scholar 

  • L.A. Utracki, P. Sammut, Rheology of polycarbonate/linear low density polyethylene blends. Polym. Eng. Sci. 30(17), 1027–1040 (1990b)

    CAS  Google Scholar 

  • L.A. Utracki, P. Sammut, Rheological response of polyamide/polypropylene blends. Part 2: extensional flow. Polym. Netw. Blends 2(1), 85–93 (1992)

    CAS  Google Scholar 

  • L.A. Utracki, B. Schlund, Molecular characterization of linear low density polyethylenes. SPE Techn. Pap. 32, 737–740 (1986)

    Google Scholar 

  • L.A. Utracki, B. Schlund, Linear low density polyethylenes and their blends. Part 2: shear flow of LLDPE’s. Polym. Eng. Sci. 27(5), 367–379 (1987a)

    CAS  Google Scholar 

  • L.A. Utracki, B. Schlund, Linear low density polyethylenes and their blends. Part 4: shear flow of LLDPE blends. Polym. Eng. Sci. 27(20), 1512–1522 (1987b)

    CAS  Google Scholar 

  • L.A. Utracki, B. Schlund, Shear flow of linear low density polyethylenes and their blends. SPE Techn. Pap. 33, 1002–1005 (1987c)

    Google Scholar 

  • L.A. Utracki, Z.-H. Shi, Development of polymer blend morphology during compounding in a twin screw extruder. Part 1: droplet dispersion and coalescence – a review. Polym. Eng. Sci. 32(24), 1824–1833 (1992)

    CAS  Google Scholar 

  • L.A. Utracki, Z.H. Shi Gerard, Compounding polymer blends (Chap. 9), in Polymer Blends Handbook, ed. by L.A. Utracki (Kluwer, Dordrecht, 2002)

    Google Scholar 

  • L.A. Utracki, R. Simha, Analytical representation of solutions to lattice-hole theory. Macromol. Theory Simul. 10(1), 17–24 (2001)

    CAS  Google Scholar 

  • L.A. Utracki, R.A. Weiss, eds., Multiphase Polymers: Blends and Ionomers. ACS Symposium Series, vol. 395 (Washington, DC, 1989)

    Google Scholar 

  • Vadlamudi et al., J. Therm. Anal. Calorim. (2009)

    Google Scholar 

  • U.R. Vaidya, M. Bhattacharya, U.S. Patents 5,321,064, 14 June 1994, Appl. 12 May 1992, to Regents of the University of Minnesota, Minneapolis

    Google Scholar 

  • A. Valenza, J. Lyngaae-Jørgensen, L.A. Utracki, P. Sammut, Polym. Netw. Blends 1, 79 (1991)

    CAS  Google Scholar 

  • F. Van Damme, J.W. Lyons, W.L. Winniford, A.W. Degroot, M.D. Miller, Chromatography of polyolefin polymers, U.S. Patent 8,076,147 B2 of 13 Dec 2011, filed 13 Dec 2011, priority 15 Apr 2010, to Dow Global Technologies LLC

    Google Scholar 

  • Vanderberg 1962

    Google Scholar 

  • D. Vesely, Polym. Eng. Sci. 36, 1586 (1996)

    CAS  Google Scholar 

  • T.A. Vilgis, J. Noolandi, Makromol. Chem. Makromol. Symp. 16, 225 (1988)

    CAS  Google Scholar 

  • I. Vinckier, P. Moldenaers, A.M. Terracciano, N. Grizzuti, Droplet size evolution during coalescence in semiconcentrated model blends. AIChE J. 44(4), 951–958 (1998)

    CAS  Google Scholar 

  • D.L. Visioli, V. Brodie III, U.S. Patents 5,350,788, 27 Sep 1994, Appl. 11 Mar 1993, to du Pont

    Google Scholar 

  • H. von Pechman, Ber. Dtsch. Chem. Ges. 31, 2440 (1898)

    Google Scholar 

  • M. Wachowicz, L. Gill, J.L. White, Polyolefin blend miscibility: polarization transfer versus direct excitation exchange NMR. Macromolecules 42, 553–555 (2009)

    CAS  Google Scholar 

  • M.H. Wagner, S. Kheirandish, M. Yamaguchi, Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends. Rheol. Acta 44(2), 198–218 (2004)

    CAS  Google Scholar 

  • D.J. Walsh, W.W. Graessley, S. Datta, D.J. Lohse, L.J. Fetters, Equations of state and predictions of miscibility for hydrocarbon polymers. Macromolecules 25(20), 5236–5240 (1992)

