Skip to main content

Evolutionary Traits of Toxins

  • Reference work entry
  • First Online:
Biological Toxins and Bioterrorism

Part of the book series: Toxinology ((TOXI))

Abstract

Protein toxins produced by bacteria are some of the most potent toxins known to mankind. Most of them utilize certain critical cellular processes of the host to invade and impair other important cellular processes. Different domains of these proteins have a number of homology groups with varying protein structure and functions. Some of them have sequence similarities across all three cellular forms of life – Bacteria, Archaea, and Eukarya – suggesting a possibility of horizontal gene transfer among these organisms. Considering these traits, the protein toxins provide useful tools to study host–pathogen interactions as well as the biological evolution of species. This chapter emphasizes two aspects of evolution: genomic organization and protein molecular characteristics. Evolution is not only a reflection of change in the characteristic of biological species, but it is also related to diversity at every level, including species, individual organism, and even at the molecular level. Study of evolution in terms of molecular properties such as folding, flexibility, and dynamics provides us with another very unique and necessary dimension to examine molecular and submolecular mechanisms involved in the evolutionary process. Such information can be used to develop countermeasures in the case of protein toxins and perhaps utility of highly evolved toxins as medicines, as in the case for botulinum neurotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander PA, He Y, Chen Y, Orban J, Bryan PN. The design and characterization of two proteins with 88 % sequence identity but different structure and function. Proc Natl Acad Sci USA. 2007;104:11963–8.

    CAS  PubMed  Google Scholar 

  • Allison JR, Bergeler M, Niels H, van Gunsteren WF. Current computer modeling cannot explain why two highly similar sequences fold into different structures. Biochemistry. 2011;50:10965–73.

    CAS  PubMed  Google Scholar 

  • Alouf JE. The comprehensive source book of bacterial protein toxins. Academic (2006), chapter 2 (by Brenda A. Wilson and Menglei, Ho), Philadelphia, USA.

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS  Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001;280:1059–70.

    Google Scholar 

  • Bark C, Hahn KM, Ryabinin AE, Wilson CM. Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neuronal development. Proc Natl Acad Sci USA. 1995;92:1510–4.

    CAS  PubMed  Google Scholar 

  • Bock JB, Matern HT, Peden AA, Scheller RH. A genomic perspective on membrane compartment organization. Nature. 2001;409:839–41.

    CAS  PubMed  Google Scholar 

  • Bohler C, Nielsen PE, Orgel LE. Template switching between PNA and RNA oligonucleotides. Nature. 1995;376:578–81.

    CAS  PubMed  Google Scholar 

  • Brunger AT, Breidenbach MA, Jin R, Fischer A, Santos JS, Montal M. Botulinum neurotoxin heavy chain belt as an intermolecular chaperone for the light chain. PloS Pathog. 2007;3:1191–4.

    CAS  PubMed  Google Scholar 

  • Cai S, Singh BR. Role of the disulfide cleavage induced molten globule state of type a botulinum neurotoxin in its endopeptidase activity. Biochemistry. 2001;40:15327–33.

    CAS  PubMed  Google Scholar 

  • Dacks JB, Field MC. Evolution of the eukaryotic membrane trafficking system: origin, tempo and mode. J Cell Sci. 2007;120:2977–85.

    CAS  PubMed  Google Scholar 

  • Deamer DW. How did it all begin? The self-assembly of organic molecules and the origin of cellular life. Evol Investig Evid Paleontol Soc Spec Publ. 1999;9:1–27.

    Google Scholar 

  • Doxey AC, Lynch MDJ, Muller KM, Meiering EM, McConkey BJ. Insights into the evolutionary origins of clostridial neurotoxins from analysis of the Clostridium botulinum strain A neurotoxin gene cluster. BMC Evol Biol. 2008;8:316–24.

    PubMed  PubMed Central  Google Scholar 

  • East AK, Collins MD. Conserved structure of genes encoding components of botulinum neurotoxin complex M and the sequence of the gene coding for the nontoxic component in nonproteolytic Clostridium botulinum type F. Curr Microbiol. 1994;29:69–77.

    CAS  PubMed  Google Scholar 

  • Elmore MJ, Hutson RA, Collins MD, Bodsworth NJ, Whelan SM, Minton NJ. Nucleotide sequence of the gene coding for proteolytic (group I) Clostridium botulinum type F neurotoxin: genealogical comparison with other clostridial neurotoxins. Syst Appl Microbiol. 1995;18:23–31.

