Skip to main content

Acid Rain Ecotoxicity

  • Reference work entry
Encyclopedia of Aquatic Ecotoxicology

Synonyms

Acid stress; Freshwater acidification; Surface water acidification

Glossary

Acidosis:

Increase of blood or hemolymph acidity.

ANC (acid-neutralizing capacity):

ANC or buffering capacity, expressed as μeq.L−1, describes the ability of a solution to resist changes in pH by neutralizing the acidic input. ANC is defined as the difference between strong base cations and strong acid anions. Low freshwater ANC (< or near to 0 μq.L−1) suggests that aquatic organisms can be submitted to acid stress associated with the runoff of acidic waters (during rainfall or snowmelt events) into streams or lakes.

Biomarker:

“A biochemical, cellular, physiological or behavioural variation that can be measured in tissue or body fluid samples or at the level of whole organisms that provides evidence of exposure to and/or effects of, one or more chemical pollutants (and/or radiations)” (Depledge 1994).

Collectors (active collectors, filterers):

Collect fine particulate organic matter (FPOM, 0.45 μm to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal SG, Chandrawanshi K, Patel RM et al (2001) Acidification of surface water in central India. Water Air Soil Pollut 130:855–862

    Article  Google Scholar 

  • Almer B, Dickson W, Erström C et al (1974) Effects of acidification on Swedish lakes. Ambio 3:30–36

    Google Scholar 

  • Bärlocher F, Corkum M (2003) Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos 101:247–252

    Article  Google Scholar 

  • Baudoin JM, Guérold F, Felten V et al (2008) Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown. Microb Ecol 56:260–269

    Article  CAS  Google Scholar 

  • Braukmann U (2001) Stream acidification in South Germany – chemical and biological assessment methods and trends. Aquat Ecol 35:207–232

    Article  CAS  Google Scholar 

  • Buckton ST, Brewin PA, Lewis A et al (1998) The distribution of dippers, Cinclus cinclus (L.), in the acid-sensitive region of Wales, 1984–95. Freshwater Biol 39:387–396

    Article  Google Scholar 

  • Colin JL, Renard D, Lescoat V et al (1989) Relationship between rain and snow acidity and air mass trajectory in Eastern France. Atmos Environ 23:1487–1498

    Article  CAS  Google Scholar 

  • Courtney LA, Clements W (1998) Effects of acidic pH on benthic macroinvertebrate communities in stream microcosms. Hydrobiologia 379:135–145

    Article  Google Scholar 

  • Cummins KW, Coffman WP, Rolf PA (1966) Trophic relations in a small woodland stream. Verh Int Verein Limnol 16:627–638

    Google Scholar 

  • Cummins KW, Wilzbach MA, Gates DM et al (1989) Shredders and riparian vegetation. Bioscience 39:24–30

    Article  Google Scholar 

  • Dangles O, Guérold F (1998) A comparative study of beech leaf breakdown, energetic content, and associated fauna in acidic and non-acidic streams. Archiv Fur Hydrobiologie 144:25–39

    Google Scholar 

  • Dangles O, Guérold F (1999) Impact of headwater stream acidification on the structure of macroinvertebrate communities. Int Rev Ges Hydrobiol 84:287–297

    CAS  Google Scholar 

  • Dangles O, Guerold F (2000) Feeding activity of Gammarus fossarum (Crustacea: Amphipoda) in acidic and low mineralized streams. Verh Int Ver Limnol 27:1–4

    Google Scholar 

  • Dangles O, Guerold F (2001a) Linking shredders and leaf litter processing: insights from an acidic stream study. Int Rev Hydrobiol 86:395–406

    Article  Google Scholar 

  • Dangles O, Guerold F (2001b) Influence of shredders in mediating breakdown rates of beech leaves in circumneutral and acidic forest streams. Archiv Fur Hydrobiol 151:649–666

    Google Scholar 

  • Dangles O, Malmqvist B, Laudon H (2004a) Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos 104:149–155

    Article  Google Scholar 

  • Dangles O, Gessner MO, Guérold F et al (2004b) Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J Appl Ecol 41:365–378

    Article  CAS  Google Scholar 

  • De Wit H, Skjelkvåle BL (2007) Trends in surface water chemistry and biota; The importance of confounding factors. In: NIVA-report SNO 5385–2007. ICP Waters report 87/2007. Niva, Oslo

    Google Scholar 

  • Depledge MH (1994) The rational basis for the use of biomarkers as ecotoxicological tools. In: Fossi MC, Leonzio C (eds) Non destructive biomarkers in vertebrates. Lewis publishers, Boca Raton, pp 271–295

