Skip to main content

Aptamers as New Agents Against Biotoxins

  • Reference work entry
  • First Online:
Biological Toxins and Bioterrorism

Part of the book series: Toxinology ((TOXI))

Abstract

Biological toxins can be used by hostile states or terrorists as biological weapons and pose a great threat to public health and homeland security. Yet there are no effective countermeasures for most biological toxins. Aptamers are short single-stranded DNA or RNA oligonucleotides with high affinity and specificity to their targets. They are selected through the entire in vitro process and have many advantages over antibodies, leading them to have great potential for many therapeutic and diagnostic applications. In this chapter, the potential of aptamers as novel countermeasures and detection platform against biological toxins has been reviewed, along with the discussion of four biological toxins: ricin, botulinum neurotoxins (BoNTs), staphylococcal enterotoxin B (SEB), and epsilon toxin of Clostridium perfringens, which are among the highest level of biothreat agents. This approach opens new avenues to combat biothreat and bioterrorism against public health and national security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahanotu E, Alvelo-Ceron D, Ravita T, Gaunt E. Staphylococcal enterotoxin B as a biological weapon: recognition, management, and surveillance of staphylococcal enterotoxin. Appl Biosafety. 2006;11:120–6.

    Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K. Botulinum toxin as a biological weapon: medical and public health management. J Am Med Assoc. 2001;285:1059–70.

    CAS  Google Scholar 

  • Associated Press. Letters to NYC Mayor Bloomberg contained ricin. Texas woman accused of sending ricin letter to Obama gives birth in custody; 24 July 2013.

    Google Scholar 

  • Bruno JG, Richarte AM, Carrillo MP, Edge A. An aptamer beacon responsive to botulinum toxins. Biosens Bioelectron. 2012;31:240–3.

    CAS  PubMed  Google Scholar 

  • Cai S, Singh BR. Strategies to design inhibitors of Clostridium botulinum neurotoxins. Infect Disord Drug Targets. 2007;7:47–57.

    CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (CDC). Botulism in the United States, 1899–1996; 1998

    Google Scholar 

  • Chang TW, Blank M, Janardhanan P, Singh BR, Mello C, Blind M, Cai S. In vitro selection of RNA aptamers that inhibit the activity of type A botulinum neurotoxin. Biochem Biophys Res Commun. 2010;396:854–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cherington M. Botulism: update and review. Semin Neurol. 2004;24:155–63.

    PubMed  Google Scholar 

  • DeGrasse JA. A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One. 2012;7:e33410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dembek ZF (Lead Editor). USAMRIID’s medical management of biological casualties handbook, 7th edition. Fort Detrick: US Army Medical Research Institute of Infectious Diseases; 2011.

    Google Scholar 

  • Ding S, Gao C, Gu LQ. Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. Anal Chem. 2009;81:6649–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doan LG. Ricin: mechanism of toxicity, clinical manifestations, and vaccine development. A review. J Toxicol Clin Toxicol. 2004;42:201–8.

    CAS  PubMed  Google Scholar 

  • Endo Y, Mitsui K, Motizuki M, Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28S ribosomal RNA caused by the toxins. J Biol Chem. 1987;262:5908–12.

    CAS  PubMed  Google Scholar 

  • Fan S, Wu F, Martiniuk F, Hale ML, Ellington AD, Tchou-Wong KM. Protective effects of anti-ricin A-chain RNA aptamer against ricin toxicity. World J Gastroenterol. 2008a;14:6360–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan M, McBurnett SR, Andrews CJ, Allman AM, Bruno JG, Kiel JL. Aptamer selection express: a novel method for rapid single-step selection and sensing of aptamers. J Biomol Tech. 2008b;19:311–9.

    PubMed  PubMed Central  Google Scholar 

  • Gedulin BR, Smith P, Prickett KS, Tryon M, Barnhill S, Reynolds J, Nielsen LL, Parkes DG, Young AA. Dose-response for glycaemic and metabolic changes 28 days after single injection of long-acting release exenatide in diabetic fatty Zucker rats. Diabetologia. 2005;48:1380–5.