    CAS  Google Scholar 

  • Eubanks LM, Hixon MS, Jin W, Hong S, Clancy CM, Tepp WH, Baldwin MR, Malizio CJ, Goodnough MC, Barbieri JT, Johnson EA, Boger DL, Dickerson TJ, Janda KD. An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. Proc Natl Acad Sci USA. 2007;104:2602–7.

    CAS  PubMed  Google Scholar 

  • Fairweather NF, Lyness VA. The complete nucleotide sequence of tetanus toxin. Nucleic Acids Res. 1986;14:7809–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita R, Fujinaga Y, Inoue K, Nakajima H, Kumon H, Oguma K. Molecular characterization of two forms of nontoxic-nonhemagglutinin components of Clostridium botulinum type A progenitor toxins. FEBS Lett. 1995;376:41–44.

    CAS  PubMed  Google Scholar 

  • Grishin NV. Fold change in evolution of protein structures. J Struct Biol. 2001;134:167–85.

    CAS  PubMed  Google Scholar 

  • Groisman EA, Ochman H. Pathogenicity island: bacterial evolution in quantum leaps. Cell. 1996;87:791–4.

    CAS  PubMed  Google Scholar 

  • Gu S, Rumpel S, Zhou J, Strotmeir J, Bigalke H, Perry K, Shoemaker CB, Rummel A, Jin R. Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science. 2012;335:977–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Chen Y, Alexander P, Bryan PN, Orban J. NMR structures of two designed proteins with high sequence identity but different fold and function. Proc Natl Acad Sci USA. 2008;105:14412–7.

    CAS  PubMed  Google Scholar 

  • Henkin TM. Control of transcription termination in prokaryotes. Annu Rev Genet. 1996;30:35–7.

    CAS  PubMed  Google Scholar 

  • Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989;5:151–153.

    CAS  PubMed  Google Scholar 

  • Hill KK, Xie G, Foley BT, Smith TJ, Munk AC, Bruce D, Smith LA, Brettin TS, Detter JC. Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol. 2009;7:1–18.

    Google Scholar 

  • Hutson RA, Zhou Y, Collins MD, Jhonson EA, Hatheway CL, Sugiyama H. Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences. J Biol Chem. 1996;271:10786–92.

    CAS  PubMed  Google Scholar 

  • Kim E, Goren A, Ast G. Alternative splicing: current perspectives. Bioessays. 2008;30:38–47.

    CAS  PubMed  Google Scholar 

  • Kloepper TH, Kienle CN, Fasshauer D. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol Biol Cell. 2007;18:3463–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kukreja R, Singh BR. Biologically active novel conformational state of botulinum, the most poisonous poison. J Biol Chem. 2005;280:39346–52.

    CAS  PubMed  Google Scholar 

  • Kumar R, Zhou Y, Ghosal K, Cai S, Singh BR. Anti-apoptotic activity of hemagglutinin-33 and botulinum neurotoxin and its implication to therapeutic and countermeasures issues. Biochem Biophys Res Commun. 2012;417:726–31.

    CAS  PubMed  Google Scholar 

  • Kumar R, Kukreja R, Li L, Zhmurov A, Kononova O, Cai S, Ahmed S, Barsegov V, Singh BR. Botulinum neurotoxin: unique folding of enzyme domain of the most poisonous poison. J Biomol Struct Dyn. 2013;32:804–815.

    PubMed  Google Scholar 

  • Lacy DB, Stevens RC. Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol. 1999;291:1091–104.

    CAS  PubMed  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, Dasgupta BR, Stevens RC. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998;5:898–902.

    CAS  PubMed  Google Scholar 

  • Lemichez E, Barbieri JT. General aspects and recent advances on bacterial protein toxins. Cold Spring Harb Perspect Med. 2013;3(2):a013573. doi:10.1101/cshperspect.a013573.

    Google Scholar 

  • Levinthal C. Are there pathways for protein folding? J Chim Phys Phys Chim Biol. 1968;65:44–5.

    Google Scholar 

  • Li L, Singh BR. Structure-function relationship of clostridial neurotoxins. J Toxicol Toxin Rev. 1999;18:95–112.

