Skip to main content

Basic Chemistry of Botulinum Neurotoxins Relevant to Vaccines, Diagnostics, and Countermeasures

  • Reference work entry
  • First Online:
Biological Toxins and Bioterrorism

Part of the book series: Toxinology ((TOXI))

  • 2215 Accesses

Abstract

Botulinum neurotoxins (BoNTs) produced by the Clostridium family of bacteria are the deadliest of all naturally occurring toxins and are listed as the highest risk biothreat agents by the Centers for Disease Control and Prevention (CDC). They are the causative agents of botulism, a severe neuroparalytic disease which can be fatal in the absence of medical care. While natural cases of botulism are rare, by virtue of their extreme toxicity, easy production, and dissemination, BoNTs could potentially be employed as biowarfare agents and hence pose great threat to national security and public health. Nevertheless, the ability of these toxins to disrupt neurotransmission has been put to good use, and this potentially lethal toxin is now being used therapeutically in an ever expanding list of medical disorders and cosmetic treatments. A combination of features including neuronal target sites, efficient cellular entry, and unique enzymatic activity contributes to the extreme toxicity of BoNTs. Botulinum neurotoxins have a multi-domain structure with each domain contributing to a specific role in the toxin action. Recent advancements in deciphering the molecular mechanism of action of BoNTs and their structure-function relationship have facilitated a greater understanding of the potential use of individual domains of the toxin in the development of potent antidotes against botulism. Numerous biodefense efforts have been directed toward the development of improved technologies for botulism detection/diagnosis and for developing effective countermeasures, including vaccines, peptides, and small-molecule inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler M, Dinterman RE, Wannemacher RW. Protection by the heavy metal chelator N, N, N’, N’-tetrakis (2-pyridylmethyl)ethylenediamine (TPEN) against the lethal action of botulinum neurotoxin A and B. Toxicon. 1997;35:1089–100.

    CAS  PubMed  Google Scholar 

  • Agarwal R, Subramaniam E, Kumaran D, Binz T, Swaminathan S. Structural analysis of botulinum neurotoxin type E catalytic domain and its mutant Glu212 → Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. Biochemistry. 2004;43:6637–44.

    CAS  PubMed  Google Scholar 

  • Agarwal R, Binz T, Swaminathan S. Analysis of active site residues of botulinum neurotoxin type E by mutational, functional and structural studies: Glu335Gln is an apoenzyme. Biochemistry. 2005;44:8291–302.

    CAS  PubMed  Google Scholar 

  • Ahn-Yoon S, DeCory TR, Durst RA. Ganglioside-liposome immunoassay for the detection of botulinum toxin. Anal Bioanal Chem. 2004;378:68–75.

    CAS  PubMed  Google Scholar 

  • Aoki KR, Guyer B. Botulinum toxin type A and other botulinum toxin serotypes: a comparative review of biochemical and pharmacological actions. Eur J Neurol. 2001;8:21–9.

    PubMed  Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K. Botulinum toxin as a biological weapon: medical and public health management. J Am Med Assoc. 2001;285:1059–70.

    CAS  Google Scholar 

  • Arnon SS, Schechter R, Maslanka SE, Jewell NP, Hatheway CL. Human botulism immune globulin for the treatment of infant botulism. N Engl J Med. 2006;354:462–71.

    CAS  PubMed  Google Scholar 

  • Bagramyan K, Barash JR, Arnon SS, Kalkum M. Attomolar detection of botulinum toxin type A in complex biological matrices. PLoS ONE. 2008;3:e2041.

    PubMed  PubMed Central  Google Scholar 

  • Bakry N, Kamata Y, Simpson LL. Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin. J Pharmacol Exp Ther. 1991;258:830–6.

    CAS  PubMed  Google Scholar 

  • Berry MG, Stanek JJ. Botulinum neurotoxin A: a review. J Plast Reconstr Aaesthet Surg. 2012;65:1283–91.

    CAS  Google Scholar 

  • Binz T, Bade S, Rummel A, Kollewe A, Alves J. Arg362 and Tyr 365 in botulinum neurotoxin type A light chain are involved in transition state stabilization. Biochemistry. 2002;41:1717–23.

    CAS  PubMed  Google Scholar 

  • Boldt GE, Kennedy JP, Janda KD. Identification of a potent botulinum neurotoxin A protease inhibitor using in situ lead identification chemistry. Org Lett. 2006;8:1729–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boles J, West M, Montgomery V, Tammariello R, Pitt ML, Gibbs P, Smith L, LeClaire RD. Recombinant C fragment of botulinum neurotoxin B serotype rBoNTB (HC) immune response and protection in the rhesus monkey. Toxicon. 2006;47:877–84.

    CAS  PubMed  Google Scholar 

  • Breidenbach MA, Brunger AT. Substrate recognition strategy for botulinum neurotoxin serotype A. Nature. 2004;432:925–9.

    CAS  PubMed  Google Scholar 

  • Breidenbach MA, Brunger AT. New insights into clostridial neurotoxin-SNARE interactions. Trends Mol Med. 2005;11:377–81.

    CAS  PubMed  Google Scholar 

  • Brunger AT, Breidenbach MA, Rongsheng J, Fischer A, Santos JS, Montal M. Botulinum neurotoxin heavy chain belt as an intramolecular chaperon for the light chain. PLoS Pathog. 2007;3:1191–4.

    CAS  PubMed  Google Scholar 

  • Burnett JC, Schmidt JJ, Stafford RG, Panchal RG, Nguyen TL, Hermone AR, Vennerstrom JL, McGrath CF, Lane DJ, Sausville EA, Zaharevitz DW, Gussio R, Bavari S. Biochem Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity. Biochem Biophys Res Commun. 2003;310:84–93.