    CAS  PubMed  Google Scholar 

  • Gill DM. Bacterial toxins: a table of lethal amounts. Microbiol Rev. 1982;46:86–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield RA, Brown BR, Hutchins JB, Iandolo JJ, Jackson R, Slater LN, Bronze MS. Microbiological, biological, and chemical weapons of warfare and terrorism. Am J Med Sci. 2002;323:326–40.

    PubMed  Google Scholar 

  • Gu LQ, Shim JW. Single molecule sensing by nanopores and nanopore devices. Analyst. 2010;135:441–51.

    CAS  PubMed  Google Scholar 

  • Gupta A, Sumner CJ, Castor M, Maslanka S, Sobel J. Adult botulism type F in the United States, 1981–2002. Neurology. 2005;65:1694–700.

    CAS  PubMed  Google Scholar 

  • Hatheway CL. Bacteriology and pathology of neurotoxigenic clostridia. In: DasGupta BR, editor. Botulinum neurotoxin and tetanus toxin. New York: Plenum; 1993. p. 491–502.

    Google Scholar 

  • Hesselberth JR, Miller D, Robertus J, Ellington AD. In vitro selection of RNA molecules that inhibit the activity of ricin A-chain. J Biol Chem. 2000;275:4937–42.

    CAS  PubMed  Google Scholar 

  • Hicke BJ, Watson SR, Koenig A, Lynott CK, Bargatze RF, Chang YF, Ringquist S, Moon-McDermott L, Jennings S, Fitzwater T, Han HL, Varki N, Albinana I, Willis MC, Varki A, Parma D. DNA aptamers block L-selectin function in vivo. Inhibition of human lymphocyte trafficking in SCID mice. J Clin Invest. 1996;98:2688–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang B, Han K, Lee SW. Prevention of passively transferred experimental autoimmune myasthenia gravis by an in vitro selected RNA aptamer. FEBS Lett. 2003;548:85–9.

    CAS  PubMed  Google Scholar 

  • Institute for International Cooperation in Animal Biologics. Epsilon toxin of Clostridium perfringens. Ames: Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University; 2004.

    Google Scholar 

  • Janardhanan P, Ghosal KJ, Ravichandran E, Mello CM, 2, Singh BR, Cai S. Development of aptamer-based rapid in vitro detection system and antidotes against botulinum neurotoxin type A. 49th Interagency botulism research coordinating committee meeting. Baltimore; 4–7 September 2012.

    Google Scholar 

  • Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45:1628–50.

    CAS  PubMed  Google Scholar 

  • Jenison RD, Gill SC, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science. 1994;263:1425–9.

    CAS  PubMed  Google Scholar 

  • Jeon SH, Kayhan B, Ben-Yedidia T, Arnon R. A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J Biol Chem. 2004;279:48410–9.

    CAS  PubMed  Google Scholar 

  • Khati M, Schuman M, Ibrahim J, Sattentau Q, Gordon S, James W. Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2’F-RNA aptamers. J Virol. 2003;77:12692–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont EA, He L, Warriner K, Labuza TP, Sreevatsan S. A single DNA aptamer functions as a biosensor for ricin. Analyst. 2011;136:3884–95.

    CAS  PubMed  Google Scholar 

  • Lauridsen LH, Veedu RN. Nucleic acid aptamers against biotoxins: a new paradigm toward the treatment and diagnostic approach. Nucleic Acid Ther. 2012;22:371–9.

    CAS  PubMed  Google Scholar 

  • Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT. Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci U S A. 2009;106:2989–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald KL, Rutherford GW, Friedman SM, Dietz JR, Kaye BR, McKinley GF, Tenney JH, Cohen ML. Botulism and botulism-like illness in chronic drug abusers. Ann Intern Med. 1985;102:616–8.

    CAS  PubMed  Google Scholar 

  • Macugen Information. http://www.Macugen.com

  • Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu Rev Med. 2005;56:555–83.

    CAS  PubMed  Google Scholar 

  • O’Hara JM, Yermakova A, Mantis NJ. Immunity to ricin: fundamental insights into toxin-antibody interactions. Curr Top Microbiol Immunol. 2012;357:209–41.

