Skip to main content

Segmented Mirror Telescopes

  • Reference work entry
Book cover Planets, Stars and Stellar Systems

Abstract

Constructing the primary mirror of a telescope out of segments, rather thanfrom a monolithic piece of glass, can drastically reduce the mass of themirror and its material costs, thereby making possible the construction ofoptical/infrared telescopes with very large diameters. However, segmentation alsointroduces a host of complications, involving the fabrication of off-axis optics,novel diffraction effects, active segment control systems, in situ aberrationcorrection, and the optical alignment of large numbers of degrees of freedom.Progress in these latter areas over the last 25 years has led to the successfuldevelopment of the two Keck telescopes, as well as several other segmentedtelescopes in the 10-m class. Giant segmented telescopes of similar design, butwith mirror diameters of 30–40 m, are now in the planning stages, withfirst light expected around the end of the decade. Segmentation has alsomade possible the 6.5-m James Webb Space Telescope, which is currentlyunder construction. In this work, the technical issues associated withsegmentation are discussed and reviewed in detail. Particular attention ispaid to the properties of arrays of hexagonal segments (the segmentationpattern of choice for these telescopes), including their diffraction patternsand algorithms for their active control. Optical alignment issues are alsodiscussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson,E.,Bai,Z.,Bischof,C.,Blackford,S.,Demmel,J.,Dongarra,J.,Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A., & Sorensen, D. 1999, LAPACK User’s Guide (3rd ed.; Philadelphia: Society for Pure and Applied Mathematics)

    Google Scholar 

  • Andersen, T., Ardeberg, A., Beckers, J., Gontcharov, A., Owner-Petersen, M., & Riewaldt. H. 2004, Euro 50, in Proceedings of the Second Backaskog Workshop on Extremely Large Telescopes, eds. A. Ardeberg and T. Andersen, (Bellingham: SPIE). Proc SPIE 5382, 169–181

    Article  ADS  Google Scholar 

  • Barnes, T. G., Adams, M. T., Booth, J. A., Cornell, M. E., Gaffney, N. I., Fowler, J. R., Hill, G. J., Hill, G. M., Nance, C. E., Piche, F., Ramsey, L. W., Ricklets, R. L., Spiesman, W. J., & Worthington, P. T. 2000, Commissioning experience with the 9.2-m Hobby-Eberly telescope, in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, ed. T. A. Sebring & T. Andersen (Bellingham: SPIE). Proc. SPIE, 4004, 14–25

    Article  ADS  Google Scholar 

  • Beckers, J. M., Ulich, B. L., & Williams, J. T. 1982, MMT – the first of the advanced technology telescopes. Proc. SPIE, 332, 2–8

    Article  ADS  Google Scholar 

  • Booth, J. A., MacQueen, P. J., Good, J. M., Wesley, G. L., Hill, G. J., Palunas, P., Segura, P. R., & Calder, R. E. 2006, The wide field upgrade for the Hobby-Eberly telescope. Proc. SPIE, 6267, 62673W-1–62673W-11

    Google Scholar 

  • Braunecker, B., Hentschel, R., & Tiziani, H. J. 2008, Advanced Optics Using Aspherical Elements (Bellingham: SPIE), SPIE Press Monograph Vol. PM 173

    Book  Google Scholar 

  • Buckley, D. A. H., Meiring, J. G., Swiegers, J., & Swart, G. P. 2004, Many segments and few dollars: SALT solutions for ELTs? Proc. SPIE, 5382, 245–256

    Article  ADS  Google Scholar 

  • Burgarella, D., Dohlen, K., Ferrari, M., Zamkotsian, F., Hammer, F., Sayede, F., & Rigaut, R. 2002, Large petal telescope for the next-generation Canada-France-Hawaii Telescope, in Future Giant Telescopes, ed. J. R. P. Angel & R. Gilmozzi (Bellingham: SPIE). Proc. SPIE, 4840, 93–103

    Article  ADS  Google Scholar 

  • Chanan, G. A. 1988, Design of the Keck Observatory alignment camera, in Precision Instrument Design, ed. T. C. Bristow & A. E. Hathaway (Bellingham: SPIE). Proc. SPIE, 1036, 59–70

    Article  ADS  Google Scholar 

  • Chanan, G., & Nelson, J. 2009, Algorithm for the identification of malfunctioning sensors in the control systems of segmented mirror telescopes. Appl. Opt., 48, 6281–6289

    Article  Google Scholar 

  • Chanan, G., & Troy, M. 1999, Strehl ratio and modulation transfer function for segmented mirror telescopes as functions of segment phase error. Appl. Opt., 38, 6642–6647