    CAS  PubMed  Google Scholar 

  • Burnett JC, Opsenica D, Sriraghavan K, Panchal RG, Ruthel G, Hermone AR, Nguyen TL, Kenny TA, Lane DJ, McGrath CF, Schmidt JJ, Vennerstrom JL, Gussio R, Solaja BA, Bavari S. A refined pharmacophore identifies potent 4-amino-7-chloroquinoline-based inhibitors of the botulinum neurotoxin serotype A metalloprotease. J Med Chem. 2007a;50:2127–36.

    CAS  PubMed  Google Scholar 

  • Burnett JC, Ruthel G, Stegmann CM, Panchal RG, Nguyen TL, Hermone AR, Stafford RG, Lane DJ, Kenny TA, McGrath CF, Wipf P, Stahl AM, Schmidt JJ, Gussio R, Brunger AT, Bavari S. Inhibition of metalloprotease botulinum serotype A from a pseudo-peptode binding mode to a small molecule that is active in primary neurons. J Biol Chem. 2007b;282:5004–14.

    CAS  PubMed  Google Scholar 

  • Cai S, Singh BR. Strategies to design inhibitors of Clostridium botulinum neurotoxins. Infect Disord-Drug Targ. 2007;7:47–57.

    CAS  Google Scholar 

  • Cai S, Kukreja R, Shoesmith S, Chang TW, Singh BR. Botulinum neurotoxin light chain refolds at endosomal pH for its translocation. Protein J. 2006;25:455–62.

    CAS  PubMed  Google Scholar 

  • Cai S, Singh BR, Sharma S. Botulinum diagnostics: from clinical symptoms to in vitro assays. Crit Rev Microbiol. 2007;33:109–25.

    CAS  PubMed  Google Scholar 

  • Capek P, Dickerson TJ. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins (Basel). 2010;2:24–53.

    CAS  Google Scholar 

  • Capkova K, Hixon MA, Pellett S, Barbieri JT, Johnson EA, Janda KD. Benzylidene cyclopentenediones: first irreversible inhibitors against botulinum neurotoxin A’s zinc endopeptidase. Bioorg Med Chem Lett. 2009;20:206–8.

    PubMed  PubMed Central  Google Scholar 

  • Caya JG, Agni R, Miller JE. Clostridium botulinum and the clinical laboratorian. Arch Pathol Lab Med. 2004;128:653–62.

    CAS  PubMed  Google Scholar 

  • Chang TW, Blank M, Janardhanan P, Singh BR, Mello C, Blind M, Cai S. In vitro selection of RNA aptamers that inhibit the activity of type A botulinum neurotoxin. Biochem Biophys Res Commun. 2010;396(4):854–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao HY, Wang YC, Tang SS, Liu HW. A highly sensitive immune-polymerase reaction assay for Clostridium botulinum neurotoxin type A. Toxicon. 2004;43:27–34.

    CAS  PubMed  Google Scholar 

  • Chen S. Clinical uses of botulinum neurotoxins: current indications, limitations and future developments. Toxins. 2012;4:913–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng LW, Stanker LH. Detection of botulinum neurotoxin aerotypes A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. J Agric Food Chem. 2013;61:755–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng LW, Stanker LH, Henderson TD, Lou J, Marks JD. Antibody protection against botulinum neurotoxin intoxication in mice. Infect Immun. 2009;77:4305–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cherington M. Clinical spectrum of botulism. Muscle Nerve. 1998;21:701–10.

    CAS  PubMed  Google Scholar 

  • Chiao DJ, Wey JJ, Shyu RH, Tang SS. Monoclonal antibody-based lateral flow assay for detection of botulinum neurotoxin type A. Hybrid (Larchmt). 2008;27:31–5.

    CAS  Google Scholar 

  • Clayton MA, Clayton JM, Brown DR, Middlebrook JL. Protective vaccination with a recombinant fragment of Clostridium botulinum neurotoxin serotype A expressed from a synthetic gene in Escherichia coli. Infect Immun. 1995;63:2738–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JG, Spilke CE, Denton M, Jamieson S. Clostridium botulinum: an increasing complication of heroin misuse. Eur J Emerg Med. 2005;12:251–2.

    PubMed  Google Scholar 

  • Cote TR, Mohan AK, Polder JA, Walton MK, Braun MM. Botulinum toxin type A injections: adverse events reported to the US Food and Drug Administration in therapeutic and cosmetic cases. J Am Acad Dermatol. 2005;53:407–15.

    PubMed  Google Scholar 

  • Couesnon A, Pereira Y, Popoff MR. Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. Cell Microbiol. 2008;10:375–87.

    CAS  PubMed  Google Scholar 

  • Davletov B, Bajohrs M, Binz T. Beyond BOTOX: advantages and limitations of individual botulinum neurotoxins. Trends Neurosci. 2005;28:446–52.

    CAS  PubMed  Google Scholar 

  • Dembek ZF, Smith LA, Rusnak JM. Botulism: cause, effects, diagnosis, clinical and laboratory identification, and treatment modalities. Disaster Med Public Health Prep. 2007;1:122–34.

