Skip to main content

Biotoxins and Food Safety

  • Reference work entry
  • First Online:
Biological Toxins and Bioterrorism

Part of the book series: Toxinology ((TOXI))

Abstract

Foodborne illness in humans is an important global public health issue. This is primarily caused by pathogenic microorganisms (e.g., bacteria, fungi, parasites, and viruses) and toxins from natural source and microorganisms. Toxins are lethal to humans and vary in severity based on their interaction to target sites. They can be either non-proteinaceous small molecule or peptides and proteins. Some important toxins derived from bacteria (e.g., botulinum neurotoxins, staphylococcal enterotoxins), plants (e.g., ricin and abrin), and seafood toxins (e.g., saxitoxins, tetrodotoxins, brevetoxins, ciguatera, domoic acid, okadaic acid, azaspiracids, and palytoxins) causing foodborne illness in humans are of major concern. The annual incidence of foodborne illness has been estimated to affect 5–10 % of the world population in the developed countries, and the incidence rate is even higher in the developing countries. Among the majority of foodborne illness, a limited number of cases are attributed to toxin poisoning. The prevention of foodborne illness relies on good practices of food safety programs; proper handling procedure, good sanitation, and hygiene; and implication of standard food analysis techniques at each step of food processing. Workers in food industries and public services are key players in safe food supply. Government regulations and recommendations are designed and managed by a number of government agencies to ensure the composition and quality of food is safe for consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asao T, Kumeda Y, Kawai T, Shibata T, Oda H, Haruki K, Nakazawa H, Kozaki S. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol Infect. 2003;130:33–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Attree O, Guglielno-Viret V, Gross V, Thullier P. Development and comparison of two immunoassay formats for rapid detection of botulinum neurotoxin type A. J Immunol Methods. 2007;80:78–87.

    Google Scholar 

  • Aune T, Yndstad M. Diarrhetic shellfish poisoning. In: Falconer IR, editor. Algal toxins in seafood and drinking water. London: Academic; 1993. p. 87–104.

    Google Scholar 

  • Balaban N, Rasooly A. Staphylococcal enterotoxins. Int J Food Microbiol. 2000;61:1–10.

    CAS  PubMed  Google Scholar 

  • Barbieri L, Ciani M, Girbés T, Liu WY, Van Damme EJ, Peumans WJ, Stirpe F. Enzymatic activity of toxic and non-toxic type 2 ribosome-inactivating proteins. FEBS Lett. 2004;563:219–22.

    CAS  PubMed  Google Scholar 

  • Bennett RW, McClure F. Visual screening with enzyme immunoassay for staphylococcal enterotoxins in foods: collaborative study. J AOAC Int. 1994;77:357.

    CAS  PubMed  Google Scholar 

  • Bergdoll MS. Staphylococcal intoxications. New York: Academic; 1979. p. 443–94.

    Google Scholar 

  • Brinkworth CS. Identification of ricin in crude and purified extracts from castor beans using on-target tryptic digestion and MALDI mass spectrometry. Anal Chem. 2010;82:5246–52.

    CAS  PubMed  Google Scholar 

  • Brunt J, Webb MD, Peck MW. Rapid affinity immunochromatography column-based tests for sensitive detection of Clostridium botulinum neurotoxins and Escherichia coli O157. Appl Environ Microbiol. 2010;76:4143–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carus WS. The illicit use of biological agents since 1900. Amsterdam: Fredonia Books; 2002. p. 45–6.

    Google Scholar 

  • Casman EP. Staphylococcal enterotoxin. Ann NY Acad Sci. 1965;128:124–31.

    CAS  PubMed  Google Scholar 

  • Cawley DB, Hedblom ML, Houston LL. Homology between ricin and Ricinus communis agglutinin: amino terminal sequence analysis and protein synthesis inhibition studies. Arch Biochem Biophys. 1978;190:744–55.