    CAS  Google Scholar 

  • A. Webb, A.W. Carlson, T.J. Galvin, PCT Int. Appl., 001,733, 06 Feb 1992, Appl. 1990, to ICI Americas, Incorporated

    Google Scholar 

  • J.D. Weinhold, S.K. Kumar, C. Singh, K.S. Schweizer, J. Chem. Phys. 103, 9460–9474 (1995)

    CAS  Google Scholar 

  • J.L. White, Twin screw extruder technology and principles (Hanser, Munich, 1990)

    Google Scholar 

  • P.W.O. Wijga, J. Van Schooten, J. Boe, The fractionation of polypropylene. Makromol. Chem. 36, 115–132 (1960)

    CAS  Google Scholar 

  • L. Wild, Adv. Polym. Sci. 98, 1–47 (1990)

    Google Scholar 

  • L. Wild, T. Ryle, ACS Polym. Prepr. 18, 182 (1977)

    Google Scholar 

  • L. Wild et al., J. Polym. Sci. A-2(9), 2137 (1971)

    Google Scholar 

  • L. Wild et al., J. Polym. Sci. Polym. Phys. Ed. 20, 441 (1982)

    CAS  Google Scholar 

  • J.L. Willett, U.S. Patents 5,087,650, 11 Feb 1992, Appl. 1990, to Fully Comp. Plastics, Inc.

    Google Scholar 

  • K.F. Wissbrun, R.H. Ball, P.J. Rossello, Belgian Patent 614,282, 22 Aug 1962

    Google Scholar 

  • K.F. Wissbrun, R.H. Ball, P.J. Rossello, British Patent 994,376, 10 June 1965, to Celanese

    Google Scholar 

  • J.E. Wolak, J.L. White, Factors that allow polyolefins to form miscible blends: polyisobutylene and head-to-head polypropylene. Macromolecules 38(25), 10466–10471 (2005)

    CAS  Google Scholar 

  • W.K. Wong, D.C. Varrall, Eur. Pat. Appl., 584,927, 02 Mar 1994, Appl. 24 July 1992, to Exxon Chemical Patents Inc.

    Google Scholar 

  • M. Xanthos, A. Patel, S.K. Dey, S.S. Dagli, C. Jacob, T.J. Nosker, R.W. Renfree, SPE Techn. Pap. 38, 596 (1992)

    Google Scholar 

  • M. Xanthos, J. Grenci, S.H. Patel, A. Patel, C. Jacob, S. Dey, S.S. Dagli, Polym. Compos. 16, 204 (1995)

    CAS  Google Scholar 

  • M. Xanthos, S.K. Dey, D.H. Sebastian, Proceedings Polymer Processing Society and American Institute of Chemical Engineers Joint Meeting, Chicago, 11–14 Nov 1996

    Google Scholar 

  • K. Yasuda, Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1979

    Google Scholar 

  • K. Yasuda, R.C. Armstrong, R.E. Cohen, Shear flow properties of concentrated solutions of linear and star branched polystyrene. Rheol. Acta 20, 163–178 (1981)

    CAS  Google Scholar 

  • W.W. Yau, Polyolefin microstructure characterization using 3D-GPC-TREF. Macromol. Symp. 257, 29 (2007)

    CAS  Google Scholar 

  • W.W. Yau, D. Gillespie, New approaches using MW-sensitive detectors in GPC-TREF for polyolefin characterization. Polymer 42, 8947–8958 (2001)

    CAS  Google Scholar 

  • H. Yoon, Y. Feng, Y. Qiu, C.C. Han, J. Polym. Sci. Polym. Phys. Ed. 32, 1485 (1994)

    CAS  Google Scholar 

  • K. Yoshikawa, N. Ofuji, M. Imaizumi, Y. Moteki, T. Fujimaki, Polymer 37, 1281 (1996)

    CAS  Google Scholar 

  • T. Yoshitake, T. Tasaka, R. Sato, Japanese Patent 050,254; 050,264, 08 May 1978, Appl. 18 Oct 1976, to Kuraray Co.