    CAS  Google Scholar 

  • Li L, Francklyn C, Carter Jr. CW. Aminoacylating urzymes challenge the RNA world hypothesis. J Biol Chem. 2013;288:26856–26863.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longo LM, Blaber M. Protein design at the interface of the pre-biotic and biotic worlds. Arch Biochem Biophys. 2012;526:16–21.

    CAS  PubMed  Google Scholar 

  • Longo LM, Lee J, Blaber M. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein. Proc Nat Acad Sci USA. 2013;110:2135–2139.

    CAS  PubMed  Google Scholar 

  • Marshall KM, Bradshaw M, Pellett S, Johnson EA. Plasmid encoded neurotoxin genes in Clostridium botulinum serotype A subtypes. Biochem Biophys Res Commun. 2007;361:49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montal M. Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem. 2010;79:591–617.

    CAS  PubMed  Google Scholar 

  • Murzin AG, Lesk AM, Chotia C. Beta-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukin-1 beta and 1 alpha and fibro blast growth factors. J Mol Biol. 1992;223:531–43.

    CAS  PubMed  Google Scholar 

  • Nagy G, Milosevic I, Fasshauer D, Muller EM, de Groot BL, Lang T, Wilson MC, Sorensen JB. Alternative splicing of SNAP-25 regulates secretion through nonconservative substitutions in the SNARE domain. Mol Biol Cell. 2005;16:5675–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pontzer H. Overview of hominin evolution. Nat Educ Knowl. 2012;3:8–15.

    Google Scholar 

  • Powledge TM, Rose M. The great DNA hunt. Archeol Arch. 1996;49:5.

    Google Scholar 

  • Puffer EB, Lomneth RB, Sarkar HK, Singh BR. Differential roles of developmentally distinct SNAP-25 isoforms in the neurotransmitter release process. Biochemistry. 2001;40:9374–8.

    CAS  PubMed  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev. 2000;80:717–66.

    CAS  PubMed  Google Scholar 

  • Sebaihia M, Peck MW, Minton NP, Thompson NR, Holden MT, Mitchell WJ, Carter AT, Bentley SD, Mason DR, Crossman L, Paul CJ, Ivens A, Wells-Bennik MH, Davis IJ, Cerderio-Tarraga AM, Churcher C, Quail MA, Chillingworth T, Feltwell T, Fraser A, Goodhead I, Hance Z, Jagels K, Larke N, Maddison M, Moule S, Mungall K, Norbetczak H, Rabbinowitsch E, Sanders M, Simmonds M, White B, Whithead S, Parkhill J. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res. 2007;17:1082–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BR. Intimate details of the most poisonous poison. Nat Struct Biol. 2000;7:617–9.

    CAS  PubMed  Google Scholar 

  • Singh BR, DasGupta BR. Conformational changes associated with the nicking and activation of botulinum neurotoxin type E. Biophys Chem. 1989;38:123–30.

    Google Scholar 

  • Sun S, Suresh S, Liu H, Tepp WH, Johnson EA, Edwardson JM, Chapman ER. Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. Cell Host Microbe. 2011;10:237–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidyanathan VV, Yoshino K, Jahnz M, Dorries C, Bade S, Nauenburg S, Niemann H, Binz T. Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J Neurochem. 1999;72:327–37.

    CAS  PubMed  Google Scholar 

  • Villafranca JE, Robertus JD. Ricin B chain is a product of gene duplication. J Biol Chem. 1981;256:554–6.

    CAS  PubMed  Google Scholar 

  • Watanabe M, Koyama K, Sugimura T, Wakabayashi K. Pierisin, an apoptosis-inducing protein from cabbage butterfly. Tanpakushitsu Kakusan Koso. 2001;46 Suppl 4:395–400.

    CAS  PubMed  Google Scholar 

  • Zuckerkandl E. The appearance of new structures and functions in proteins during evolution. J Mol Evol. 1975;7:1–57.

    CAS  PubMed  Google Scholar 

  • Zwanzig R, Szalo A, Bagchu B. Levinthal’s Paradox. Proc Nat Acad Sci USA. 1992;89:20–22.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bal Ram Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, R., Chang, TW., Singh, B.R. (2015). Evolutionary Traits of Toxins. In: Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R. (eds) Biological Toxins and Bioterrorism. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5869-8_29

Download citation

Publish with us

Policies and ethics