    CAS  PubMed  Google Scholar 

  • Chen TR, Chiou CS, Tsen HY. Use of novel PCR primers specific to the genes of staphylococcal enterotoxin G, H, I for the survey of Staphylococcus aureus strains isolated from food-poisoning cases and food samples in Taiwan. Int J Food Microbiol. 2004;92:189–97.

    CAS  PubMed  Google Scholar 

  • Cheng LW, Stanker LH. Detection of botulinum neurotoxin serotype A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. J Agric Food Chem. 2013;61:755–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiao DJ, Wey JJ, Shyu RH, Tang SS. Monoclonal antibody-based lateral flow assay for detection of botulinum neurotoxin type A. Hybridoma (Larchmt). 2008;27:31–5.

    CAS  Google Scholar 

  • Cho CY, Keener WK, Garber EAE. Application of deadenylase electrochemi-luminescence assay for ricin to foods in a plate format. J Food Prot. 2009;72:903–6.

    CAS  PubMed  Google Scholar 

  • Clarke EG, Humphreys DG. The detection of abrin. J Forensic Sci Soc. 1971;11:109–12.

    CAS  PubMed  Google Scholar 

  • Craig HL, Alderks OH, Corwin AH, Dieke SH, Karel CL. Preparation of toxic ricin. US Patent 3,060,165 patented 23 Oct 1962.

    Google Scholar 

  • Crompton R, Gall D. Georgi Markov–death in a pellet. Med Leg J. 1980;48:51–62.

    CAS  PubMed  Google Scholar 

  • Dayan-Kenigsberg J, Bertocchi A, Garber EAE. Rapid detection of ricin in cosmetics and elimination of artifacts associated with wheat lectin. J Immunol Methods. 2008;336:251–4.

    CAS  PubMed  Google Scholar 

  • Deeds JR, Schwartz MD. Human risk associated with palytoxin exposure. Toxicon. 2010;56:150–62.

    CAS  PubMed  Google Scholar 

  • Ehrlich P. Experimentelle untersuchungen uber immunitat I. Ueber ricin. Deutsche Medizinische Wochenschrift DMW. 1891a;7:976–9.

    Google Scholar 

  • Ehrlich P. Experimentelle untersuchungen uber immunitat. II. Ueber abrin. Deutsche Medizinische Wochenschrift DMW. 1891b;17:1218–9.

    Google Scholar 

  • Endo Y, Tsurugi K. RNA N-glycosidase activity of ricin A-chain: mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem. 1987;262:8128–30.

    CAS  PubMed  Google Scholar 

  • Evenson ML, Hinds MW, Bernstein RS, Bergdoll MS. Estimation of human dose of staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving chocolate milk. Int J Food Microbiol. 1988;7:311–6.

    CAS  Google Scholar 

  • Felder E, Mossbrugger I, Lange M, Wölfel R. Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR). Toxins. 2012;4:633–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira JL. Comparison of amplified ELISA and mouse bioassay procedures for determination of botulinal toxins A, B, E, and F. J AOAC Int. 2001;84:85–8.

    CAS  PubMed  Google Scholar 

  • Ferreira JL, Eliasberg SJ, Edmonds P, Harrison MA. Comparison of the mouse bioassay and enzyme-linked immunosorbent assay procedures for the detection of type A botulinal toxin in food. J Food Prot. 2004;67:203–6.

    CAS  PubMed  Google Scholar 

  • Franz DR, Jaax NK. Ricin toxin, Chapter 32. In: Sidell FR, Takafuji ET, Franz DR, editors. Medical aspects of chemical and biological warfare. Washington, DC: Borden Institute; 1997.

    Google Scholar 

  • Friedman MA, Fleming LE, Fernandez M, Bienfang P, Schrank K, Dickey R, Bottein MY, Backer L, Ayyar R, Weisman R, Watkins S, Granade R, Reich A. Ciguatera fish poisoning: treatment, prevention and management. Mar Drugs. 2008;6:456–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funatsu G, Islam MR, Minami Y, Sung-Sil K, Kimura M. Conserved amino acid residues in ribosome-inactivating proteins from plants. Biochimie. 1991;73:1157–61.