    Google Scholar 

  • S. Yukioka, T. Inoue, Polymer 35, 1182 (1994)

    CAS  Google Scholar 

  • A.T.P. Zahavich, J. Vlachopoulos, Reprocessing of Polyolefins: Changes in Rheology and Reprocessing Case Studies. NATO-ASI Frontiers in the Science and Technology of Polymer Recycling, Antalya Turkey, 16–27 June 1997. NATO ASI Series, E351 271–298 (Kluwer, Lampertheim, 1997, 1998)

    Google Scholar 

  • Z. Zhang, Use of FT-IR spectrometry for on-line detection in temperature rising elution fractionation. Macromol. Symp. 282, 111–127 (2009)

    CAS  Google Scholar 

  • L. Zhao, P. Choi, A review of the miscibility of polyethylene blends. Mater. Manuf. Process. 21(2), 135–142 (2006)

    CAS  Google Scholar 

  • K. Ziegler, H. Breil, H. Martin, E. Hozkamp, Ger. Offen. 973,626, 14 Apr 1960, Appl. 17 Nov 1953; U.S. Patents 3,257,332, 21 June 1966, Appl. 15 Nov 1954, to K. Ziegler

    Google Scholar 

  • A. Zletz, U.S. Patents 2,692,257, 19 Oct 1954, Appl. 28 Apr 1951, to Standard Oil of Indiana

    Google Scholar 

  • H. Zweifel, Recycling of Polymers for Reuse, Recovery Experiences, Trends and Case Studies, NATO-ASI on Polymer Recycling, Antalya 16–27 June 1997

    Google Scholar 

  • H. Zweifel, Stabilization of polymeric materials (Springer, Berlin, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek A. Utracki .

Editor information

Editors and Affiliations

1 Appendix

Table 18.10 Chronology of polyolefin technology
Table 18.11 Evolution of polyolefin blends
Table 18.12 Patented polyolefin blends

Nomenclature

13CNMR

Carbon-13 nuclear magnetic resonance

1HNMR

Hydrogen nuclear magnetic resonance

ABC

Alloying–blending–compounding

ABS

Acrylonitrile butadiene styrene

AE

Aminoethyl

AGR

Annual growth rate

An

9-Anthryl

APME

Association of Plastics Manufacturers in Europe

AR

Autoclave reactor

ATBN

Amine-terminated butadiene nitrile liquid rubber

ATR

Attenuated total reflection (in FT-IR)

a-TREF

Analytical temperature rising elution fractionation

BAF

Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate

BC

Branch content

BLCT

Basic lattice cluster theory (LCT)

bPET

Branched polyethylene terephthalate

BR

Polybutadiene, butadiene rubber

Bu

Butyl

Bz

Benzyl

C2+i

Abbreviated notation for poly(ethylene-co- i-olefin); i = 3, 4, 6, 8, ….

CA

Cellulose acetate

CBR

Chlorinated butyl rubber

CCD

Chemical composition distribution (or charge-coupled detector)

CED

Cohesive energy density

CEF

Crystallization elution fractionation

CFC

Cross-fractionation chromatography

CFT

Continuum field theory

CGC

Constrained geometry catalyst

CHX

Cyclohexyl

CMC

Critical micelles concentration

CO

Carbon monoxide

COD

1,5-Cyclooctadiene

COPO

Poly(carbon monoxide-co-polyolefin), a linear, alternating terpolymer

CORI

Corotating, fully intermeshing TSE

Cp

Cyclopentadienyl

Cp=C5H5

Cyclopentadienyl anion

CPE

Chlorinated polyethylene

CR

Chloroprene, or neoprene, rubber

CRNI

Counterrotating, non-intermeshing TSE

CSR

Chlorosulfonated polyethylene rubber

CSTR

Continuously stirred tank reactor

CTM

Cavity transfer mixer

CUT

Continuous use temperature

DAB

1,4-Diazabutadiene

DIPP

2,6-Diisopropylphenyl

DR

Drawdown ratio

DSC

Differential scanning calorimetry

D-W

Dee and Walsh theory

EAA

Ethylene acrylic acid copolymer or “carboxylated PE”

EBA

Ethylene butyl acrylate copolymer

EEA

Elastomeric copolymer from ethylene and ethyl acrylate

EFM

Extensional flow mixer

EGMA

Ethylene-glycidyl methacrylate copolymer

ELSD

Evaporative light-scattering detector

EMA

Ethylene-maleic anhydride copolymer

EMAc

Copolymer from ethylene and methacrylic acid

EPDM

Ethylene-propylene-diene terpolymer

EPR

Ethylene-propylene rubber

EPR-MA

Maleated ethylene-propylene rubber (EPR)

EPS

Polystyrene foam; expanded PS

Et

Ethyl (C2H5 )

EVAc

Copolymer from ethylene and vinyl acetate

EVAc-MA

Copolymer from ethylene, vinyl acetate, and methacrylic acid

EVAL

Copolymer of ethylene and vinyl alcohol

FBR

Fluidized bed reactor

FOA

Fluorinated octyl acrylate

FT-IR

Fourier transform infrared (spectroscopy)

GF

Glass fiber or glass fiber-reinforced plastic

Gi

The Ginsburg number

GMA

Glycidyl methacrylate

GPC

Gel [permeation chromatography (see SEC)