    PubMed  Google Scholar 

  • Doellgast GJ, Triscott MX, Beard GA, Bottoms JD, Cheng T, Roh BH, Roman MG, Hall PA, Brown JE. Sensitive enzyme-linked immunosorbent assay for detection of Clostridium botulinum neurotoxins A, B, and E using signal amplification via enzyme-linked coagulation assay. J Clin Microbiol. 1993;31:2402–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong M, Tepp WH, Johnson EA, Chapman ER. Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proc Natl Acad Sci USA. 2004;101:14701–6.

    CAS  PubMed  Google Scholar 

  • Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER. SV2 is the protein receptor for botulinum neurotoxin A. Science. 2006;312:595–6.

    Google Scholar 

  • Eubanks LM, Hixon MS, Jin W, Hong S, Clancy CM, Tepp WH, Baldwin MR, Malizio CJ, Goodnough MC, Barbieri JT, Johnson EA, Boger DL, Dickerson TJ, Janda KD. An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. Proc Natl Acad Sci USA. 2007;104:2602–7.

    CAS  PubMed  Google Scholar 

  • Ferreira JL. Comparison of amplified ELISA and mouse bioassay procedures for the determination of botulinual toxins A, B, E, and F. J AOAC Int. 2001;84:85–8.

    CAS  PubMed  Google Scholar 

  • Fischer A, Montal M. Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem. 2007a;282:29604–11.

    CAS  PubMed  Google Scholar 

  • Fischer A, Montal M. Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci USA. 2007b;104:10447–52.

    CAS  PubMed  Google Scholar 

  • Fischer A, Montal M. Molecular dissection of botulinum neurotoxin reveals interdomain chaperone function. Toxicon. 2013;75:101–7.

    CAS  PubMed  Google Scholar 

  • Fischer A, Nakai Y, Eubanks LM, Clancy CM, Tepp WH, Pellett S, Dickerson TJ, Johnson EA, Janda KD, Montal M. Bimodal modulation of the botulinum neurotoxin protein-conduction channel. Proc Natl Acad Sci USA. 2009;106:1330–5.

    CAS  PubMed  Google Scholar 

  • Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW, Johnson E, Smith L, Aoki KR, Dolly JO. Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem. 2003;278:1363–71.

    CAS  PubMed  Google Scholar 

  • Freedman M, Armstrong RM, Killian JM, Boland D. Botulism in a patient with jejunoileal bypass. Ann Neurol. 1986;5:641–3.

    Google Scholar 

  • Gessler F, Pagel-Weider S, Avondet MA, Bohnel H. Evaluation of lateral flow assays for the detection of botulinum neurotoxin type A and their application on laboratory diagnosis of botulism. Daign Microbiol Infect Dis. 2007;57:243–9.

    CAS  Google Scholar 

  • Graham ME, Washbourne P, Wilson MC, Burgoyne RD. SNAP-25 with mutations in the zero layer supports normal membrane fusion kinetics. J Cell Sci. 2001;114:4397–405.

    CAS  PubMed  Google Scholar 

  • Grate JW, Ozanich Jr RM, Warner MG, Marks J, Bruckner-Lea CJ. Advances in assays and analytical approaches for botulinum-toxin detection. Trends Anal Chem. 2010;29:1137–56.

    CAS  Google Scholar 

  • Green J, Spear H, Brinson RR. Human botulism (type F) – a rare type. Am J Med. 1983;75:893–5.

    CAS  PubMed  Google Scholar 

  • Hale M, Oyler G, Swaminathan S, Ahmed SA. Basic tetrapeptides as potent intracellular inhibitors of type A botulinum neurotoxin protease activity. J Biol Chem. 2011;286:1802–11.

    CAS  PubMed  Google Scholar 

  • Hall YH, Chaddock JA, Moulsdale HJ, Kirby ER, Alexander FC, Marks JD, Foster KA. Novel application of an in vitro technique to the detection and quantification of botulinum neurotoxin antibodies. J Immunol Methods. 2004;288:55–60.

    CAS  PubMed  Google Scholar 

  • Hanson MA, Stevens RC. Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0A resolution. Nat Struct Biol. 2000;7:687–92.

    CAS  PubMed  Google Scholar 

  • Hart MK, Saviolakis GA, Welkos SL, House RV. Advanced development of the rF1V and rBV A/B vaccines: progress and challenges. Adv Prev Med. 2012. doi:10.1155/2012/731604.

    Article  PubMed  Google Scholar 

  • Hatheway CL. Bacteriology and pathology of neurotoxigenic clostridia. In: DasGupta BR, editor. Botulinum and tetanus neurotoxins. New York: Plenum Press; 1993.

    Google Scholar 

  • Hayden J, Pires J, Hamilton M, Moore G. Novel inhibitors of botulinus neurotoxin “A” based on variations of the SNARE motif. Proc West Pharmacol Soc. 2000;43:71–4.

    CAS  PubMed  Google Scholar 

  • Hermone AR, Burnett JC, Nuss JE, Tressler LE, Nguyen TL, Solaja BA, Vennerstrom JL, Schmidt JJ, Wipf P, Bavari S, Gussio R. Three-dimensional database mining identifies a unique chemotype that unites structurally diverse botulinum neurotoxin serotype A inhibitors in a three-zone pharmacophore. Chem Med Chem. 2008;3:1905–12.

    CAS  PubMed  Google Scholar 

  • Hoch DH, Romero-Mira M, Ehrlich BE, Finkelstein A, DasGupta BR, Simpson LL. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci USA. 1985;82:1692–6.

    CAS  PubMed  Google Scholar 

  • Hughes JM, Blumenthal JR, Merson MH, Lombard GL, Dowell Jr VR, Gangarosa EJ. Clinical features of types A and B food-borne botulism. Ann Intern Med. 1981;95:442–5.

