Skip to main content

Wire Driven Multi-fingered Hand

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference
  • 283 Accesses

Abstract

Robot hand is an end effector for manipulation. For the robots to perform dexterous tasks, many joints are necessary. For the anthropomorphic systems, general configuration of one hand involves about 20 joints, which is almost comparable to that of whole body of a humanoid robot. Large number of joints, in general, increases the mechanical complexity, reduces admissible force, and deteriorates robustness. Tendon-driven system is an important technology in realizing a robot hand with both the dexterity and robustness. There are several basic structures categorized by the number of actuators used in the system, such as N type, 2N type, Nā€‰+ā€‰1 type, and underactuated type. Also, there are choices in tendon routing that are advantageous in reducing the friction or the complexity of the system. Tension measurement on the tendon is another consideration when the force controllability of the hand is important. In this chapter, basic theory on tendon-driven systems is introduced. The tendon-driven hands with N-type tendon system with intrinsic actuation and underactuated hand with extrinsic actuation are presented as the case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazzaand, A. Bicchi, Adaptive synergies for the design and control of the Pisa/IIT softhand. Int. J. Robot. Res. 33(5), 768ā€“782 (2014). doi: 10.1177/0278364913518998

    ArticleĀ  Google ScholarĀ 

  2. M.R. Cutkosky, Grasp choice, grasp models,and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5(3), 269ā€“279 (1989). doi: 10.1109/70.34763

    ArticleĀ  Google ScholarĀ 

  3. M. Grebenstein, A. Albu-SchƤffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hƶppner, S. Jƶrg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimbƶck, S. Wolf, T. WĆ¼sthoff, G. Hirzinger, The DLR hand arm system, in Proceedings of International Conference on Robotics and Automation, 2011, pp. 3175ā€“3182. doi: https://doi.org/10.1109/ICRA.2011.5980371

  4. M. Grebenstein, M. Chalon, W. Friedl, S. Haddadin, T. Wimbƶck, G. Hirzinger, R. Siegwart, The hand of the DLR hand arm system: designed for interaction. Int J Robot. Res. 31(13), 1531ā€“1555 (2012). doi: 10.1177/0278364912459209

    ArticleĀ  Google ScholarĀ 

  5. S. Hirose, S. Ma, Coupled tnedon-driven multijoint manipulator, in Proceedings of IEEE International Conference on Robotics and Automation, 1991, pp. 1268ā€“1275. doi: https://doi.org/10.1109/ROBOT.1991.131786

  6. S.C. Jacobsen, E.K. Iversen, D.F. Knutti, R.T. Johnson, K.B. Biggers, Design of the Utah/M.I.T. dextrous hand, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, 1986, pp. 1520ā€“1532. doi: https://doi.org/10.1109/ROBOT.1986.1087395

  7. S.C. Jacobsen, J.E. Wood, D.F. Knutti, K.B. Biggers, E.K. Iversen, The Utah/MIT dextrous hand: work in progress, in Proceedings of International Symposium of Robotics Research, 1984, pp. 601ā€“653.

    Google ScholarĀ 

  8. H. Kaminaga, J. Ono, Y. Shimoyama, T. Amari, Y. Katayama, Y. Nakamura, Anthropomorphic robot hand with hydrostatic cluster actuator and detachable passive wire mechanism, in Proceedings of IEEE International Conference on Humanoid Robots, 2009, pp. 1ā€“6. doi: https://doi.org/10.1109/ICHR.2009.5379528

  9. H. Kaminaga, T. Yamamoto, J. Ono, Y. Nakamura, Backdrivable miniature hydrostatic transmission for actuation of anthropomorphic robot hands, in Proceedings of IEEE International Conference on Humanoid Robots, 2007, pp. 36ā€“41. doi: https://doi.org/10.1109/ICHR.2007.4813846

  10. M. Kaneko, K. Yokoi, K. Tanie, On a new torque senosor for tendon drive fingers. IEEE Trans. Robot. Autom. 6(4), 501ā€“507 (1990). doi: 10.1109/70.59362

    ArticleĀ  Google ScholarĀ 

  11. T. Kang, H. Kaminaga, Y. Nakamura, A robot hand driven by hydraulic cluster actuators, in Proceedings of IEEE International Conference on Humanoid Robots, 2014, pp. 39ā€“44. doi: https://doi.org/10.1109/HUMANOIDS.2014.7041335

  12. I.A. Kapandji, The Physiology of the Joints, vol. 1, 5th edn., Upper Limb. (Churchill Livingstone, 1982)

    Google ScholarĀ 

  13. A. Morecki, Synthesis and control of the anthropomorphic two-handed manipulator, in Proceedings of 10th International Symposium on Industrial Robots, 1980, pp. 461ā€“474.

    Google ScholarĀ 

  14. R. Ozawa, K. Hashirii, H. Kobayashi, Design and control of underactuated tendon-driven mechanisms, in Proceedings of IEEE International Conference on Robotics and Automation, 2009, pp. 1522ā€“1527. doi: https://doi.org/10.1109/ROBOT.2009.5152222

  15. R. Ozawa, H. Kobayashi, K. Hashirii, Analysis, classification, and design of tendon-driven mechanisms. IEEE Trans. Robot. 30(2), 396ā€“410 (2014). doi: https://doi.org/10.1109/TRO.2013.2287976

    ArticleĀ  Google ScholarĀ 

  16. F. Rƶthling, R. Haschke, J.J. Steil, H. Ritter, Platform portable anthropomorphic grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM hand, in Proceedings of IEEE International Conference on Intelligent Robots and Systems, 2007, pp. 2951ā€“2956. doi: https://doi.org/10.1109/IROS.2007.4398963

  17. J.K. Salisbury, Design and control of an articulated hand, in Proceedings of the 1st International Symposium on Design and Synthesis, 1984

    Google ScholarĀ 

  18. J.K. Salisbury, J.J. Craig, Articulated hands: force control and kinematic issues. Int. J. Robot. Res. 1(1), 4ā€“17 (1982). doi: 10.1177/027836498200100102

    ArticleĀ  Google ScholarĀ 

  19. A. Schmitz, U. Pattacini, F. Nori, L. Natale, G. Metta, G. Sandini, Design, realization and sensorization of the dexterous icub hand, in Proceedings of IEEE International Conference on Humanoid Robots, 2010, pp. 186ā€“191. doi: https://doi.org/10.1109/ICHR.2010.5686825

  20. T. Treratanakulwong, H. Kaminaga, Y. Nakamura, Low-friction tendon-driven robot hand with carpal tunnel mechanism in the palm by optimal 3D allocation of pulleys, in Proceedingsof IEEE International Conference on Robotics and Automation, 2014, pp. 6739ā€“6744. doi: https://doi.org/10.1109/ICRA.2014.6907854

  21. T. Yamashita, Mechanical fingers controlled by machine and their applications to materials handling. J. Soc. Instrum. Control. Eng. 3(6), 429ā€“439 (1964). doi: https://doi.org/10.11499/sicejl1962.3.429 (in Japanese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kaminaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaminaga, H. (2019). Wire Driven Multi-fingered Hand. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_84

Download citation

Publish with us

Policies and ethics