    Google Scholar 

  • Driscoll CT, Lawrence GB, Bulger AJ et al (2001) Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience 51:180–198

    Article  Google Scholar 

  • Driscoll CT, Driscoll KM, Mitchell MJ et al (2003) Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environ Pollut 123:327–336

    Article  CAS  Google Scholar 

  • Ellis BA, Morris S (1995) Effects of extreme pH on the physiology of the Australian ‘Yabby’ Cherax destructor: acute and chronic changes in haemolymph oxygen levels, oxygen consumption and metabolite levels. J Exp Biol 198:409–418

    CAS  Google Scholar 

  • Felten V, Guérold F (2004) Haemolymph [Na+] and [Cl] loss in Gammarus fossarum exposed in situ to a wide range of acidic streams. Dis Aquat Organ 61:113–121

    Article  CAS  Google Scholar 

  • Felten V, Guérold F (2006) Short-term physiological responses to a severe acid stress in three macroinvertebrate species: a comparative study. Chemosphere 63:1427–1435

    Article  CAS  Google Scholar 

  • Felten V, Baudouin JM, Guérold F (2006) Physiological recovery from episodic acid stress does not mean population recovery of Gammarus fossarum. Chemosphere 65:988–998

    Article  CAS  Google Scholar 

  • Felten V, Charmantier G, Charmantier-Daures M et al (2008) Physiological and behavioural responses of Gammarus pulex exposed to acid stress. Comp Biochem Physiol C 147:189–197

    CAS  Google Scholar 

  • Fjellheim A, Raddum GG (1990) Acid precipitation: biological monitoring of streams and lakes. Sci Total Environ 96:57–74

    Article  CAS  Google Scholar 

  • Folster J, Wilander A (2002) Recovery from acidification in Swedish forest streams. Environ Pollut 117:379–389

    Article  CAS  Google Scholar 

  • Gensemer RW, Playle RC (1999) The bioavailability and toxicity of aluminum in aquatic environments. Crit Rev Environ Sci Technol 29:315–450

    Article  CAS  Google Scholar 

  • Gessner MO, Thomas M, Jean-Louis A-M et al (1993) Stable successional patterns of aquatic hyphomycetes on leaves decaying in a summer cool stream. Mycol Res 97:163–172

    Article  Google Scholar 

  • Glooschenko V, Downes C, Frank R et al (1988) Cadmium levels in Ontario moose and deer in relation to soil sensitivity to acid precipitation. Sci Total Environ 71:173–186

    Article  CAS  Google Scholar 

  • Goossenaerts C, Van Grieken R, Jacob W et al (1988) A microanalytical study of the gills of aluminium-exposed rainbow trout (Salmo gairdneri). Int J Environ Anal Chem 34:227–237

    Article  CAS  Google Scholar 

  • Grahn O (1986) Vegetation structure and primary production in acidified lakes in Southwestern Sweden. Experientia 42:465–470

    Article  Google Scholar 

  • Gregory SV, Swanson FJ, Mckee WA et al (1991) An ecosystem perspective of riparian zones: focus on links between land and water. Bioscience 41:540–551

    Article  Google Scholar 

  • Guérold F, Boudot JP, Jacquemin G et al (2000) Macroinvertebrate community loss as a result of headwater stream acidification in the Vosges Mountains (N-E France). Biodivers Conserv 9:767–783

    Article  Google Scholar 

  • Hall RJ, Driscoll CT, Likens GE (1987) Importance of hydrogen ions and aluminium in regulating the structure and function of stream ecosystems: an experimental test. Freshwater Biol 18:17–43

    Article  CAS  Google Scholar 

  • Hargeby A, Jn Petersen RC (1988) Effects of low pH and humus on the survivorship, growth and feeding of Gammarus pulex (L.) (Amphipoda). Freshwater Biol 19:235–247

    Article  CAS  Google Scholar 

  • Harvey HH, Dillon PJ, Kramer JR et al. (1981) Acidification in the Canadian environment. Scientific criteria for an assessment of the effects of acidic deposition on aquatic ecosystems. In: National Research Council of Canada Publication no. 18475, pp 1–369

    Google Scholar 

  • Havas M, Rosseland BJ (1995) Response of zooplankton, benthos, and fish to acidification: an overview. Water Air Soil Pollut 85:51–62