    CAS  PubMed  Google Scholar 

  • Humeau Y, Dossau F, Grant NJ, Poulain B. How botulinum and tetanus neurotoxins block neurotransmitter release? Biochimie. 2000;82:427–46.

    CAS  PubMed  Google Scholar 

  • Johnson EA. Clostridial toxins as therapeutic agents: benefits of nature’s most toxic proteins. Annu Rev Microbiol. 1999;53:551–75.

    CAS  PubMed  Google Scholar 

  • Kalb SR, Lou J, Garcia-Rodriguez C, Geren IN, Smith TJ, Moura H, Marks JD, Smith LA, Pirkle JL, Barr JR. Extraction and inhibition of enzymatic activity of botulinum neurotoxins/A1, /A2, and /A3 by a panel of monoclonal anti-BoNT/A antibodies. PLoS ONE. 2009;4:e5355.

    PubMed  PubMed Central  Google Scholar 

  • Kalb SR, Garcia-Rodriguez C, Lou J, Baudys J, Smith TJ, Marks JD, Smith LA, Pirkle JL, Barr JR. Extraction of BoNT/A, /B, /E, and /F with a single, high affinity monoclonal antibody for detection of botulinum neurotoxin by Endopep-MS. PLoS ONE. 2010;5:e12237.

    PubMed  PubMed Central  Google Scholar 

  • Kale RR, Clancy CM, Vermillion RM, Johnson EA, Iyer SS. Synthesis of soluble multivalent glycoconjugates that target the Hc region of botulinum neurotoxin A. Bioorg Med Chem Lett. 2007;17:2459–64.

    CAS  PubMed  Google Scholar 

  • Keller JE, Cai F, Neale EA. Uptake of botulinum neurotoxin into cultured neurons. Biochemistry. 2004;43:526–32.

    CAS  PubMed  Google Scholar 

  • Kitamura M, Iwamor M, Nagai Y. Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim Biophys Acta Gen Subj. 1980;628:328–35.

    CAS  Google Scholar 

  • Kongsaengdao S, Samintarapanya K, Rusmeechan S, Wongsa A, Pothirat C, Permpikul C, Pongpakdee S, Puavilai W, Kateruttanakul P, Phengtham U, et al. An outbreak of botulism in Thailand: clinical manifestations and management of severe respiratory failure. Clin Infect Dis. 2006;43:1247–56.

    PubMed  Google Scholar 

  • Koriazova LK, Montal M. Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol. 2003;10:13–8.

    CAS  PubMed  Google Scholar 

  • Kukreja R, Singh BR. Biologically active novel conformational state of botulinum, the most poisonous poison. J Biol Chem. 2005;280:39346–52.

    CAS  PubMed  Google Scholar 

  • Kukreja R, Singh BR. In: Botulinum Neurotoxins - Structure and Mechanism of Action. Thomas P, editor. Microbial toxins: current research and future trends. Norfolk: Caister Academic Press; 2009. p. 15–40.

    Google Scholar 

  • Kukreja RV, Sharma S, Cai S, Singh BR. Role of two active site Glu residues in the molecular action of botulinum neurotoxin endopeptidase. Biochim Biophys Acta. 2007;1774:213–22.

    CAS  PubMed  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998;5:898–902.

    CAS  PubMed  Google Scholar 

  • Lai H, Feng M, Roxas-Duncan V, Dakshanamurthy S, Smith LA, Yang DC. Quinolinol and peptide inhibitors of zinc protease in botulinum neurotoxin A: effects of zinc ion and peptides on inhibition. Arch Biochem Biophys. 2009;491:75–84.

    CAS  PubMed  Google Scholar 

  • Lebeda FJ, Singh BR. Membrane channel activity and translocation of tetanus and botulinum neurotoxins. Toxin Rev. 1999;18:45–76.

    CAS  Google Scholar 

  • Li PZ, Zhou J, Miao WY, Ding FH, Meng JY, Jia GR, Li JF, Ye HJ, He XY, Chen MY, Huang ZM. Therapeutic effect of toosendanin on animal botulism. Tradit Herb Drugs. 1982;13:28–30.

    CAS  Google Scholar 

  • Li L, Binz T, Niemann H, Singh BR. Probing the role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry. 2000;39:2399–405.

    CAS  PubMed  Google Scholar 

  • Li B, Pai R, Cardinale CS, Butler MM, Peet NP, Moir DT, Bavari S, Bowlin TL. Synthesis and biological evaluation of botulinum neurotoxin A protease inhibitors. J Med Chem. 2010;53:2264–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstrom M, Korkeala H. Laboratory diagnostics of botulism. Clin Microbiol Rev. 2006;19:298–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Zhou B, Kim Y, Janda KD. A cyclic peptide-polymer probe for the detection of Clostridium botulinum neurotoxin serotype. Toxicon. 2006;47:901–8.

    CAS  PubMed  Google Scholar 

  • Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T. The synaptic vesicle protein SV2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett. 2006;580:2011–4.

    CAS  PubMed  Google Scholar 

  • Mahrhold S, Strotmeier J, Garcia-Rodriguez C, Lou J, Marks JD, Rummel A, Binz T. Identification of the SV2 protein receptor-binding site of botulinum neurotoxin type E. Biochem J. 2013;453:37–47.

    CAS  PubMed  Google Scholar 

  • Maksymowych AB, Simpson LL. Structural features of the botulinum neurotoxin molecule that govern binding and transcytosis across polarized human intestinal epithelial cells. J Pharmacol Exp Ther. 2004;310:633–41.