    Article  ADS  Google Scholar 

  • Chanan, G. A., Troy, M., Dekens, F. G., Michaels, S., Nelson, J., Mast, T., & Kirkman, D. 1998, Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm. Appl. Opt., 37, 140–155

    Article  ADS  Google Scholar 

  • Chanan, G., Troy, M., & Sirko, E. 1999, Phase discontinuity sensing: a method for phasing segmented mirrors in the infrared. Appl. Opt., 38, 704–713

    Article  ADS  Google Scholar 

  • Chanan, G. A., Ohara, C., & Troy, M. 2000, Phasing the mirror segments of the Keck telescopes: the narrowband phasing algorithm. Appl. Opt., 39, 4706–4714

    Article  ADS  Google Scholar 

  • Chanan, G., MacMartin, D., Nelson, J., & Mast, T. 2004, Control and alignment of segmented-mirror telescopes: matrices, modes, and error propagation. Appl. Opt., 43, 1223–1232

    Article  ADS  Google Scholar 

  • Chevillard, J.-P., Connes, P., Cuisenier, M., Friteau, J., & Marlot, C. 1977, Near infrared astronomical light collector. Appl. Opt., 16, 1817–1833

    Article  ADS  Google Scholar 

  • Chueca, S., Reyes, M., Schumacher, A., & Montoya, L. 2008, DIPSI: measure of the tip-tilt with a diffraction phase sensing instrument. Proc. SPIE, 7012, 701213-1–701213-11

    Google Scholar 

  • Cohen, R., Mast, T., & Nelson, J. 1994, Performance of the W. M. Keck telescope active mirror control system, in Advanced Technology Optical Telescopes, ed. V, L. M. Stepp (Bellingham: SPIE). Proc. SPIE, 2199, 105–116

    Article  ADS  Google Scholar 

  • Cui, X., Su, D.-Q., Wang, Y.-N., Li, G., Lui, G., Zhang, Y., & Li, Y. 2010, The optical performance of LAMOST telescope. Proc. SPIE, 7733, 773309-1–773309-8

    Google Scholar 

  • Dierickx, P., Beckers, J. L., Brunetto, E., Conan, R., Fedrigo, E., Gilmozzi, R., Hubin, N. N., Koch, F., Lelouarn, M., Marchetti, E., Monnet, G. J., Noethe, L., Quattri, M., Sarazin, M. S., Spyromilio, J., & Yaitskova, N. 2002, The eye of the beholder: designing the OWL, in Future Giant Telescopes, ed. J. R. P. Angel & R. Gilmozzi (Bellingham: SPIE). Proc. SPIE, 4840, 151–170

    Article  ADS  Google Scholar 

  • Esposito, S., Pinna, E., Puglisi, A., Tozzi, A., & Stefanini, P. 2005, Pyramid sensor for segmented mirror alignment. Opt. Lett., 30, 2572–2574

    Article  ADS  Google Scholar 

  • Fried, D. L. 1966, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. JOSA, 56, 1372–1379

    Article  ADS  Google Scholar 

  • Gardner, J. P., et al. 2006, The James Webb Space Telescope. Space Sci. Rev., 123, 485–606

    Article  ADS  Google Scholar 

  • Gerchberg, R. W., & Saxton, W. O. 1972, A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik, 35, 237–246

    Google Scholar 

  • Gilmozzi, R., & Spyromilio, J. 2008, The 42m European ELT: status, in Ground-Based and Airborne Telescopes II, ed. L. Stepp & R. Gilmozzi (Bellingham: SPIE), 5662, 701219-1–701219-10

    Google Scholar 

  • Golub, G., & van Loan, C. 1996, Matrix Computations (3rd ed.; London: The Johns Hopkins University Press)

    Google Scholar 

  • Gonte, F. Y., Yaitskova, N., Dierickx, P., Karban, R., Courteville, A., Schumacher, A., Devaney, N., Esposito, S., Dohlen, K., Ferrari, M., & Montoya, L. 2004, APE: a breadboard to evaluate new phasing technologies for a future European giant optical telescope. Proc. SPIE, 5489, 1184–1191

    Article  ADS  Google Scholar 

  • Horn D’Arturo G. 1955, Pubblicazioni dell’Osservatorio Astronomico Universitario di Bologna, VI, 6

    Google Scholar 

  • http://www.eso.org/sci/facilities/eelt/docs/e-elt_constrproposal.pdf

  • http://www.gmto.org/science-conceptu.html

  • http://www.tmt.org/sites/default/files/TMT-Construction-Proposal-Public.pdf

  • Jared, R. C., Arthur, A. A., Andreae, S., Biocca, A., Cohen, R. W., Fuertes, J. M., Franck, J., Gabor, G., Llacer, J., Mast, T., Meng, J., Merrick, T., Minor, R., Nelson, J., Orayani, M., Salz, P., Schaefer, B., & Witebsky, C. 1990, The W. M. Keck telescope segmented primary mirror active control system. Proc. SPIE, 1236, 996–1008

