Skip to main content

Challenges in Developing Biotoxin Inhibitors

  • Reference work entry
  • First Online:
Biological Toxins and Bioterrorism

Part of the book series: Toxinology ((TOXI))

Abstract

Biological toxins, which are produced by microorganisms, plants, or animals, cause serious illnesses in humans. Some of these toxins, for example, botulinum neurotoxin, are potential agents of biological warfare and are also increasingly being used for therapeutic and cosmetic purposes. Despite the potential damage they could cause to human health, no drugs are currently available for post-intoxication therapy. Recent progress in drug discovery efforts for botulinum neurotoxins and unmet challenges are discussed. Aided with the crystal structures of apo- and cognate substrate-bound catalytic domain, a number of peptide and small-molecule non-peptide inhibitors have been identified for various serotypes, and pharmacophore models are emerging. But there is limited success in translating these inhibitors into active compounds in cellular assays and in vivo models. Factors such as the unusually large surface area of the toxin-substrate interaction interface, the flexible loops lining the active site, involvement of a metal ion in the catalytic activity, and molten globule form of the enzyme at physiological temperature contribute to this challenge and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler M, Nicholson JD, Cornille F, Hackley Jr BE. Efficacy of a novel metalloprotease inhibitor on botulinum neurotoxin B activity. FEBS Lett. 1998;429(3):234–8.

    CAS  PubMed  Google Scholar 

  • Agarwal R, Swaminathan S. SNAP-25 substrate peptide (residues 180–183) binds to but bypasses cleavage by catalytically active Clostridium botulinum neurotoxin E. J Biol Chem. 2008;283(38):25944–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal R, Eswaramoorthy S, Kumaran D, Binz T, Swaminathan S. Structural analysis of botulinum neurotoxin type E catalytic domain and its mutant Glu212→Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. Biochemistry. 2004;43(21):6637–44.

    CAS  PubMed  Google Scholar 

  • Anne C, Blommaert A, Turcaud S, Martin AS, Meudal H, Roques BP. Thio-derived disulfides as potent inhibitors of botulinum neurotoxin type B: implications for zinc interaction. Bioorg Med Chem. 2003a;11(21):4655–60.

    CAS  PubMed  Google Scholar 

  • Anne C, Turcaud S, Quancard J, Teffo F, Meudal H, Fournie-Zaluski MC, Roques BP. Development of potent inhibitors of botulinum neurotoxin type B. J Med Chem. 2003b;46(22):4648–56.

    CAS  PubMed  Google Scholar 

  • Boldt GE, Kennedy JP, Hixon MS, McAllister LA, Barbieri JT, Tzipori S, Janda KD. Synthesis, characterization and development of a high-throughput methodology for the discovery of botulinum neurotoxin a inhibitors. J Comb Chem. 2006a;8(4):513–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boldt GE, Kennedy JP, Janda KD. Identification of a potent botulinum neurotoxin a protease inhibitor using in situ lead identification chemistry. Org Lett. 2006b;8(8):1729–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breidenbach MA, Brunger AT. Substrate recognition strategy for botulinum neurotoxin serotype A. Nature. 2004;432(7019):925–9.

    CAS  PubMed  Google Scholar 

  • Burnett JC, Li B, Pai R, Cardinale SC, Butler MM, Peet NP, Moir D, Bavari S, Bowlin T. Analysis of botulinum neurotoxin serotype A metalloprotease inhibitors: analogs of a chemotype for therapeutic development in the context of a three-zone pharmacophore. Open Access Bioinform. 2010;2010(2):11–8.

    Google Scholar 

  • Cai S, Lindo P, Park JB, Vasa K, Singh BR. The identification and biochemical characterization of drug-like compounds that inhibit botulinum neurotoxin serotype A endopeptidase activity. Toxicon. 2010;55(4):818–26.

    CAS  PubMed  Google Scholar 

  • Chen S, Barbieri JT. Unique substrate recognition by botulinum neurotoxins serotypes A and E. J Biol Chem. 2006;281(16):10906–11.