    CAS  PubMed  Google Scholar 

  • Maksymowych AB, Rienhard M, Malizio CJ, Goodnough MC, Johnson EA. Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect Immun. 1999;67:4708–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marks JD. Deciphering antibody properties that lead to potent botulinum neurotoxin neutralization. Mov Disord. 2004;8:S101–8.

    Google Scholar 

  • Matteoli M, Verderio C, Rossetto O, Lezzi N, Coco S, Schiavo G, Montecucco C. Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc Natl Acad Sci USA. 1996;93:13310–5.

    CAS  PubMed  Google Scholar 

  • Meng Q, Garcia-Rodriguez C, Manzanarez G, Silberg MA, Conrad F, Bettencourt J, Pan X, Breece T, To R, Li M, Lee D, Thorner L, Tomic MT, Marks JD. Engineered domain-based assays to identify individual antibodies in oligoclonal combinations targeting the same protein. Anal Biochem. 2012;430:141–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moe ST, Thompson AB, Smith GM, Fredenburg RA, Stein RL, Jacobson AR. Botulinum neurotoxin serotype A inhibitors: small molecule mercaptoacetamide analogs. Bioorg Med Chem. 2009;17:3072–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montal M. Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem. 2010;79:591–617.

    CAS  PubMed  Google Scholar 

  • Montecucco C, Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys. 1995;28:423–72.

    CAS  PubMed  Google Scholar 

  • Montecucco C, Papini C, Schiavo G. Bacterial toxins penetrate cells via a four-step mechanism. FEBS Lett. 1994;346:92–8.

    CAS  PubMed  Google Scholar 

  • Moore GJ, Moore DM, Roy SS, Hayden LJ, Hamilton MG, Chan NW, Lee WE. Hinge peptide combinatorial libraries for inhibitors of botulinum neurotoxins and saxitoxin: deconvolution strategy. Mol Divers. 2006;10:9–16.

    CAS  PubMed  Google Scholar 

  • Nakai Y, Tepp WH, Dickerson TJ, Johnson EA, Janda KD. Function-oriented synthesis applied to the anti-botulinum natural product toosendanin. Bioorg Med Chem. 2009;17:1152–7.

    CAS  PubMed  Google Scholar 

  • Nakai Y, Pellett S, Tepp WH, Johnson EA, Janda KD. Toosendanin: synthesis of the AB-ring and investigations of its anti-botulinum properties. Bioorg Med Chem. 2010;18:1280–7.

    CAS  PubMed  Google Scholar 

  • Nigg C, Hottle GA. Studies on botulinum toxoid, types A and B: production of alum precipitated toxoids. J Immunol. 1947;55:245–54.

    CAS  PubMed  Google Scholar 

  • Nishiki T, Kamata Y, Nemoto Y, Omori A, Ito T, Takahashi M, Kozaki S. Identification of protein receptor for C lostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem. 1994;269:10498–503.

    CAS  PubMed  Google Scholar 

  • Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A, Sato K, Sekiguchi M, Takahashi M, Kozaki S. The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett. 1996;378:253–7.

    CAS  PubMed  Google Scholar 

  • Nowakowski A, Wang C, Powers DB, Amersdorfer P, Smith TJ, Montgomery VA, Sheridan R, Blake R, Smith LA, Marks JD. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc Natl Acad Sci USA. 2002;99:11346–50.

    CAS  PubMed  Google Scholar 

  • Nuss JE, Dong Y, Wanner LM, Ruthel G, Wipf P, Gussio R, Vennerstrom JL, Bavari S, Burnett JC. Pharmacophore refinement guides the rational design of nano-molar range inhibitors of the botulinum neurotoxin serotype A metalloprotease. ACS Med Chem Lett. 2010;1:301–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Malley S, Sareth S, Jiao GS, Kim S, Thai A, Cregar-Hernandez LC, McKasson L, Margosiak SA, Johnson AT. Virtual medicinal chemistry: in silico pre-docking functional group transformation for discovery of novel inhibitors of botulinum toxin serotype A light chain. Bioorg Med Chem Lett. 2013;23:2505–11.

    PubMed  Google Scholar 

  • Opsenica IM, Tot M, Gomba L, Nuss JE, Sciotti RJ, Bavari S, Burnett JC, Solaja BA. 4-Amino-7-chloroquinolines: probing ligand efficiency provides botulinum neurotoxin serotype A light chain inhibitors with significant antiprotozoal activity. J Med Chem. 2013;56:5860–71.

    CAS  PubMed  Google Scholar 

  • Ozanich Jr RM, Bruckner-Lea CJ, Warner MG, Miller K, Antolick KC, Marks JD, Lou J, Grate JW. Rapid multiplexed flow cytometric assay for botulinum neurotoxin detection using an automated fluidic microbead-trapping flow cell for enhanced sensitivity. Anal Chem. 2009;81:5783–93.

    CAS  PubMed  Google Scholar 

  • Parpura V, Chapman ER. Detection of botulinum toxins: micromechanical and fluorescence-based sensors. Croat Med J. 2005;46:491–7.

    PubMed  Google Scholar 

  • Pauly D, Kirchner S, Stoermann B, Schreiber T, Kaulfuss S, Schade R, Zbinden R, Avondet MA, Dorner MB, Dorner BG. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst. 2009;134:2028–39.