    CAS  PubMed  Google Scholar 

  • Gao S, Nie C, Wang J, Wang J, Kang L, Zhou Y, Wang JL. Colloidal gold-based immunochromatographic test strip for rapid detection of abrin in food samples. J Food Prot. 2012;75:112–7.

    PubMed  Google Scholar 

  • Garber EAE. Toxicity and detection of ricin and abrin in beverages. J Food Prot. 2008;71:1875–83.

    CAS  PubMed  Google Scholar 

  • Garber EAE, O’Brien TW. Detection of ricin in food using electrochemiluminescence-based technology. J AOAC Int. 2008;91:376–82.

    CAS  PubMed  Google Scholar 

  • Garber EAE, Walker JL, O’Brien TW. Detection of abrin in food using enzyme-linked immunosorbent assay and electrochemiluminescence technologies. J Food Prot. 2008;71:1868–74.

    PubMed  Google Scholar 

  • Garber EAE, Venkateswaran KV, O’Brien TW. Simultaneous multiplex detection and confirmation of the proteinaceous toxins abrin, ricin, botulinum toxins, and Staphylococcus enterotoxins A, B, and C in food. J Agric Food Chem. 2010;58:6600–7.

    CAS  PubMed  Google Scholar 

  • Gessler F, Pagel-Wielder S, Avondet MA, Bohnel H. Evaluation of lateral flow assays for the detection of botulinum neurotoxin type A and their application in laboratory diagnosis of botulism. Diagn Microbiol Infect Dis. 2007;57:243–9.

    CAS  PubMed  Google Scholar 

  • Goldman ER, Anderson GP, Bernstein RD, Swain MD. Amplification of immunoassays using phage-displayed single domain antibodies. J Immunol Methods. 2010;352:182–5.

    CAS  PubMed  Google Scholar 

  • Goldman ER, Anderson GP, Zabetakis D, Walper S, Liu JL, Bernstein R, Calm A, Carney JP, O’Brien TW, Walker JL, Garber EAE. Llama-derived single domain antibodies specific for Abrus agglutinin. Toxins. 2011;3:1405–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths GD. Understanding ricin from a defensive viewpoint. Toxins. 2011;3:1373–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths GD, Lindsay CD, Allenby AC, Bailey SC, Scawin JW, Rice P, Upshall DG. Protection against inhalation toxicity of ricin and abrin by immunization. Hum Exp Toxicol. 1995;14:155–64.

    CAS  PubMed  Google Scholar 

  • Hall S, Strichartz G, Moczydlowski E, Ravindran A, Reichardt PB. The saxitoxins: sources, chemistry, and pharmacology. In: Hall S, Strichartz G, editors. Marine toxins: origin, structure, and molecular pharmacology, ACS symposium series, vol. 418. Washington, DC: American Chemical Society; 1990. p. 29–65.

    Google Scholar 

  • Han SM, Chao JH, Cho IH, Paek EH, Oh HB, Kim BS, Ryu C, Lee K, Kim YK, Paek SH. Plastic enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor for botulinum neurotoxin A. Anal Chim Acta. 2007;587:1–8.

    CAS  PubMed  Google Scholar 

  • Han Y-H, Gao S, Xin W-W, Kang L, Wang J-L. A recombinant mutant abrin A chain expressed in escherichia coli can be used as an effective vaccine candidate. Hum Vaccines. 2011;7:838–44.

    CAS  Google Scholar 

  • He X, Brandon DL, Chen GQ, Mckeon TA, Carter JM. Detection of castor contamination by real-time polymerase chain reaction. J Agric Food Chem. 2007;55:545–50.

