Skip to main content

Immunosensors: Using Antibodies to Develop Biosensors for Detecting Pathogens and Their Toxins

  • Reference work entry
  • First Online:
Biological Toxins and Bioterrorism

Part of the book series: Toxinology ((TOXI))

  • 2140 Accesses

Abstract

Fast, reliable, and low-cost methods for the screening of pathogens are paramount in areas such as environment, the food industry, healthcare, and defense. The word pathogen defines any disease-producing agent.

With the constant progress of scientific knowledge, a fast diversification of the detection techniques is occurring, brought about by the appearance of imaginative new concepts within the scientific community. Biosensors are a perfect example of the combination of multidisciplinary knowledge. They encompass many fundamental, technological, and scientific advances in biology, chemistry, and physics.

This chapter includes an overview of different types of antibodies and labels used as recognition elements for the elaboration of immunosensors. The most common ways to immobilize Ab on a transducer surface will be described and a description of some of the most popular transducing techniques will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E. Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosens Bioelectron. 1999;14:309–16.

    CAS  PubMed  Google Scholar 

  • Bae YM, Oh BK, Lee W, Lee WH, Choi JW. Detection of insulin-antibody binding on a solid surface using imaging ellipsometry. Biosens Bioelectron. 2004;20(4):895–902.

    CAS  PubMed  Google Scholar 

  • Bagotsky VS. Fundamentals of electrochemistry, The Electrochemical Society series. Hoboken: Wiley; 2006. p. 722.

    Google Scholar 

  • Bain CD, Whitesides GM. A study by contact-angle of the acid–base behavior of monolayers containing omega-mercaptocarboxylic acids adsorbed on gold – an example of reactive spreading. Langmuir. 1989;5(6):1370–8.

    CAS  Google Scholar 

  • Bayer EA, Benhur H, Wilchek M. Isolation and properties of streptavidin. Methods Enzymol. 1990;184:80–9.

    CAS  PubMed  Google Scholar 

  • Bergwerff AA, Van Knapen F. Surface plasmon resonance biosensors for detection of pathogenic microorganisms: strategies to secure food and environmental safety. J AOAC Int. 2006;89(3):826–31.

    CAS  PubMed  Google Scholar 

  • Blais BW, Leggate J, Bosley J, Martinez-Perez A. Comparison of fluorogenic and chromogenic assay systems in the detection of Escherichia coli O157 by a novel polymyxin-based ELISA. Lett Appl Microbiol. 2004;39:516–22.

    CAS  PubMed  Google Scholar 

  • Bokken GCAM, Corbee RJ, Van Knapen F, Bergwerff AA. Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiol Lett. 2003;222:75–82.

    CAS  PubMed  Google Scholar 

  • Byrne B, Stack E, Gilmartin N, O’Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors. 2009;9:4407–45.

    CAS  PubMed  Google Scholar 

  • Chai C, Lee J, Takhistov P. Direct detection of the biological toxin in acidic environment by electrochemical impedimetric immunosensor. Sensors. 2010;10:11414–21.

    CAS  PubMed  Google Scholar 

  • Chung JW, Park JM, Bernhardt R, Pyun JC. Immunosensor with a controlled orientation of antibodies by using NeutrAvidin-protein A complex at immunoaffinity layer. J Biotechnol. 2006;126(3):325–33.

    CAS  PubMed  Google Scholar 

  • Crowther JR. ELISA theory and practice, Methods in molecular biology. Totowa/New Jersey: Humana Press; 1995.

    Google Scholar 

  • Eggins BR. Chemical sensors and biosensors, Analytical techniques in the sciences. Chichester/Hoboken: Wiley; 2002. p. 298.

    Google Scholar 

  • Eryl L. Antibody technology. Oxford: Bios Scientific Publishers; 1995.

    Google Scholar 

  • Fosset B, Amatore C, Bartelt J, Wightman RM. Theory and experiment for the collector-generator triple-band electrode. Anal Chem. 1991;63:1403–8.

    CAS  Google Scholar 

  • Gagne A, Lacouture S, Broes A, D’Allaire S, Gottschalk M. Development of an immunomagnetic method for selective isolation of Actinobacillus pleuropneumoniae serotype 1 from tonsils. J Clin Microbiol. 1998;36(1):252–4.

    Google Scholar 

  • Guan JG, Miao YQ, Zhang QJ. Impedimetric biosensors. J Biosci Bioeng. 2004;97(4):219–26.

    CAS  PubMed  Google Scholar 

  • Hermanson GT. Bioconjugate techniques. 1st ed. London: Academic; 1996.

    Google Scholar 

  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23:1126–36.

    CAS  PubMed  Google Scholar 

  • Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem. 2003;377(3):528–39.

    CAS  PubMed  Google Scholar 

  • Hoogenboom R. Selecting and screening recombinant antibodylibraries. Nat Biotechnol. 2005;23:1105–16.

    CAS  PubMed  Google Scholar 

  • Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E, Stricker S. Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis. 2000;12(5):317–25.

    CAS  Google Scholar 

  • Ko S, Grant SA. Development of a novel FRET method for detection of Listeria and Salmonella. Sens Actuators B. 2003;96:372–8.

    CAS  Google Scholar 

  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    CAS  PubMed  Google Scholar 

  • Laczka O, Baldrich E, Del Campo FJ, Munoz FX. Immunofunctionalisation of gold transducers for bacterial detection by physisorption. Anal Bioanal Chem. 2008;391:2825–35.