    CAS  PubMed  Google Scholar 

  • Pellegrini LL, O’Connor V, Lottspeich F, Betz H. Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating. NSF activation of synaptic vesicle fusion. EMBO J. 1995;14:4705–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellett A, Tepp WH, Clancy CM, Borodic GE, Johnson EA. A neuronal cell-based botulinum neurotoxin assay for highly sensitive and specific detection of neutralizing serum antibodies. FEBS Lett. 2007;581:4803–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pier CL, Tepp WH, Bradshaw M, Johnson EA, Barbieri JT, Baldwin M. Recombinant holotoxoid vaccine against botulism. Infect Immun. 2008;76:437–42.

    CAS  PubMed  Google Scholar 

  • Ramasamy S, Liu CQ, Tran H, Gubala A, Gauci P, McAllister J, Vo T. Principles of antidote pharmacology: an update on prophylaxis, post-exposure treatment recommendations and research initiatives for biological agents. Br J Pharmacol. 2010;161:721–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rappuoli R, Montecucco C. Guidebook to protein toxins and their use in cell biology. Oxford, UK: Oxford University Press; 1997.

    Google Scholar 

  • Rasetti-Escargueil C, Jones RG, Liu Y, Sesardic D. Measurement of botulinum types A, B and E neurotoxicity using the phrenic nerve-hemidiaphragm: improved precision with in-bred mice. Toxicon. 2009;53:503–11.

    CAS  PubMed  Google Scholar 

  • Rigoni M, Caccin P, Johnson EA, Montecucco C, Rossetto O. Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. Biochem Biophys Res Commun. 2001;288:1231–7.

    CAS  PubMed  Google Scholar 

  • Roe RR, Ypang YP. Zinc’s exclusive tetrahedral coordination governed by its electronic structure. J Mol Model. 1999;5:134–40.

    CAS  Google Scholar 

  • Rohrich R, Janis JE, Fagien S, Stuzin JM. Botulinum toxin: expanding role in medicine. Plast Reconstr Surg. 2003;112:1S–3S.

    PubMed  Google Scholar 

  • Rossetto O, Deloye F, Poulain B, Pellizari R, Schiavo G, Montecucco C. The metallo-proteinase activity of tetanus and botulism neurotoxins. J Physiology (Paris). 1995;89:43–50.

    Google Scholar 

  • Rossetto O, Schiavo G, Montecucco C, Poulain B, Deloye F, Lozzi L, Shone CC. SNARE motif and neurotoxins. Nature. 1994;372:415–6.

    CAS  PubMed  Google Scholar 

  • Rossetto O, Seveso M, Caccin P, Schiavo G, Montecucco C. Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon. 2001a;39:27–41.

    CAS  PubMed  Google Scholar 

  • Rossetto O, Caccini P, Rigoni M, Tonello F, Bortoletto N, Stevens RC, Montecucco C. Active site-mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity. Toxicon. 2001b;39:1151–9.

    CAS  PubMed  Google Scholar 

  • Roxas-Duncan V, Enyedy I, Montgomery VA, Eccard VS, Carrington MA, Lai H, Gul N, Yang DC, Smith LA. Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A. Antimicrob Agent Chemother. 2009;53:3478–86.

    CAS  Google Scholar 

  • Rummel A. Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol. 2013;364:61–90.

    CAS  PubMed  Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H, Binz T. The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol. 2004;51:631–43.

    CAS  PubMed  Google Scholar 

  • Rummel A, Eichner T, Weil T, Karnath T, Gutcaits A, Mahrhold S, Sandhoff K, Proia RL, Acharya KR, Bigalke H, Binz T. Identification of the receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci USA. 2007;104:359–64.

    CAS  PubMed  Google Scholar 

  • Rummel A, Hafner K, Mahrhold S, Darashchonak N, Holt M, Jahn R, Beermann S, Karnath T, Bigalke H, Binz T. Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilizing the three isoforms of SV2 as second receptor. J Neurochem. 2009;110:1942–54.

    CAS  PubMed  Google Scholar 

  • Rusnak JM, Smith LA. Botulinum neurotoxin vaccines – past history and developments. Hum Vaccin. 2009;5:794–805.

    CAS  PubMed  Google Scholar 

  • Ruthel G, Burnett JC, Nuss JR, Wanner LM, Tressler LE, Torres-Melendez E, Sandwick SJ, Retterer CJ, Bavari S. Post-intoxication inhibition of botulinum neurotoxin serotype A within neurons by small molecule, non-peptidic inhibitor. Toxins (Basel). 2011;3:207–17.

    CAS  Google Scholar 

  • Sachdeva A, Singh AK, Sharma SK. An electrochemiluminescence assay for the detection of bio threat agents in selected food matrices and in the screening of Clostridium botulinum outbreak strains associated with type A botulism. J Sci Food Agric. 2013;94:707–12.

    PubMed  Google Scholar 

  • Sakaguchi G. Clostridium botulinum toxins. Pharmacol Ther. 1983;19:165–94.

    CAS  Google Scholar 

  • Salzameda NY, Eubanks LM, Zakhari JS, Tsuchikama K, Denunzio NJ, Allen KN, Hixon MS, Janda KD. A Cross-over inhibitor of the botulinum neurotoxin light chain B: a natural product implicating an exosite mechanism of action. Chem Commun. 2011;47:1713–5.

    CAS  Google Scholar 

  • Schiavo G, Rossetto O, Santucci A, DasGupta BR, Montecucco C. Botulinum neurotoxins are zinc proteins. J Biol Chem. 1992;267:23479–83.

    CAS  PubMed  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev. 2000;80:715–60.

    Google Scholar 

  • Schmidt JJ, Stafford RG. A high-affinity competitive inhibitor of type A botulinum neurotoxin protease activity. FEBS Lett. 2002;532:423–6.