    Article  CAS  Google Scholar 

  • Helliwell RC, Simpson GL (2010) The present is the key to the past, but what does the future hold for the recovery of surface waters from acidification? Water Res 44:3166–3180

    Article  CAS  Google Scholar 

  • Hesthagen T, Heggenes J, Larsen BM et al (1999) Effects of water chemistry and habitat on the density of young brown trout Salmo trutta in acidic streams. Water Air Soil Pollut 112:85–106

    Article  CAS  Google Scholar 

  • Hildrew AG (1996) Food webs and species interaction. In: Petts G, Calow P (eds) River biota: diversity and dynamics. Blackwell, London, pp 123–144

    Google Scholar 

  • Hildrew AG, Townsend CR, Francis J (1984) Community structure in some southern English streams: the influence of species interactions. Freshwater Biol 14:297–310

    Article  Google Scholar 

  • Horne MT, Dunson WA (1995) Toxicity of metals and low pH to embryos and larvae of the Jefferson Salamander, Ambystoma jeffersonianum. Arch Environ Contam Toxicol 29:110–114

    Article  CAS  Google Scholar 

  • Hutchinson GE (1993) A treatise on limnology IV: The zoobenthos. Wiley, New York, 968 p

    Google Scholar 

  • Jensen FB, Malte H (1990) Acid–base and electrolyte regulation, and hemolymph gas transport in crayfish Astacus astacus, exposed to soft, acid water with and without aluminum. J Comp Physiol B 160:483–490

    Google Scholar 

  • Jonsson M, Dangles O, Malmqvist B et al (2002) Simulating species loss following perturbation: assessing the effects on process rates. Proc Roy Soc Lond B Biol Sci 269:1047–1052

    Article  Google Scholar 

  • Karlsson-Norrgren L, Dickson W, Ljungberg O et al (1986) Acid water and aluminium exposure: gill lesions and aluminium accumulation in farmed brown trout, Salmo trutta L. J Fish Dis 9:1–9

    Article  CAS  Google Scholar 

  • Kratz KW, Cooper SD, Melack JM (1994) Effects of single and repeated experimental acid pulses on invertebrates in high altitude Sierra Nevada stream. Freshwater Biol 32:61–183

    Article  Google Scholar 

  • Laitinen M, Valtonen T (1995) Cardiovascular, ventilatory and heamatological responses of brown trout (Salmo trutta L.), to the combined effects of acidity and aluminium in humic water at winter temperatures. Aquat Toxicol 31:99–112

    Article  CAS  Google Scholar 

  • Ledger ME, Hildrew AG (2000) Herbivory in an acid stream. Freshwater Biol 43:545–556

    Google Scholar 

  • Ledger ME, Hildrew AG (2001) Growth of an acid tolerant stonefly on epilithic biofilms from streams of contrasting pH. Freshwater Biol 46:1457–1470

    Article  CAS  Google Scholar 

  • Ledger ME, Hildrew AG (2005) The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient. Environ Pollut 137:103–118

    Article  CAS  Google Scholar 

  • Ledy K, Giambérini L, Pihan JC (2003) Mucous cell responses in gill and skin of brown trout Salmo trutta fario in acidic, aluminium containing stream water. Dis Aquat Organ 56:235–240

    Article  CAS  Google Scholar 

  • Leivestad H, Muniz IP (1976) Fish kill at low pH in a Norwegian river. Nature 259:391–392

    Article  CAS  Google Scholar 

  • Lepori F, Ormerod SJ (2005) Effects of spring acid episodes on macroinvertebrates revealed by population data and in situ toxicity tests. Freshwater Biol 50:1568–1577

    Article  Google Scholar 

  • Lepori F, Barbieri A, Ormerod SJ (2003) Effect of episodic acidification on macroinvertebrate assemblages in Swiss alpine streams. Freshwater Biol 48:1873–1885

    Article  CAS  Google Scholar 

  • Likens GE, Butker TJ, Buso DC (2001) Long- and short-term changes in sulphate deposition: effects of the 1990 Clean Air Act Amendments. Biogeochemistry 52:1–11

    Article  CAS  Google Scholar 

  • Malmqvist B, Oberle D (1995) Macroinvertebrate effects on leaf pack decomposition in a lake outlet stream in northern Sweden. Nordic J Freshwater Res 70:12–20

    Google Scholar 

  • Maltby L (1996) Heterotrophic microbes. In: Petts G, Calow P (eds) River biota: diversity and dynamics. Blackwell, London, pp 165–194