    PubMed  Google Scholar 

  • He X, McMahon S, McKeon TA, Brandon DL. Development of a novel immuno-PCR assay for detection of ricin in ground beef, liquid chicken egg, and milk. J Food Prot. 2010;73:695–700.

    CAS  PubMed  Google Scholar 

  • Hegde R, Maiti TK, Podder SK. Purification and characterization of three toxins and two agglutinins from Abrus precatorius seed by using lactamyl-sepharose affinity chromatography. Anal Biochem. 1991;194:1010–109.

    Google Scholar 

  • Hennekinne JA, Ostyn A, Guillier F, Herbin S, Prufer AL, Dragacci S. How should staphylococcal food poisoning outbreaks be characterized? Toxins. 2010;2:2106–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hennekinne JA, De Buyser ML, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev. 2012;36:815–36.

    CAS  PubMed  Google Scholar 

  • Hines HB, Brueggemann EE, Hale ML. High-performance liquid chromatography-mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain. Anal Biochem. 2004;330:119–22.

    CAS  PubMed  Google Scholar 

  • Hodge DR, Willner KM, Ramage JG, Prezioso S, Swanson T, Hastings R, Basavanna U, Datta S, Sharma SK, Garber EAE, Staab A, Pettit D, Drumgoole R, Swaney E, Estacio PL, Elder IA, Kovacs G, Morse BS, Kellogg RB, Stanker L, Morse SA, Pillai SP. Comprehensive laboratory evaluation of a highly specific lateral flow assay for the presumptive identification of ricin in suspicious white powders and environmental samples. Biosecur Bioterror Biodef Strategy Pract Sci. 2013;11(4):237–50.

    Google Scholar 

  • Holmberg SD, Blake PA. Staphylococcal food poisoning in the United States. New facts and old misconceptions. JAMA. 1984;251:487–9.

    CAS  PubMed  Google Scholar 

  • Huebner M, Wutz K, Szkola A, Niessner R, Seidel M. A glyco-chip for the detection of ricin by an automated chemiluminescence read-out system. Anal Sci. 2013;29:461–6.

    CAS  PubMed  Google Scholar 

  • Ikeda T, Tamate N, Yamaguchi K, Makino S. Mass outbreak of food poisoning disease caused by small amounts of staphylococcal enterotoxins A and H. Appl Environ Microbiol. 2005;71:2793–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jechorek R, Johnson R. Evaluation of the VIDAS staph enterotoxin II(SET2) immunoassay method for the detection of Staphylococcal enterotoxins in selected foods: collaborative study. J AOAC Int. 2008;91:164–73.

    CAS  PubMed  Google Scholar 

  • Johnson RC, Lemire SW, Woolfitt AR, Ospina M, Preston KP, Olson CT, Barr JR. Quantification of ricinine in rat and human urine: a biomarker for ricin exposure. J Anal Toxicol. 2005;29:149–55.

    CAS  PubMed  Google Scholar 

  • Johnson RC, Zhou Y, Jain R, Lemire SW, Fox S, Sabourin P, Barr JR. Quantification of l-abrine in human and rat urine: a biomarker for the toxin abrin. J Anal Toxicol. 2009;33:77–84.

    CAS  PubMed  Google Scholar 

  • Kanamori-Kataoka M, Kato H, Uzawa H, Ohta S, Takei Y, Furuno M, Seto Y. Determination of ricin by nano liquid chromatography/mass spectrometry after extraction using lactose-immobilized monolithic silica spin column. J Mass Spectrom. 2011;46:821–9.

    CAS  PubMed  Google Scholar 

  • Keener WK, Rivera VR, Young CC, Poli MA. An activity-dependent assay for ricin and related RNA N-glycosidases based on electrochemiluminescence. Anal Biochem. 2006;357:200–7.

    CAS  PubMed  Google Scholar 

  • Keener WK, Rivera VR, Cho CY, Hale ML, Garber EAE, Poli MA. Identification of the RNA N-glycosidase activity of ricin in castor bean extracts by an electrochemiluminescence-based assay. Anal Biochem. 2008;378:87–9.