HALS

Hindered amine light stabilizer

HAS

Hindered amine stabilizer

HBA

Hydroxybenzoic acid

HDPE

High-density polyethylene

HDPE-MA

Maleated high-density polyethylene

HDXLPE

High-density cross-linked polyethylene

hhPP

Head-to-head polypropylene

HIPS

High impact polystyrene

HMWPE

High-molecular-weight polyethylene

HNA

Hydroxy naphthoic acid

HTLC

High-temperature liquid chromatography

Hx

Hexyl

ICRR

Intermeshing, counterrotating TSE

ID and OD

Inner and outer pipe diameters

Ind

Indentyl

i-PB

Isotactic polybutylene

i- PP

Isotactic polypropylene

LA

Lactic acid

LC

Liquid chromatography

LCB

Long-chain branching

LCBPE

Long-chain branched PE

LCP

Liquid crystalline polymer

LCST

Lower critical solution temperature

LCT

Lattice cluster theory

LDPE

Low-density polyethylene

L-J

Lennard–Jones (theory, potential, parameters)

LLDPE

Linear low-density polyethylene

M

Transition metal in a catalyst

MA

Methyl acrylate

MAH

Maleic anhydride

MAO

Methylaluminoxane

MBS

Copolymer from methyl-methacrylate-co-butadiene-co-styrene

MC

Monte Carlo simulation

MD

Machine direction

MDPE

Medium-density polyethylene

Me

Methyl (CH3-)

Mes

Mesityl

MFR

Melt flow rate

m-LLDPE

Metallocene LLDPE

m-LLDPO

Metallocene PO

MM

Motionless mixer

M n, M w

Number, weight average molecular weight

MW

Molecular weight

M w/M n

Molecular polydispersity index, MWD

MWD

Molecular weight distribution usually expressed as M w/M n

Nb

Norbornyl

NDB

Negatively deviating blends

NG

Nucleation and growth mechanism

NIR

Near-infrared (spectroscopy)

NMR

Nuclear magnetic resonance

Np

Naphthyl

NPDB

Negatively–positively deviating blends

NR

Natural rubber

ODCB

o-Dichlorobenzene

OM

Optical microscopy

P(HB-b-I-S)

Block copolymer of hydrogenated butadiene, isoprene, and styrene

P(S-b-MMA)

Block copolymer of styrene and methyl methacrylate

PA

Polyamide

PA-46

Poly(tetramethylene adipamide)

PA-6

Poly-ε-caprolactam

PA-66

Poly(hexamethylene diamine-adipic acid), polyhexamethylene-adipamide

PA-6IT6

Poly(caprolactam-co-hexamethylene diamine-isophthalic/terephthalic acids)

PA-mXD6

Poly(m-xylylenediamine -adipic acid-co-caprolactam)

PAr

Polyarylate

PARA

Aromatic (mainly amorphous) polyamide

PB1

Poly(butene-1)

PB2

Poly(butene-2)

PBD

Polybutadiene

PBMA

Polybutyl methacrylate

PBSA

Poly(polybutylene succinate-co-adipate)

PBT

Polybutylene terephthalate

PC

Polycarbonate of bisphenol-A

PCL

Poly-ε-caprolactone

PCW

Postconsumer waste

PD

Polydispersity, M w/M n

PDB

Positively deviating blends

PE

Polyethylene

PEA

Polyetheramide

PEB = C2+4

Poly(ethylene butylene)

PEE

Poly(ethylene propylene)

PEEI

Polyesteretherimide

PEEK

Polyetheretherketone

PEE xx

Poly(ethylene-r-ethyl-ethylene); random copolymer with xx% of ethyl–ethylene (EE) units

PEG

Polyethylene glycol

PEH=C2+6

Polyethylene–hexene

PEI

Polyetherimide

PEi≡C2+I

Poly(ethylene-co-α-olefin), PEi≡C2+I; i = 3–8

PEN

Poly(ethylene 2,6-naphthalene dicarboxylate), or polyethylene naphthalate

PEP=C2+3

Poly(ethylene butylene)

PEP

Poly(ethylene propylene)

PEST

Thermoplastic polyesters such as PET, PBT, and PEN

PET

Polyethylene terephthalate

PETG

Polyethylene terephthalate glycol; copolymer

PEtI

Polyethyleneimine

PEX

Cross-linked polyethylene

PGI

Polyglutarimide

Ph

Phenyl

PH1

Poly(hexene-1)

PHB

Polyhydroxybutyrate

PHBA

Poly(β-hydroxybutyric acid)