    CAS  PubMed  Google Scholar 

  • Eubanks LM, Hixon MS, Jin W, Hong S, Clancy CM, Tepp WH, Baldwin MR, Malizio CJ, Goodnough MC, Barbieri JT, Johnson EA, Boger DL, Dickerson TJ, Janda KD. An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. Proc Natl Acad Sci U S A. 2007;104(8):2602–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eubanks LM, Silhar P, Salzameda NT, Zakhari JS, Xiaochuan F, Barbieri JT, Shoemaker CB, Hixon MS, Janda KD. Identification of a natural product antagonist against the botulinum neurotoxin light chain protease. ACS Med Chem Lett. 2010;1(6):268–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feltrup TM, Singh BR. Development of a fluorescence internal quenching correction factor to correct botulinum neurotoxin type A endopeptidase kinetics using SNAPtide. Anal Chem. 2012;84(24):10549–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein A. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin. J Physiol Paris. 1990;84(2):188–90.

    CAS  PubMed  Google Scholar 

  • Hale M, Oyler G, Swaminathan S, Ahmed SA. Basic tetrapeptides as potent intracellular inhibitors of type A botulinum neurotoxin protease activity. J Biol Chem. 2011;286(3):1802–11.

    CAS  PubMed  Google Scholar 

  • Hambleton P. Clostridium botulinum toxins: a general review of involvement in disease, structure, mode of action and preparation for clinical use. J Neurol. 1992;239(1):16–20.

    CAS  PubMed  Google Scholar 

  • Hermone AR, Burnett JC, Nuss JE, Tressler LE, Nguyen TL, Solaja BA, Vennerstrom JL, Schmidt JJ, Wipf P, Bavari S, Gussio R. Three-dimensional database mining identifies a unique chemotype that unites structurally diverse botulinum neurotoxin serotype A inhibitors in a three-zone pharmacophore. ChemMedChem. 2008;3(12):1905–12.

    CAS  PubMed  Google Scholar 

  • Hines HB, Kim AD, Stafford RG, Badie SS, Brueggeman EE, Newman DJ, Schmidt JJ. Use of a recombinant fluorescent substrate with cleavage sites for all botulinum neurotoxins in high-throughput screening of natural product extracts for inhibitors of serotypes A, B, and E. Appl Environ Microbiol. 2008;74(3):653–9.

    CAS  PubMed  Google Scholar 

  • Krieglstein KG, DasGupta BR, Henschen AH. Covalent structure of botulinum neurotoxin type A: location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains. J Protein Chem. 1994;13(1):49–57.

    CAS  PubMed  Google Scholar 

  • Kumar G, Agarwal R, Swaminathan S. Discovery of a fluorene class of compounds as inhibitors of botulinum neurotoxin serotype E by virtual screening. Chem Commun (Camb). 2012a;48(18):2412–4.

    CAS  Google Scholar 

  • Kumar G, Kumaran D, Ahmed SA, Swaminathan S. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling. Acta Crystallogr D Biol Crystallogr. 2012b;68(Pt 5):511–20.

    CAS  PubMed  Google Scholar 

  • Kumar R, Kukreja RV, Cai S, Singh BR. Differential role of molten globule and protein folding in distinguishing unique features of botulinum neurotoxin. Biochim Biophys Acta. 2014;1844(6):1145–52.

    CAS  PubMed  Google Scholar 

  • Kumaran D, Rawat R, Ahmed SA, Swaminathan S. Substrate binding mode and its implication on drug design for botulinum neurotoxin A. PLoS Pathog. 2008a;4(9):e1000165.

    PubMed  PubMed Central  Google Scholar 

  • Kumaran D, Rawat R, Ludivico ML, Ahmed SA, Swaminathan S. Structure- and substrate-based inhibitor design for Clostridium botulinum neurotoxin serotype A. J Biol Chem. 2008b;283(27):18883–91.

    CAS  PubMed  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998;5(10):898–902.

    CAS  PubMed  Google Scholar 

  • Li B, Pai R, Cardinale SC, Butler MM, Peet NP, Moir DT, Bavari S, Bowlin TL. Synthesis and biological evaluation of botulinum neurotoxin a protease inhibitors. J Med Chem. 2010;53(5):2264–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moe ST, Thompson AB, Smith GM, Fredenburg RA, Stein RL, Jacobson AR. Botulinum neurotoxin serotype A inhibitors: small-molecule mercaptoacetamide analogs. Bioorg Med Chem. 2009;17(8):3072–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montecucco C, Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol. 1994;13(1):1–8.

    CAS  PubMed  Google Scholar 

  • Montecucco C, Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys. 1995;28(4):423–72.