    CAS  PubMed  Google Scholar 

  • Kim JS, Anderson GP, Erickson JS, Golden JP, Nasir M, Ligler FS. Multiplexed detection of bacteria and toxins using a microflow cytometer. Anal Chem. 2009;81:5426–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krupakar J, Swaminathan CP, Das PK, Surolia A, Podder SK. Calorimetric studies on the stability of the ribosome-inactivating protein abrin II: effects of pH and ligand binding. Biochem J. 1999;338:273–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacy DB, Stevens RC. Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol. 1999;291:1091–104.

    CAS  PubMed  Google Scholar 

  • Lawrence JF, Niedzwiadek B, Menard C. Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: collaborative study. J AOAC Int. 2005;88:1714–32.

    CAS  PubMed  Google Scholar 

  • Lee JS, Yanagi Y, Kenma R, Yasumoto T. Fluorometric determination of diarrhetic shellfish toxins by high performance liquid chromatography. Agri Biol Chem. 1987;51:877–81.

    CAS  Google Scholar 

  • Ler SG, Lee FK, Gopalakrishnakone P. Trends in detection of warfare agents: detection methods for ricin, staphylococcal enterotoxin B and T-2 toxin. J Chromatogr A. 2006;1133:1–12.

    CAS  PubMed  Google Scholar 

  • Levine WC, Bennett RW, Choi Y, Henning KJ, Rager JR, Hendricks KA, Hopkins DP, Gunn RA, Griffin PM. Staphylococcal food poisoning caused by imported canned mushrooms. J Infect Dis. 1996;173:1263–7.

    CAS  PubMed  Google Scholar 

  • Lin J-Y, Chen C-C, Lin L-T, Tung T-C. Studies on the toxic action of abrin. Formos Med Assoc Taipei. 1969;68:322–4.

    CAS  Google Scholar 

  • Lin J-Y, Lee T-C, Hu S-T, Tung T-C. Isolation of four isotoxic proteins and one agglutinin from jequiriti bean (Abrus precatorius). Toxicon. 1981;19:41–51.

    CAS  PubMed  Google Scholar 

  • Lin J-Y, Liu S-Y. Studies on the antitumor lectins isolated from the seeds of Ricinus communis (castor bean). Toxicon. 1986;24:757–65.

    CAS  PubMed  Google Scholar 

  • Lindstrom M, Korkeala H. Laboratory diagnostics of botulism. Clin Microbiol Rev. 2006;19:298–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C-L, Tsai C-C, Lin S-C, Wan L-I, Hsu C-I, Hwang M-J, Lin J-Y. Primary structure and function analysis of the Abrus precatorius agglutinin A chain by site-directed mutagenesis pro199 of amphiphilic alpha-helix H impairs protein synthesis inhibitory activity. J Biol Chem. 2000;275:1897–901.

    CAS  PubMed  Google Scholar 

  • Mason JT, Xu L, Sheng ZM, O’Leary TJ. A liposome-PCR assay for the ultrasensitive detection of biological toxins. Nat Biotechnol. 2006;24:555–7.

    CAS  PubMed  Google Scholar 

  • McGrath SC, Schieltz DM, McWilliams LG, Pirkle JL, Barr JR. Detection and quantification of ricin in beverages using isotope dilution tandem mass spectrometry. Anal Chem. 2011;83:2897–905.

    CAS  PubMed  Google Scholar 

  • McNabb P, Selwood AI, Holland PT, Aasen J, Aune T, Eaglesham G, Hess P, Igarishi M, Quilliam M, Slattery D, Van de Riet J, Van Egmond H, Van den Top H, Yasumoto T. Multiresidue method for determination of algal toxins in shellfish: single-laboratory validation and interlaboratory study. J AOAC Int. 2005;88:761–72.