    Google Scholar 

  • Masson N, Guerold F, Dangles O (2002) Use of blood parameters in fish to assess acidic stress and chloride pollution in French running waters. Chemosphere 47:467–473

    Article  CAS  Google Scholar 

  • McArthur JV, Aho JM, Rader RB et al (1994) Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. J North Am Benthol Soc 13:57–67

    Article  Google Scholar 

  • Merritt RW, Cummins KW (1996) Trophic relations of macroinvertebrates. In: Hauar FR, Lamberti GA (eds) Methods in stream ecology. Academic, London

    Google Scholar 

  • Monteith DT, Hildrew AG, Flower RJ et al (2005) Biological responses to the chemical recovery of acidified fresh waters in the UK. Environ Pollut 137:83–101

    Article  CAS  Google Scholar 

  • Morris R, Taylor EW, Brown DJA et al (eds) (1989) Acid toxicity and aquatic animals. Cambridge University Press, Cambridge

    Google Scholar 

  • Muniz IP (1991) Freshwater acidification: its effects on species and communities of freshwater microbes, plants and animals. Proc R Soc Edinburgh 97b:227–254

    Google Scholar 

  • Muniz IP (1984) The effects of acidification on Scandinavian freshwater fish fauna. Phil Trans R Soc Lond B 305:517–528

    Article  Google Scholar 

  • Munton D (1998) Dispelling the myths of the acid rain story. Environment 40:4–34

    Article  Google Scholar 

  • O’Brien AK, Eshleman KN (1995) Episodic acidification of a coastal plain stream in Virginia. Water Air Soil Pollut 89:291–316

    Article  Google Scholar 

  • O’Brien AK, Rice KC, Kennedy MM et al (1993) Comparison of episodic acidification of mid-atlantic upland and coastal plain stream. Water Resources Res 29:3029–3039

    Article  Google Scholar 

  • Ormerod SJ, Jenkins A (1994) The biological effect of acid episodes. In: Wright R, Steinberg C (eds) Acidification; past, present and future (Dahlem Workshop). Wiley, Chichester, pp 259–272

    Google Scholar 

  • Parker DB, McKeown BA, MacDonald JS (1985) The effect of pH and/or calcium enriched freshwater on gill Ca2+-ATPase activity and osmotic water inflow in rainbow trout (Salmo gairdneri). Comp Biochem Phys 81A:140–156

    Google Scholar 

  • Patterson NE, DeFur PL (1988) Ventilatory and circulatory responses of the crayfish, Procambarus clarki, to low environmental pH. Physiol Zool 61:396–406

    Google Scholar 

  • Playle RC, Goss GC, Wood CM (1989) Physiological disturbances in rainbow trout (Salmo gairdneri) during acid and aluminum exposures in softwater of two calcium concentration. Can J Zool 67:314–324

    Article  CAS  Google Scholar 

  • Poléo ABS, Østbye K, Øxnevad SA et al (1997) Toxicity of acid aluminium-rich water to seven freshwater fish species: a comparative laboratory study. Environ Pollut 96:129–139

    Article  Google Scholar 

  • Pynnönen K (1991) Influence of aluminum and protons on the electrolyte homeostasis in the Unionidae Anodonta anatina and Unio pictorum. Arch Environ Contam Toxicol 20:218–225

    Article  Google Scholar 

  • Raddum GG, Fjellheim A (2003) Liming of river Audna, Southern Norway: a large-scale experiment of benthic invertebrate recovery. Ambio 32:230–234

    Google Scholar 

  • Raddum GG, Erikson L, Fott J et al. (2004) Recovery from acidification of invertebrate fauna in ICP Water sites in Europe and North America. In: NIVA-report SNO 4864–2004, ICP Waters report 75/2004

    Google Scholar 

  • Rockwood JP, Jones DS, Coler RA (1990) The effect of aluminum in soft water at low pH on oxygen consumption by the dragonfly Libellula julia Uhler. Hydrobiologia 190:55–59

    Article  CAS  Google Scholar 

  • Rosseland BO (1986) Ecological effects of acidification on tertiary consumers. Fish population responses. Water Air Soil Pollut 30:451–460

    Article  Google Scholar 

  • Simĉiĉ T, Brancelj A (2006) Effects of pH on electron transport system (ETS) activitynand oxygen consumption in Gammarus fossarum, Asellusnaquaticus and Niphargus sphagnicolus. Freshwater Biol 51:686–694