    PubMed  PubMed Central  Google Scholar 

  • Romero-Lopez C, Barroso-delJesus A, Puerta-Fernandez E, Berzal-Herranz A. Interfering with hepatitis C virus IRES activity using RNA molecules identified by a novel in vitro selection method. Biol Chem. 2005;386:183–90.

    CAS  PubMed  Google Scholar 

  • Rosenbloom M, Leikin JB, Vogel SN, Chaudry JB. Biological and chemical agents: a brief synopsis. Am J Ther. 2002;9:5–14.

    PubMed  Google Scholar 

  • Rusnak JM, Kortepeter M, Ulrich R, Poli M, Boudreau E. Laboratory exposures to staphylococcal enterotoxin B. Emerg Infect Dis. 2004;10:1544–9.

    PubMed  PubMed Central  Google Scholar 

  • Sandvig K, van Deurs B. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 2002;529:49–53.

    CAS  PubMed  Google Scholar 

  • Scaggiante B, Dapas B, Farra R, Grassi M, Pozzato G, Giansante C, Fiotti N, Tamai E, Tonon F, Grassi G. Aptamers as targeting delivery devices or anti-cancer drugs for fighting tumors. Curr Drug Metab. 2013;14:565–82.

    CAS  PubMed  Google Scholar 

  • Shea DA, Gottron F. Ricin: technical background and potential role in terrorism, congressional research service report for congress, prepared for members and committees of congress; 2010.

    Google Scholar 

  • Singh BR. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. Neurotox Res. 2006;9:73–92.

    CAS  PubMed  Google Scholar 

  • Singh AK, Stanker LH, Sharma SK. Botulinum neurotoxin: where are we with detection technologies? Crit Rev Microbiol. 2013;39:43–56.

    CAS  PubMed  Google Scholar 

  • Sobel J, Tucker N, Sulka A, McLaughlin J, Maslanka S. Foodborne botulism in the United States, 1990–2000. Emerg Infect Dis. 2004;10:1606–11.

    PubMed  PubMed Central  Google Scholar 

  • Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM. Retrograde transport pathways utilised by viruses and protein toxins. Virol J. 2006;3:26.

    PubMed  PubMed Central  Google Scholar 

  • Tan W, Wang K, Drake TJ. Molecular beacons. Curr Opin Chem Biol. 2004;8:547–53.

    CAS  PubMed  Google Scholar 

  • Tucker CE, Chen LS, Judkins MB, Farmer JA, Gill SC, Drolet DW. Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J Chromatogr B Biomed Sci Appl. 1999;732:203–12.

    CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.

    CAS  Google Scholar 

  • Wales R, Richardson PT, Roberts LM, Woodland HR, Lord JM. Mutational analysis of the galactose binding ability of recombinant ricin B chain. J Biol Chem. 1991;266:19172–9.

    CAS  PubMed  Google Scholar 

  • Wei F, Ho CM. Aptamer-based electrochemical biosensor for botulinum neurotoxin. Anal Bioanal Chem. 2009;393:1943–8.

    CAS  PubMed  Google Scholar 

  • Wei F, Bai B, Ho CM. Rapidly optimizing an aptamer based BoNT sensor by feedback system control (FSC) scheme. Biosens Bioelectron. 2011;30:174–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wein LM, Liu Y. Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk. Proc Natl Acad Sci USA. 2005;102:9984–9.

    CAS  PubMed  Google Scholar 

  • Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy. Anal Chim Acta. 2013;782:59–66.

    CAS  PubMed  Google Scholar 

  • Ylera F, Lurz R, Erdmann VA, Furste JP. Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophys Res Commun. 2002;290:1583–8.

    CAS  Google Scholar 

  • Zhang P, Ray R, Singh BR, Li D, Adler M, Ray P. An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacol. 2009;9:12.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuowei Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cai, S., Janardhanan, P. (2015). Aptamers as New Agents Against Biotoxins. In: Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R. (eds) Biological Toxins and Bioterrorism. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5869-8_22

Download citation

Publish with us

Policies and ethics