    CAS  PubMed  Google Scholar 

  • Melchior Jr WB, Tolleson WH. A functional quantitative polymerase chain reaction assay for ricin, shiga toxin, and related ribosome-inactivating proteins. Anal Biochem. 2010;396:204–11.

    CAS  PubMed  Google Scholar 

  • Mok W, Li Y. Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors. 2008;8:7050–84.

    CAS  PubMed  Google Scholar 

  • Mol HG, Van Dam RC, Zomer P, Mulder PP. Screening of plant toxins in food, feed and botanicals using full-scan high-resolution (orbitrap) mass spectrometry. Food Addit Contam Part A. 2011;28:1405–23.

    CAS  Google Scholar 

  • Morris CA, Conway HD, Everall PH. Food-poisoning due to staphylococcal enterotoxin E. Lancet. 1972;2:1375–6.

    CAS  PubMed  Google Scholar 

  • Olsnes S, Pihl A. Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis. Biochemistry. 1973;12:3121–6.

    CAS  PubMed  Google Scholar 

  • Owens J, Koester C. Quantitation of abrin, an indole alkaloid marker of the toxic glycoproteins abrin, by liquid chromatography/tandem mass spectrometry when spiked into various beverages. J Agric Food Chem. 2008;56:11139–43.

    CAS  PubMed  Google Scholar 

  • Pauly D, Kirchner S, Stoermann B, Schreiber T, Kaulfuss S, Schade R, Zbinden R, Avondet MA, Dorner MB, Dorner BG. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst. 2009;134:2028–39.

    CAS  PubMed  Google Scholar 

  • Principato M, Boyle T, Njoroge J, Jones RL, O’Donnell M. Effect of thermal processing during yogurt production upon the detection of staphylococcal enterotoxin B. J Food Prot. 2009;72:2212–6.

    CAS  PubMed  Google Scholar 

  • Principato M, Njoroge JM, Perlloni A, O’Donnell M, Boyle T, Jones Jr RL. Detection of target staphylococcal enterotoxin B antigen in orange juice and popular carbonated beverages using antibody-dependent antigen-capture assays. J Food Sci. 2010;75:T141–7.

    CAS  PubMed  Google Scholar 

  • Raj HD, Bergdoll MS. Effect of enterotoxin B on human volunteers. J Bacteriol. 1969;98:833–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasooly R, He X, Friedman M. Milk inhibits the biological activity of ricin. J Biol Chem. 2012;287:27924–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts LM, Lamb FI, Papping DJC, Lord JM. The primary sequence of Ricinus communis agglutinin, comparison with ricin. J Biol Chem. 1985;260:15682–6.

    CAS  PubMed  Google Scholar 

  • Sachdeva A, Singh AK, Sharma SK. An electrochemiluminescence assay for the detection of biothreat agents in selected food matrices and in the screening of Clostridium botulinum outbreak strains associated with type A botulism. J Sci Food Agri. 2013;94:707–712.

    Google Scholar 

  • Schep LJ, Temple WA, Butt GA, Beasley MD. Ricin as a weapon of mass terror–separating fact from fiction. Environ Int. 2009;35:1267–71.

    CAS  PubMed  Google Scholar 

  • Scotcher MC, Cheng LW, Stanker LH. Detection of botulinum neurotoxin serotype B at sub mouse LD50 levels by a sandwich immunoassay and its application to toxin detection in milk. PLoS ONE. 2010;5:e11047.

    PubMed  PubMed Central  Google Scholar 

  • Sehgal P, Kumar O, Kameswararao M, Ravindran J, Khan M, Sharma S, Vijayaraghavan R, Prasad GB. Differential toxicity profile of ricin isoforms correlates with their glycosylation levels. Toxicology. 2011;282:56–67.

    CAS  PubMed  Google Scholar 

  • Sha O, Yew DT, Ng TB, Yuan L, Kwong WH. Different in-vitro toxicities of structurally similar type I ribosome-inactivating proteins (RIPs). Toxicol In Vitro. 2010;24:1176–82.