    CAS  PubMed  Google Scholar 

  • Montecucco C, Schiavo G, Rossetto O. The mechanism of action of tetanus and botulinum neurotoxins. Arch Toxicol Suppl. 1996;18:342–54.

    CAS  PubMed  Google Scholar 

  • Opsenica I, Burnett JC, Gussio R, Opsenica D, Todorovic N, Lanteri CA, Sciotti RJ, Gettayacamin M, Basilico N, Taramelli D, Nuss JE, Wanner L, Panchal RG, Solaja BA, Bavari S. A chemotype that inhibits three unrelated pathogenic targets: the botulinum neurotoxin serotype A light chain, P. falciparum malaria, and the Ebola filovirus. J Med Chem. 2011;54(5):1157–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruthel G, Burnett JC, Nuss JE, Wanner LM, Tressler LE, Torres-Melendez E, Sandwick SJ, Retterer CJ, Bavari S. Post-intoxication inhibition of botulinum neurotoxin serotype A within neurons by small-molecule, non-peptidic inhibitors. Toxins (Basel). 2011;3(3):207–17.

    CAS  Google Scholar 

  • Sagane Y, Watanabe T, Kouguchi H, Sunagawa H, Inoue K, Fujinaga Y, Oguma K, Ohyama T. Dichain structure of botulinum neurotoxin: identification of cleavage sites in types C, D, and F neurotoxin molecules. J Protein Chem. 1999;18(8):885–92.

    CAS  PubMed  Google Scholar 

  • Salzameda NT, Eubanks LM, Zakhari JS, Tsuchikama K, DeNunzio NJ, Allen KN, Hixon MS, Janda KD. A cross-over inhibitor of the botulinum neurotoxin light chain B: a natural product implicating an exosite mechanism of action. Chem Commun (Camb). 2011;47(6):1713–5.

    CAS  Google Scholar 

  • Schmidt JJ, Stafford RG. Fluorigenic substrates for the protease activities of botulinum neurotoxins, serotypes A, B, and F. Appl Environ Microbiol. 2003;69(1):297–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silhar P, Capkova K, Salzameda NT, Barbieri JT, Hixon MS, Janda KD. Botulinum neurotoxin A protease: discovery of natural product exosite inhibitors. J Am Chem Soc. 2010;132(9):2868–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silvaggi NR, Boldt GE, Hixon MS, Kennedy JP, Tzipori S, Janda KD, Allen KN. Structures of Clostridium botulinum neurotoxin serotype A light chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem Biol. 2007;14(5):533–42.

    CAS  PubMed  Google Scholar 

  • Silvaggi NR, Wilson D, Tzipori S, Allen KN. Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex. Biochemistry. 2008;47(21):5736–45.

    CAS  PubMed  Google Scholar 

  • Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10(4):307–17.

    CAS  PubMed  Google Scholar 

  • Stura EA, Le Roux L, Guitot K, Garcia S, Bregant S, Beau F, Vera L, Collet G, Ptchelkine D, Bakirci H, Dive V. Structural framework for covalent inhibition of Clostridium botulinum neurotoxin A by targeting Cys165. J Biol Chem. 2012;287(40):33607–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson AA, Jiao GS, Kim S, Thai A, Cregar-Hernandez L, Margosiak SA, Johnson AT, Han GW, O’Malley S, Stevens RC. Structural characterization of three novel hydroxamate-based zinc chelating inhibitors of the Clostridium botulinum serotype A neurotoxin light chain metalloprotease reveals a compact binding site resulting from 60/70 loop flexibility. Biochemistry. 2011;50(19):4019–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb RP, Smith LA. What next for botulism vaccine development? Expert Rev Vaccines. 2013;12(5):481–92.

    CAS  PubMed  Google Scholar 

  • Zuniga JE, Schmidt JJ, Fenn T, Burnett JC, Arac D, Gussio R, Stafford RG, Badie SS, Bavari S, Brunger AT. A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate. Structure. 2008;16(10):1588–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuniga JE, Hammill JT, Drory O, Nuss JE, Burnett JC, Gussio R, Wipf P, Bavari S, Brunger AT. Iterative structure-based peptide-like inhibitor design against the botulinum neurotoxin serotype A. PLoS One. 2010;5(6):e11378.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyanendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, G. (2015). Challenges in Developing Biotoxin Inhibitors. In: Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R. (eds) Biological Toxins and Bioterrorism. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5869-8_27

Download citation

Publish with us

Policies and ethics