    Article  CAS  Google Scholar 

  • Skjelkvåle BL, Torseth K, Aas W et al (2001) Decrease in acid deposition-recovery in Norwegian waters. Water Air Soil Pollut 130:1433–1438

    Article  Google Scholar 

  • Skjelkvåle BL, Evans C, Larssen T et al (2003) Recovery from acidification in European surface waters: a view to the future. Ambio 32:170–175

    Google Scholar 

  • Soulsby C (1995) Contrasts in storm event hydrochemistry in an acidic afforested catchment in upland Wales. J Hydrol 170:159–179

    Article  CAS  Google Scholar 

  • Staurnes M, Sigholt T, Reite OB (1984) Reduce carbonic anhydrase and Na-K ATPase activity in gills of salmonids exposed to aluminum-containing acid water. Experientia 40:226–227

    Article  CAS  Google Scholar 

  • Steinberg CEW, Wright RF (eds) (1994) Acidification of freshwater ecosystem: implication for the future. Wiley, Chichester

    Google Scholar 

  • Stoddard JL, Jeffries DS, Lukewille A et al (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578

    Article  CAS  Google Scholar 

  • Suberkropp K, Chauvet E (1995) Regulation of leaf breakdown by fungi in streams: influence of water chemistry. Ecology 76:1433–1445

    Article  Google Scholar 

  • Sutcliffe DW (1983) Acid precipitation and its effects on aquatic systems in the English Lake District. In: Freshwater Biological Association (ed) Fifty-first annual report for the year ended 31st March 1983. Ambleside, UK, p 30–62

    Google Scholar 

  • Sutcliffe DW, Carrick TR (1973) Studies on mountain streams in the English Lake District. I. PH, calcium and the distribution if invertebrates in the River Duddon. Freshwater Biol 3:437–462

    Article  Google Scholar 

  • Tang D, Lydersen E, Seip HM et al (2001) Integrated monitoring program on acidification of Chinese terrestrial systems (impacts) – A Chinese- Norwegian collaboration project. Water Air Soil Pollut 130:1073–1078

    Article  Google Scholar 

  • Tessier JT, Masters RD, Raynal DJ (2002) Changes in base cation deposition across New York State adjacent New England following implementation of the 1990 Clean Air Act amendments. Atmos Environ 36:1645–1648

    Article  CAS  Google Scholar 

  • Thorjørn L, Seip HM, Semb A et al (1999) Acid deposition and its effects in China: an overview. Environ Sci Policy 2:9–24

    Article  Google Scholar 

  • Tixier G, Guérold F (2005) Plecoptera Response to acidification in several headwater streams in the Vosges Mountains (North-Eastern France). Biodivers Conserv 14:1525–1539

    Article  Google Scholar 

  • Tixier G, Felten V, Guérold F (2009) Life cycle strategies of Baetis species (Ephemeroptera, Baetidae) in acidified streams and implications for recovery. Fund Appl Limnol 174:227–243

    Article  Google Scholar 

  • Townsend CR, Hildrew AG, Francis J (1983) Community structure in some Southern English streams: the influence of physicochemical factors. Freshwater Biol 13:521–544

    Article  Google Scholar 

  • Verbost PM, Berntssen MHG, Kroglund F et al (1995) The toxic mixing zone of neutral and acidic river water: acute aluminium toxicity in Brown trout (Salmo trutta L). Water Air Soil Pollut 85:341–346

    Article  CAS  Google Scholar 

  • Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41:115–139

    Article  CAS  Google Scholar 

  • Webster JR, Benfield EF, Ehrman TP et al (1999) What happens to allochthonous material that falls into streams ? A synthesis of new and published information from Coweeta. Freshwater Biol 41:687–705

    Article  Google Scholar 

  • Wigington PJ Jr, Baker JP, DeWalle DR et al (1996) Episodic acidification of small streams in the northeastern United States: Episodic Response Project. Ecol Appl 6:374–388

    Article  Google Scholar 

  • Wood CM, Rogano MS (1986) Physiological responses to acid stress in crayfish (Orconectes): heamolymph ions, acid–base status, and exchanges with the environment. Can J Fish Aquat Sci 43:1017–1026

    Article  Google Scholar 

  • Wright RF, Larssen T, Camarero L et al (2005) Recovery of acidified European Surface waters. Environ Technol 39:64–72

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Felten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Felten, V., Tixier, G., Guérold, F. (2013). Acid Rain Ecotoxicity. In: Férard, JF., Blaise, C. (eds) Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5704-2_2

Download citation

Publish with us

Policies and ethics