    CAS  PubMed  Google Scholar 

  • Schmidt JJ, Stafford RG, Bostian KA. Type A botulinum neurotoxin proteolytic activity: development of competitive inhibitors and implications for substrate specificity at the S1’ binding subsite. FEBS Lett. 1998;435:61–4.

    CAS  PubMed  Google Scholar 

  • Schmidt JJ, Stafford RG, Millard CB. High-throughput assays for botulinum neurotoxin proteolytic activity: serotypes A, B, D, and F. Anal Biochem. 2001;296:130–7.

    CAS  PubMed  Google Scholar 

  • Scotcher MC, Cheng LW, Stanker LH. Detection of botulinum neurotoxin serotype B at sub mouse LD (50) levels by a sandwich immunoassay and it applications to toxin detection in milk. PLoS ONE. 2010;5:e11047.

    PubMed  PubMed Central  Google Scholar 

  • Segelke B, Knapp M, Kadkhodayan S, Balhorn R, Rupp B. Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: evidence for noncanonical zinc protease activity. Proc Natl Acad Sci USA. 2004;101:6888–93.

    CAS  PubMed  Google Scholar 

  • Sharma SK, Whiting RC. Methods for detection of Clostridium botulinum toxin in foods. J Food Prot. 2005;68:1256–63.

    CAS  PubMed  Google Scholar 

  • Sharma SK, Eblen BS, Bull RL, Burr DH, Whiting RC. Evaluation of lateral-flow Clostridium botulinum neurotoxin detection kits for food analysis. Appl Environ Microbiol. 2005;71:3935–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Ferreira JL, Eblen BS, Whiting RC. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl Environ Microbiol. 2006;72:1231–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan RE, Deshpande SS, Smith T. Comparison of in vivo and in vitro mouse bioassays for botulinum toxin antagonists. J Appl Toxicol. 1999;19:S29–33.

    CAS  PubMed  Google Scholar 

  • Shi YL, Li MF. Biological effects of toosendanin, a triterpenoid extracted from Chinese traditional medicine. Prog Neurobiol. 2007;82:1–10.

    CAS  PubMed  Google Scholar 

  • Silhár P, Capková K, Salzameda NT, Barbieri JT, Hixon MS, Janda KD. Botulinum neurotoxin A protease: discovery of natural product exosite inhibitors. J Am Chem Soc. 2010;132:2868–9.

    PubMed  PubMed Central  Google Scholar 

  • Silhár P, Lardy MA, Hixon MS, Shoemaker CB, Barbieri JT, Struss AK, Lively JM, Javor S, Janda KD. The C-terminus of Botulinum A protease has profound and unanticipated kinetic consequences upon the catalytic cleft. ACS Med Chem Lett. 2013;4:283–7.

    PubMed  Google Scholar 

  • Silvaggi NR, Boldt GE, Hixon MS, Kennedy JP, Tzipori S, Janda KD, Allen KN. Structures of Clostridium botulinum neurotoxin serotype light chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem Biol. 2007;14:533–42.

    CAS  PubMed  Google Scholar 

  • Simpson LL. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins J. Pharmacol Exp Ther. 1983;225:546–52.

    CAS  Google Scholar 

  • Simpson LL. Use of pharmacologic antagonists to deduce commonalities of biologic activity among clostridial neurotoxins. J Pharmacol Exp Ther. 1988;245:867–872.

    Google Scholar 

  • Simpson LL, Rapport MM. The binding of botulinum toxin to membrane lipids: sphingolipids, steroids, and fatty acids. J Neurochem. 1971;18:1751–9.

    CAS  PubMed  Google Scholar 

  • Simpson LL, Coffield JA, Bakry N. Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther. 1994;269:256–62.

    CAS  PubMed  Google Scholar 

  • Singh BR. Critical aspects of bacterial protein toxins. Natural toxins II. New York: Plenum Press; 1996.

    Google Scholar 

  • Singh BR. Intimate details of the most poisonous poison. Nat Struct Biol. 2000;7:617–9.

    CAS  PubMed  Google Scholar 

  • Singh BR. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. Neurotox Res. 2006;209:73–92.

    Google Scholar 

  • Singh BR, Thirunavukkarasu N, Ghosal K, Ravichandran E, Kukreja R, Cai S, Zhang P, Ray R, Ray P. Clostridial neurotoxins as a drug delivery vehicle targeting nervous system. Biochimie. 2010;92:1252–9.

    CAS  PubMed  Google Scholar 

  • Singh P, Singh MK, Chaudhary D, Chauhan V, Bharadwaj P, Pandey A, Upadhyay N, Dhaked RK. Small molecule quinolinol inhibitor identified provides protection against BoNT/A in mice. PLoS One. 2012;7:e47110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Stanker LH, Sharma SK. Botulinum neurotoxin: where are we with detection technologies. Clin Rev Microbiol. 2013;39:43–56.

    CAS  Google Scholar 

  • Solaja BA, Opsenica D, Smith KS, Milhous WK, Terzić N, Opsenica I, Burnett JC, Nuss J, Gussio R, Bavari S. Novel 4-aminoquinolines active against chloroquine-resistant and sensitive P. falciparum strains that also inhibit botulinum serotype A. J Med Chem. 2008;51:4388–91.

    CAS  PubMed  Google Scholar 

  • Solomon HM, Lilly Jr T. Clostridium botulinum. In: Merker RI, editor. Bacteriological analytical manual online, revision A. Baltimore: Center for Food Safety and Applied Nutrition, Food and Drug Administration; 2001.