    Article  ADS  Google Scholar 

  • Johns, M. 2008, The Giant Magellan Telescope (GMT). Proc. SPIE, 6986, 698603-1–698603-12

    Google Scholar 

  • Lloyd-Hart, M., Angel, R., Milton, N. M., Rademacher, M., & Codona, J. 2006, Design of the adaptive optics system for the GMT. Proc. SPIE, 6272, 62720E-1–62720E-12

    Google Scholar 

  • Lofdahl, M., & Eriksson, H. 2001, An algorithm for resolving 2π ambiguities in interferometric measurements by use of multiple wavelengths. Opt. Eng., 40, 984–990

    Article  ADS  Google Scholar 

  • Lubliner, J., & Nelson, J. 1980, Stressed mirror polishing: a technique for producing non-axisymmetric mirrors. Appl. Opt., 19, 2332–2340

    Article  ADS  Google Scholar 

  • MacMartin, D. G., & Chanan, G. A. 2002, Control of the California extremely large telescope primary mirror, in Future Giant Telescopes, ed. J. R. P. Angel & R. Gilmozzi (Bellingham: SPIE). Proc. SPIE, 4840, 69–80

    Article  ADS  Google Scholar 

  • MacMartin, D. G., & Chanan, G. 2004, Measurement accuracy in control of segmented-mirror telescopes. Appl. Opt., 43, 608–615

    Article  ADS  Google Scholar 

  • Mast, T., & Nelson, J. 1982, Figure control for a fully segmented primary mirror. Appl. Opt., 21, 2631–2641

    Article  ADS  Google Scholar 

  • Mast, T., & Nelson, J. 2000, Segmented mirror control system hardware for CELT, in Optical Design, Materials, Fabrication, and Maintenance, ed. P. Dierickx (Bellingham: SPIE). Proc. SPIE, 4003, 226–240

    Article  ADS  Google Scholar 

  • Meng, J. D., Minor, R., Merrick, T., & Gabor, G. 1990, Position control of the mirror figure control actuator for the Keck Observatory ten meter primary mirror. Proc. SPIE, 1236, 1018–1022

    Article  ADS  Google Scholar 

  • Minor, R. H., Arthur, A. A., Gabor, G., Jackson, H. G., Jr., Jared, R. C., Mast, T. S., & Schaefer, B. A. 1990, Displacement sensors for the primary mirror of the W. M. Keck telescope. Proc. SPIE, 1236, 1009–1017

    Article  ADS  Google Scholar 

  • Montoya, L. 2004, Applications de l’interferometre de Mach-Zehnder au cophasage des grands telescopes segmentes. Ph.D. Thesis, Universite de Provence

    Google Scholar 

  • Nelson, J. E. 2000, Design concepts for the California Extremely Large Telescope (CELT). Proc. SPIE, 4004, 282–289

    Article  ADS  Google Scholar 

  • Nelson, J., & Sanders, G. H. 2006, TMT status report, in Ground-Based and Airborne Telescopes, ed. L. M. Stepp (Bellingham: SPIE). Proc. SPIE, 6267, 745–761

    Google Scholar 

  • Nelson, J., & Temple-Raston, M. 1982, The off-axis expansion of conic surfaces. University of California TMT Report No. 91

    Google Scholar 

  • Nelson, J., Gabor, G., Hunt, L., Lubliner, J., & Mast, T. 1980, Stressed mirror polishing: fabrication of an off-axis section of a paraboloid. Appl. Opt., 19, 2341–2352

    Article  ADS  Google Scholar 

  • Nelson, J., Lubliner, J., & Mast, T. 1982, Telescope mirror supports: plate deflections on point supports. Proc SPIE, 332, 212–228

    Article  ADS  Google Scholar 

  • Nelson, J. E., Mast, T. S., & Faber, S. M. 1985, The design of the Keck observatory and telescope. Keck Observatory Report No. 90 (Berkeley: Keck Observatory Science Office)

    Google Scholar 

  • Noethe, L. 2002, Active optics in modern large optical telescopes. Prog. Opt., 43, 1–69

    Article  Google Scholar 

  • Noll, R. J. 1976, Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am., 66, 207–211

    Article  ADS  Google Scholar 

  • Papadogiannis, A. S., Papadogianni, N. S., Carabelas, A., Tsitomeneas, S., Kyraggelos, P., & Chondros, T. G. 2009, The mirror weapon in Archimedes’ era. (Dordrecht: Springer) Proc. EUCOMES08, 29–36

    Google Scholar 

  • Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. 1989, Numerical Recipes: The Art of Scientific Computing (1st ed.; New York: Cambridge University Press)