PHBV

Poly(hydroxybutyrate-co-valerate)

Phenoxy

Polyhydroxyether of bisphenol-A

PHV

Poly(hydroxy valerate)

p i

Internal pressure

PI

Polyimide

PIB

Polyisobutylene

PIB

Polyisobutylene

PLA

Polylactic acid

PMA

Polymethylacrylate

PMMA

Polymethylmethacrylate

PMP

Poly-4-methyl-1-pentene, also TPX

PNDB

Positively–negatively deviating blends

PO

Polyolefin

POM

Polyoxymethylene

PP, i-PP

Isotactic polypropylene (a- PP – atactic; s-PP – syndiotactic)

PPA

Polyphthalamide (also polypropyleneadipate)

PPE

Poly(propylene ethylene)

PPE

Polyphenylene ether

PPG

Polypropylene glycol

PP-MA

Maleated polypropylene

PPS

Polyphenylene sulfide

Pr

Propyl

PRISM

Polymer reference interaction site model

PS

Polystyrene

PSF

Polysulfone

PS-g-EPR

Styrene-grafted EPR

PS-g-EVAc

Styrene-grafted EVAc

PS-g-PP

Styrene-grafted PP

p-TREF

Preparative temperature rising elution fractionation

PVAc

Polyvinyl acetate

PVAl

Polyvinyl alcohol

PVC

Polyvinyl chloride

PVDC

Polyvinylidene chloride

PVDF

Polyvinylidene fluoride

PVF

Polyvinyl fluoride

PVME

Polyvinylmethylether

PVP

Polyvinyl pyridine

PVT

Pressure-volume-temperature

py

Pyridyl

QC

Quality control

RI

Refractive index

RPA

Random phase approximation

R-TPO

Reactor-blended thermoplastic olefinic elastomer

SAN

Styrene acrylonitrile

SANS

Small-angle neutron scattering

SAXS

Small-angle X-ray scattering

SB

Styrene–butadiene copolymer

SBR

Styrene–butadiene elastomer

SBS

Styrene–butadiene–styrene three-block copolymer

SCB

Short-chain branching

SCBD

Distribution of SCB

SCM

Super-condensed mode of m-LLDPE production

SD

Spinodal decomposition mechanism

SEBS

Styrene–ethylene/butene–styrene three-block copolymer

SEBS-MA

Maleated SEBS

SEC

Size exclusion chromatography

SEM

Scanning electron microscopy

SH

Strain hardening

SIMS

Secondary ion mass spectrometry

SIS

Styrene–isoprene–styrene three-block copolymer

SLTC

Simplified lattice cluster theory (LCT)

SMA

Styrene–maleic anhydride

SMMA

Styrene–methyl methacrylate block copolymer

sPS

Syndiotactic polystyrene

S-S

Simha and Somcynsky cell-hole theory

SSE

Single-screw extruder

SSSE

Solid-state shear extrusion

TD

Transverse direction

TEM

Transmission electron microscopy

T g

Glass transition temperature

THF

Tetrahydrofuran

TIBA

tri-Isobutyl aluminum

T m (°C)

Melting temperature

TMA

tri-Methyl aluminum

TMS

Trimethylsilyl

TO

Turnovers, number of moles of monomer polymerized per mole of metal in the catalyst

TOF

Catalyst turnover frequency

TPE

Thermoplastic elastomer

TPO

Thermoplastic olefinic elastomer

TPU

Thermoplastic urethanes

TPV

Thermoplastic vulcanizate

TR

Tubular reactor

TREF

Temperature rising elution fractionation

TSE

Twin-screw extruder

t-TSP

Time–temperature superposition (also: t-T)

UCST

Upper critical solution temperature

UHMWPE

Ultrahigh-molecular-weight polyethylene (over 3 Mg mol−1)

ULDPE

Ultralow-density polyethylene

UV

Ultraviolet light spectroscopy (irradiation)

UV-Vis

Ultraviolet–visible light spectroscopy

VCH

Vinyl cyclohexane

VLDPE

Very low density PE

XLPE

Cross-linked polyethylene

XRD

X-ray powder diffraction

Z-N

Ziegler–Natta catalyst

Z-N–LLDPE

Ziegler–Natta-catalyzed LLDPE

ZN-LLDPO

Ziegler–Natta-catalyzed PO

ΔG m

Gibbs free energy and heat of mixing

δ

Solubility parameter

ρ

Polymer density

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Utracki, L.A. (2014). Polyethylenes and Their Blends. In: Utracki, L., Wilkie, C. (eds) Polymer Blends Handbook. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6064-6_21

Download citation

Publish with us

Policies and ethics