    Google Scholar 

  • Stahl AM, Ruthel G, Torres-Melendez E, Kenny TA, Panchal RG, Bavari S. Primary cultures of embryonic chicken neurons for sensitive cell-based assay of botulinum neurotoxin: implications for therapeutic discovery. J Biomol Screen. 2007;12:370–7.

    CAS  PubMed  Google Scholar 

  • Stanker LH, Merrill P, Scotcher MC, Cheng LW. Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. J Immunol Methods. 2008;336:1–8.

    CAS  PubMed  Google Scholar 

  • Stowe GN, Silhar P, Hixon MS, Silvaggi NR, Allen KN, Moe ST, Jacobson AR, Barbieri JT, Janda KD. Chirality holds the key for potent inhibition of the botulinum neurotoxin serotype a protease. Org Lett. 2010;12:756–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strotmeier J, Lee K, Volker AK, Mahrhold S, Zong Y, Zeiser J, Zhou J, Pich A, Bigalke H, Binz T, Rummel A, Jin R. Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. Biochem J. 2010;431:207–16.

    CAS  PubMed  Google Scholar 

  • Sutton RB, Fasshaue D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature. 1998;395:347–53.

    CAS  PubMed  Google Scholar 

  • Swaminathan S, Eswaramoorthy S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol. 2000;7:693–9.

    CAS  PubMed  Google Scholar 

  • Tang J, Park JG, Millard CB, Schmidt JJ, Pang YP. Computer-aided lead optimization: improved small-molecule inhibitor of the zinc endopeptidase of botulinum neurotoxin serotype A. PLoS One. 2007;2:e761.

    PubMed  PubMed Central  Google Scholar 

  • Truong DD, Jost WH. Botulinum toxin: clinical use. Parkinsonism Relat Disord. 2006;12:331–55.

    PubMed  Google Scholar 

  • Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990;29:5647–59.

    CAS  PubMed  Google Scholar 

  • Webb RP, Roxas-Duncan VI, Smith LA. Botulinum neurotoxins, bioterrorism. Dr. Stephen Morse, editor. ISBN: 978-953-51-0205-2, In Tech, Available from: http://www.intechopen.com/books/bioterrorism/botulinum-neurotoxins1

  • Webb RP, Smith TJ, Wright PM, Montgomery VA, Meagher MM, Smith LA. Protection with recombinant Clostridium botulinum C1 and D binding domain subunit (Hc) vaccines against C and D neurotoxins. Vaccine. 2007;25:4273–82.

    CAS  PubMed  Google Scholar 

  • Wein LM, Liu Y. Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk. Proc Natl Acad Sci USA. 2005;102:9984–9.

    CAS  PubMed  Google Scholar 

  • Wilder-Kofie TD, Luquez C, Adler M, Dykes JK, Coleman JD, Maslanka SE. An alternative in vivo method to refine the mouse bioassay for botulinum toxin detection. Comp Med. 2011;61:235–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis B, Eubanks LM, Dicherson TJ, Janda KD. The strange case of the botulinum neurotoxin: using chemistry and biology to modulate the most deadly poison. Angew Chem Int Ed. 2008;47:8360–79.

    CAS  Google Scholar 

  • Willjes G, Mahrhold S, Strotmeier J, Eichner T, Rummel A, Binz T. Botulinum neurotoxin G binds synaptotagmin-II in a mode similar to that of serotype B: tyrosine 1186 and lysine 1191 cause its lower affinity. Biochemistry. 2013;52:3930–8.

    CAS  PubMed  Google Scholar 

  • Wu HC, Huang YL, Lai SC, Huang YY, Shaio MF. Detection of Clostridium botulinum neurotoxin type A using immuno-PCR. Lett Appl Microbiol. 2001;32:321–5.

    CAS  PubMed  Google Scholar 

  • Yu YZ, Zhang SM, Sun ZW, Wang S, Yu WY. Enhanced immune responses using plasmid DNA replicon vaccine encoding the Hc domain of Clostridium botulinum neurotoxin serotype A. Vaccine. 2007;25:8843–50.

    CAS  PubMed  Google Scholar 

  • Yu YZ, Li N, Zhu HQ, Wang RL, Du Y, Wang S. The recombinant Hc subunit of Clostridium botulinum neurotoxin serotype A is an effective botulism vaccine candidate. Vaccine. 2009;27:2816–22.

    CAS  PubMed  Google Scholar 

  • Zeng M, Xu Q, Elias M, Pichichero ME, Simpson LL, Smith LA. Protective immunity against botulism provided by a single dose vaccination with an adenovirus-vectored vaccine. Vaccine. 2007;25:7540–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Ray R, Singh BR, Li D, Adler M, Pay P. An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacol. 2009a;9:12–20.

    PubMed  PubMed Central  Google Scholar 

  • Zhang P, Ray R, Singh BR, Li D, Adler M, Ray P. A targeted therapeutic rescues botulinum-A poisoned neurons. Faseb J. 2009b;23:LB305.

    Google Scholar 

  • Zou J, Miao WY, Ding FH, Meng JY, Ye HJ, Jia GR, He XY, Sun GZ, Li PZ. The effect of toosendanin on monkey botulism. J Tradit Chin Med. 1985;5:29–30.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshan Kukreja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kukreja, R., Singh, B.R. (2015). Basic Chemistry of Botulinum Neurotoxins Relevant to Vaccines, Diagnostics, and Countermeasures. In: Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R. (eds) Biological Toxins and Bioterrorism. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5869-8_26

Download citation

Publish with us

Policies and ethics