    Google Scholar 

  • Redding, D. C., Basinger, S. A., Cohen, D., Lowman, A. E., Shi, F., Bely, P. Y. Bowers, C. W., Burg, R., Burns, L. A., Davila, P. S., Dean, B. H., Mosier, G. E., Norton, T. A., Petrone, P., Perkins, B. D., & Wilson, M. 2000, Wavefront control for a segmented deployable space telescope. Proc. SPIE, 4013, 546–558

    Article  ADS  Google Scholar 

  • Roberts, S. C., Morbey, C. L., Crabtree, D. R., Carlberg, R., Crampton, D., Davidge, T. J., Fitzsimmons, J. T., Gedig, M. H., Halliday, D. J., Hesse, J. E., Herriot, R. G., Oke, J. B., Pazder, J. S., Szeto, K., & Veran, J.-P. 2002, Canadian very large optical telescope technology studies, in Future Giant Telescopes, ed. J. R. P. Angel & R. Gilmozzi (Bellingham: SPIE). Proc. SPIE, 4840, 104–115

    Article  ADS  Google Scholar 

  • Roddier, F. 1988, Curvature sensing and compensation: a new concept in adaptive optics. Appl. Opt., 27, 1223–1225

    Article  ADS  Google Scholar 

  • Rodriguez Espinosa, J. M., Alvarez, P., & Sanchez, F. 1999, The GTC: an advanced 10m telescope for the ORM. Astrophys. Space Sci., 263, 355–360

    Article  ADS  Google Scholar 

  • Sabelhaus, P., & Decker, J. 2004, An overview of the James Webb Space Telescope (JWST) project. Proc. SPIE, 5487, 550–563

    Article  ADS  Google Scholar 

  • Schroeder, D. J. 2000, Astronomical Optics (San Diego, CA: Academic)

    Google Scholar 

  • Schumacher, A., Devaney, N., & Montoya, L. 2002, Phasing segmented mirrors: a modification of the Keck narrow-band technique and its application to extremely large telescopes. Appl. Opt., 41, 1297–1307

    Article  ADS  Google Scholar 

  • Shi, F., Chanan, G., Ohara, C., Troy, M., & Redding, D. C. 2004, Experimental verification of dispersed fringe sensing as a segment phasing technique using the Keck telescope. Appl. Opt., 43, 4474–4481

    Article  ADS  Google Scholar 

  • Sivaramakrishnan, A., Makidon, R. B., Acton, D. S., & Shi, F. 2003, Coarse phasing JWST using dispersed fringe sensing and dispersed Hartmann sensing during commissioning. Space Telescope Science Institute Technical Memorandum STSCI-JWST-TM-2003-0022A, Baltimore

    Google Scholar 

  • Strom, S. E., Stepp, L. M., & Gregory, B. 2002, Giant segmented mirror telescope: a point design based on science drivers, in Future Giant Telescopes, ed. J. R. P. Angel & R. Gilmozzi (Bellingham: SPIE). Proc. SPIE, 4840, 116–128

    Article  ADS  Google Scholar 

  • Surdej, I., Yaitskova, N., & Gonte, F. 2010, On-sky performance of the Zernike phase contrast sensor for the phasing of segmented telescopes. Appl. Opt., 49, 4053–4063

    Article  ADS  Google Scholar 

  • Troy, M., & Chanan, G. 2003, Diffraction effects from giant segmented-mirror telescopes. Appl. Opt., 42, 3745–3753

    Article  ADS  Google Scholar 

  • West, S. C., Callahan, S., Chaffee, F. H., Davidson, W. B., Derigne, S. T., Fabricant, D. G., Foltz, C. B., Hill, J. M., Nagel, R. H., & Poyner, A. D. 1997, Toward first light for the 6.5-m MMT telescope. Proc. SPIE, 2871, 38–48

    Article  ADS  Google Scholar 

  • Yaitskova, N., Dohlen, K., Dierickx, P., & Montoya, L. 2005, Mach-Zehnder interferometer for piston and tip-tilt sensing in segmented telescopes: theory and analytical treatment. JOSA A, 22, 1093–1105

    Article  ADS  Google Scholar 

  • Ziad, A., Schoeck, M., Chanan, G. A., Troy, M., Dekany, R., Lane, B. F., Borgnino, J., & Martin, F. 2004, Comparison of measurements of the outer scale of turbulence by three different techniques. Appl. Opt., 43, 2316–2324

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Nelson, J., Mast, T., Chanan, G. (2013). Segmented Mirror Telescopes. In: Oswalt, T.D., McLean, I.S. (eds) Planets, Stars and Stellar Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5621-2_3

Download citation

Publish with us

Policies and ethics