    CAS  PubMed  Google Scholar 

  • Sharma SK, Eblen BS, Bull RL, Burr DH, Whiting RC. Evaluation of lateral-flow Clostridium botulinum neurotoxin detection kits for food analysis. Appl Environ Microbiol. 2005;71:3935–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Farriera JL, Eblen BS, Whiting RC. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl Environ Microbiol. 2006;72:1231–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Stanker LH, Sharma SK. Botulinum neurotoxin: where are we with detection technologies? Crit Rev Microbiol. 2013;39:43–56.

    CAS  PubMed  Google Scholar 

  • Solomon HM, Lilly TJ. Clostridium botulinum. In: Bacteriological analytical manual. Lois A. Temlinson 8th ed. Silver Spring: US Food and Drug Administration; 2001.

    Google Scholar 

  • Stanker LH, Merrill P, Scotcher MC, Cheng LW. Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. J Immunol Methods. 2008;336:1–8.

    CAS  PubMed  Google Scholar 

  • Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC. Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog. 2008;4:e1000129.

    PubMed  PubMed Central  Google Scholar 

  • Sullivan JJ, Iwaoka WT. High pressure liquid chromatographic determination of toxins associated with paralytic shellfish poisoning. J Assoc Anal Chem. 1983;66:297–303.

    CAS  Google Scholar 

  • Surgalla M, Bergdoll M, Dack G. Some observations on the assay of staphylococcal enterotoxin by the monkey-feeding test. J Lab Clin Med. 1953;41:782.

    CAS  PubMed  Google Scholar 

  • Tahirov TH, Lu T-H, Liaw Y-C, Chen Y-L, Lin J-Y. Crystal structure of abrin-a at 2.14 A. J Mol Biol. 1995;250:354–67.

    CAS  PubMed  Google Scholar 

  • Tanaka KS, Chen X-Y, Ichikawa Y, Tyler PC, Furneaux RH, Schramm VL. Ricin A-chain inhibitors resembling the oxacarbenium ion transition state. Biochemistry. 2001;40:6845–51.

    CAS  PubMed  Google Scholar 

  • Tang J, Yu T, Guo L, Xie J, Shao N, He Z. In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection. Biosens Bioelectron. 2007;22:2456–63.

    CAS  PubMed  Google Scholar 

  • Tillmann U, Elbrächter M, Krock B, John U, Cembella A. Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. Eur J Phycol. 2009;44:63–79.

    CAS  Google Scholar 

  • Twiner MJ, Rehmann N, Hess P, Doucette GJ. Azaspiracid shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts. Mar Drugs. 2008;6:39–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich RG, Sidell S, Taylor TJ. Staphylococcal enterotoxin B and related pyrogenic toxins. In: M.A.O.C.A.B.. warfare, editor. Textbook of military medicine. PartI. Warfare, weaponry, and the casualty. Washington, DC: U.S. Government Printing Office; 1997. p. 621–30.

    Google Scholar 

  • van de Riet J, Gibbs RS, Muggah PM, Rourke WA, MacNeil JD, Quilliam MA. Liquid chromatography post-column oxidation (PCOX) method for the determination of paralytic shellfish toxins in mussels, clams, oysters, and scallops: collaborative study. J AOAC Int. 2011;94:1154–76.

    PubMed  Google Scholar 

  • Van Dolah FM, Fire SE, Leighfield TA, Mikulski CM, Doucette GJ. Determination of paralytic shellfish toxins in shellfish by receptor binding assay: collaborative study. J AOAC Int. 2012;95:795–812.

    PubMed  Google Scholar 

  • Volland H, Lamourette P, Nevers MC, Mazuet C, Ezan E, Neuberger LM, Popoff M, Creminon C. A sensitive sandwich enzyme immunoassay for free or complexed Clostridium botulinum neurotoxin type A. J Immunol Methods. 2008;330:120–9.