    CAS  PubMed  Google Scholar 

  • Laczka O, Garcia-Aljaro C, Del Campo FJ, Munoz-Pascual FX, Mas-Gordi J, Baldrich E. Amperometric detection of Enterobacteriaceae in river water by measuring Beta-galactosidase activity at interdigitated microelectrode arrays. Anal Chim Acta. 2010;677:156–61.

    CAS  PubMed  Google Scholar 

  • Laczka O, Del Campo FJ, Munoz-Pascual FX, Baldrich E. Electrochemical detection of testosterone by use of three-dimensional disc-ring microelectrode sensing platforms: application to doping monitoring. Anal Chem. 2011;83:4037–44.

    CAS  PubMed  Google Scholar 

  • Lazcka O, Del Campo FJ, Munoz FX. Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron. 2007;22:1205–17.

    CAS  PubMed  Google Scholar 

  • Leonard P, O’Kennedy R, Hearty S, Daly S, Dillon P, Brennan J, Dunne L, Darmaninsheehan A, Stapleton S, Tully E, Quinn J, Chakraborty T. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Technol. 2003;32:3–13.

    CAS  Google Scholar 

  • Li Z, Jayasankar S, Gray DJ. An improved enzyme-linked immunoabsorbent assay protocol for the detection of small lytic peptides in transgenic grapevines (Vitis vinifera). Plant Mol Biol Rep. 2001;19:341–51.

    CAS  Google Scholar 

  • Li Y, Dick WA, Tuovinen OH. Fluorescence microscopy for visualization of soil microorganisms – a review. Biol Fertil Soils. 2004;39(5):301–11.

    Google Scholar 

  • Liao VHC, Ou KL. Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ Toxicol Chem. 2005;24(7):1624–31.

    CAS  PubMed  Google Scholar 

  • Lillehoj PB, Wei F, Ho CM. A self-pumping lab-on-a-chip for rapid detection of botulinum toxin. Lab Chip. 2010;10:2265–70.

    CAS  PubMed  Google Scholar 

  • Liu X, Song DQ, Zhang QL, Tian Y, Zhang HQ. An optical surface plasmon resonance biosensor for determination of tetanus toxin. Talanta. 2004;62(4):773–9.

    CAS  PubMed  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105(4):1103–69.

    CAS  PubMed  Google Scholar 

  • Marx KA. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules. 2003;4(5):1099–120.

    CAS  PubMed  Google Scholar 

  • Oh BK, Kim YK, Lee W, Bae YM, Lee WH, Choi JW. Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosens Bioelectron. 2003;18(5–6):605–11.

    CAS  PubMed  Google Scholar 

  • Orazem ME, Tribollet B, editors. Electrochemical impedance spectroscopy. The Electrochemical Society. Pennington: Wiley; 2008.

    Google Scholar 

  • Palchetti I, Mascini M. Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem. 2008;391(2):455–71.

    CAS  PubMed  Google Scholar 

  • Parida SK, Dash S, Patel S, Mishra BK. Adsorption of organic molecules on silica surface. Adv Colloid Interface Sci. 2006;121(1–3):77–110.

    CAS  PubMed  Google Scholar 

  • Pathirana ST, Barbaree J, Chin BA, Hartell MG, Neely WC, Vodyanoy V. Rapid and sensitive biosensor for Salmonella. Biosens Bioelectron. 2000;15:135–41.

    CAS  PubMed  Google Scholar 

  • Prodromidis MI, Karayannis MI. Enzyme based amperometric Biosensors for food analysis. Electroanalysis. 2002;14(4):241–61.

    CAS  Google Scholar 

  • Selvin PR. Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct. 2002;31:275–302.

    CAS  PubMed  Google Scholar 

  • Silverton EW, Navia MA, Davies DR. Three dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci USA. 1977;74(11):5140–4.

    CAS  PubMed  Google Scholar 

  • Su XL, Li YB. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157: H7. Biosens Bioelectron. 2004;19(6):563–74.

    CAS  PubMed  Google Scholar 

  • Thévenot DR, et al. Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem. 1999;71(12):2333–48.

    Google Scholar 

  • Tombelli S, Mascini M. Piezoelectric quartz crystal biosensors: recent immobilisation schemes. Anal Lett. 2000;33(11):2129–51.

    CAS  Google Scholar 

  • Veitch NC. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry. 2004;65(3):249–59.

    CAS  PubMed  Google Scholar 

  • Voet D, Voet JG. Biochemistry. 2nd ed. New York: Wiley; 1995.

    Google Scholar 

  • Wang J, Aimakhaita M, Biswal SL, Segatori L. Sensitive detection of TNT using competition assay on quartz crystal microbalance. J Biosens Bioelectron. 2012;3(1):1–7.

    Google Scholar 

  • Willner I, Katz E, Willner B. Electrical contact of redox enzyme layers associated with electrodes: routes to amperometric biosensors. Electroanalysis. 1997;9(13):965–77.

    CAS  Google Scholar 

  • Wood GS, Warnke R. Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. J Histochem Cytochem. 1981;29(10):1196–204.

    CAS  PubMed  Google Scholar 

  • Yallow R, Berson S. Assay of plasma insulin in human subjects by immunological methods. Nature. 1959;185:1648–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Laczka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Laczka, O. (2015). Immunosensors: Using Antibodies to Develop Biosensors for Detecting Pathogens and Their Toxins. In: Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R. (eds) Biological Toxins and Bioterrorism. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5869-8_16

Download citation

Publish with us

Policies and ethics