Skip to main content

Radio and Optical Interferometry: Basic Observing Techniques and Data Analysis

  • Reference work entry

Abstract

Astronomers usually need the highest angular resolution possible when observing celestial objects, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope, thereby improving angular resolution by orders of magnitude. Because diffraction has the largest effect for long wavelengths, radio and millimeter wave astronomers depend on interferometry to achieve image quality on par with conventional large-aperture visible and infrared telescopes. Interferometers at visible and infrared wavelengths extend angular resolution below the milliarcsecond level to open up unique research areas in imaging stellar surfaces and circumstellar environments.

In this chapter, the basic principles of interferometry are reviewed with an emphasis on the common features for radio and optical observing. While many techniques are common to interferometers of all wavelengths, crucial differences are identified that will help new practitioners to avoid unnecessary confusion and common pitfalls. The concepts essential for writing observing proposals and for planning observations are described, depending on the science wavelength, the angular resolution, and the field of view required. Atmospheric and ionospheric turbulence degrades the longest-baseline observations by significantly reducing the stability of interference fringes. Such instabilities represent a persistent challenge, and the basic techniques of phase referencing and phase closure have been developed to deal with them. Synthesis imaging with large observing datasets has become a routine and straightforward process at radio observatories, but remains challenging for optical facilities. In this context, the commonly used image reconstruction algorithms CLEAN and MEM are presented. Lastly, a concise overview of current facilities is included as an appendix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It should be emphasized, however, that this distinction is somewhat artificial; the first meter-wave radio interferometers ≈ 65 years ago were simple Michelson adding interferometers employing direct detection without coherent high-frequency signal amplification. At the other extreme, superheterodyne systems are currently routinely used at wavelengths as short as 10 μm, such as the UC Berkeley ISI facility.

  2. 2.

    There are several different coordinate systems in use to describe the geometry of ground-based interferometers used in observing the celestial sphere (see, e.g., Thompson et al. 2001, Chapter 4 and Appendix 4.1).

  3. 3.

    Very recently, several radio observatories have begun to equip their antennas (and at least one entire synthesis telescope) with arrays of such feeds.

  4. 4.

    This is not all advantageous; if the data is intended to be used in an imaging synthesis, the absence of the total power component means that the value of the map made from the data will integrate to zero. In other words, without further processing, the image will be sitting on a slightly negative “floor.” If more interferometer spacings around zero are also missing, the floor becomes a “bowl.” All this is colloquially called “the short-spacing problem,” and it adversely affects the photometric accuracy of the image. A significant part of the computer processing “bag of tricks” used to “restore” such images is intended to address this problem, although the only proper way to do that is to obtain the missing data and incorporate it into the synthesis.

  5. 5.

    At millimeter and submillimeter wavelengths, correlators still do not attain the maximum useful bandwidths for continuum observations.

  6. 6.

    Recall that an integration of specific intensity over solid angle results in a flux density, often expressed in Jansky.

  7. 7.

    Although amplifiers are currently used in the long-distance transmission of near-IR (digital) communication signals in optical fibers, the signal levels are relatively large and low noise is not an important requirement.

  8. 8.

    Real interferometers will have a realistic limit about 1–2 orders of magnitude below the theoretical limit due to throughput losses and nonideal effects such as loss of system visibility.

  9. 9.

    At the shortest sub-mm wavelengths, phase referencing is quite difficult due to strong water vapor turbulence, but can be partially corrected using “water-vapor monitoring” techniques (e.g., Wiedner et al. 2001).

  10. 10.

    Fortunately, targets of optical interferometers are generally spatially compact and so sparser (u,v) coverage can often be acceptable.

  11. 11.

    In general, also the polarization states and wavefront coherence can also be modified.

  12. 12.

    Phase referencing is possible using “Dual Star Feeds” which allows truly simultaneous observing of a pair of objects in the same narrow isoplanatic patch on the sky. This capability has been demonstrated on PTI, Keck, and VLTI.

  13. 13.