    CAS  PubMed  Google Scholar 

  • Watkins SM, Reich A, Fleming LE, Hammond R. Neurotoxic shellfish poisoning. Mar Drugs. 2008;6:431–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei CH, Hartman FC, Pfuderer P, Yang W-K. Purification and characterization of two major toxic proteins from seeds of Abrus precatorius. J Biol Chem. 1974;249:3061–7.

    CAS  PubMed  Google Scholar 

  • Wiese MA, D’Agostino PM, Mihali TK, Moffitt MC, Neilan BA. Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs. 2010;8:2185–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood KA, Lord JM, Wawrzynczak EJ, Piatak M. Preproabrin: genomic cloning, characterisation and the expression of the A-chain in Escherichia coli. Eur J Biochem. 1991;198:723–32.

    CAS  PubMed  Google Scholar 

  • Worbs S, Köhler K, Pauly D, Avondet MA, Schaer M, Dorner MB, Dorner BG. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins. 2011;3:1332–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Li X-b, Liu G-w, Zhang B-b, Zhang Y, Kong T, Tang J-j, Li D-n, Wang Z. A colloidal gold probe-based silver enhancement immunochromato-graphic assay for the rapid detection of abrin-A. Biosens Bioelectron. 2011;26:3710–3.

    CAS  PubMed  Google Scholar 

  • Yi TY. Intact ricin analysis in foods using enzyme-linked immunosorbent assay (ELISA). Laboratory Information Bulletin (LIB), No. 4406, Available from http://meridianlifescience.com/about_us/press_release.aspx?title=102 or http://www.laboratorytalk.com/supplies-and-consumables/reagents-and-catalysts/mls-offers-free-copies-of-ricin-detection-paper/322361.article (2008). Accessed 04 Nov 2013.

  • Zamboni M, Brigotti M, Rambelli F, Montanaro L, Sperti S. High-pressure-liquid-chromatographic and fluorimetric methods for the determination of adenine released from ribosomes by ricin and gelonin. Biochem J. 1989;259:639–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan J, Zhou P. A simplified method to evaluate the acute toxicity of ricin and ricinus agglutinin. Toxicology. 2003;186:119–23.

    CAS  PubMed  Google Scholar 

  • Zhang Z, Triplett OA, Nguyen KT, Melchior Jr WB, Taylor K, Jackson LS, Tolleson WH. Thermal inactivation reaction rates for ricin are influenced by pH and carbohydrates. Food Chem Toxicol. 2013;58:116–23.

    CAS  PubMed  Google Scholar 

  • Zhanpeisov NU, Leszczynski J. Hydration of DNA bases and compounds containing small rings – a model for interactions of the ricin toxin A-chain. A theoretical Ab Initio study. Struct Chem. 2001;12:121–6.

    CAS  Google Scholar 

  • Zhao S, Liu W-S, Wang M, Li J, Sun Y, Li N, Hou F, Wan J-Y, Li Z, Qian J, Liu L. Detection of ricin intoxication in mice using serum peptide profiling by MALDI-TOF/MS. Int J Mol Sci. 2012;13:13704–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Tian X-L, Li Y-S, Pan F-G, Zhang Y-Y, Zhang J-H, Wang X-R, Ren H-L, Lu S-Y, Li Z-H, Liu Z-S, Chen Q-J, Liu J-Q. Development of a monoclonal antibody-based sandwich-type enzyme-linked immunosorbent assay (ELISA) for detection of abrin in food samples. Food Chem. 2012;135:2661–5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ajay K. Singh or Shashi K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, A.K., Garber, E.A.E., Principato, M.C., Hall, S., Sharma, S.K. (2015). Biotoxins and Food Safety. In: Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R. (eds) Biological Toxins and Bioterrorism. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5869-8_20

Download citation

Publish with us

Policies and ethics