    Historically, model fitting was the way data was handled in order to discern source structure in the early days of radio interferometry. A classic example is the model of Cygnus A, which Jennison and Das Gupta fitted to long-baseline intensity-interferometry data at 2.4-m wavelength in 1953 (Jennison and Das Gupta 1953). Sullivan (2009, p. 353 et. seq) gives more details of this fascinating story.

  14. 14.

    In general, one can consider a full “Spatial Transfer Function” which can have weights between 0 and 1. Here, consider just a simple binary mask in the (u,v) plane for simplicity.

  15. 15.

    It’s interesting to note that at some large-enough diameter, ground-based telescopes are likely to become similar in cost to those in space, especially if one considers life-cycle costs.

References

  • Allen, R. J. 2007, PASP, 119, 914

    Article  ADS  Google Scholar 

  • Allen, R. J., Goss, W. M., & van Woerden, H. 1973, A&A, 29, 447

    Google Scholar 

  • Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2009, ApJ, 700, 1502

    Article  ADS  Google Scholar 

  • Baade, W., & Minkowski, R. 1954, ApJ, 119, 206

    Article  ADS  Google Scholar 

  • Baldwin, J. E., Haniff, C. A., Mackay, C. D., & Warner, P. J. 1986, Nature, 320, 595

    Article  ADS  Google Scholar 

  • Baldwin, J. E., Beckett, M. G., Boysen, R. C., Burns, D., Buscher, D. F., Cox, G. C., Haniff, C. A., Mackay, C. D., Nightingale, N. S., Rogers, J., Scheuer, P. A. G., Scott, T. R., Tuthill, P. G., Warner, P. J., Wilson, D. M. A., & Wilson, R. W. 1996, A&A, 306, L13+

    Google Scholar 

  • Baron, F., Monnier, J. D., & Kloppenborg, B. 2010, A novel image reconstruction software for optical/infrared interferometry. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7734

    Google Scholar 

  • Bely, P. Y. 2003, The Design and Construction of Large Optical Telescopes (New York, NY: Springer)

    Google Scholar 

  • Bolton, J. G., Stanley, G. J., & Slee, O. B. 1949, Nature, 164, 101

    Article  ADS  Google Scholar 

  • Bosma, A. 1981a, AJ, 86, 1791

    Article  ADS  Google Scholar 

  • Bosma, A. 1981b, AJ, 86, 1825

    Article  ADS  Google Scholar 

  • Bridle, A. H., Hough, D. H., Lonsdale, C. J., Burns, J. O., & Laing, R. A. 1994, AJ, 108, 766

    Article  ADS  Google Scholar 

  • Briggs, D. S. 1995, High Fidelity Interferometric Imaging: Robust Weighting and NNLS Deconvolution. In American Astronomical Society Meeting Abstracts, Vol. 27, pp. 112.02

    Google Scholar 

  • Buscher, D. F. 1994, in IAU Symposium, Vol. 158, Very High Angular Resolution Imaging, ed. J. G. Robertson, & W. J. Tango (Dordrecht: Kluwer Academic), 91–+

    Google Scholar 

  • Carilli, C. L., & Holdaway, M. A. 1999, Radio Sci, 34, 817

    Article  ADS  Google Scholar 

  • Cohen, M. H., Cannon, W., Purcell, G. H., Shaffer, D. B., Broderick, J. J., Kellermann, K. I., & Jauncey, D. L. 1971, ApJ, 170, 207

    Article  ADS  Google Scholar 

  • Colavita, M. M. 1999, PASP, 111, 111

    Article  ADS  Google Scholar 

  • Colavita, M. M., Serabyn, E., Millan-Gabet, R., Koresko, C. D., Akeson, R. L., Booth, A. J., Mennesson, B. P., Ragland, S. D., Appleby, E. C., Berkey, B. C., Cooper, A., Crawford, S. L., Creech-Eakman, M. J., Dahl, W., Felizardo, C., Garcia-Gathright, J. I., Gathright, J. T., Herstein, J. S., Hovland, E. E., Hrynevych, M. A., Ligon, E. R., Medeiros, D. W., Moore, J. D., Morrison, D., Paine, C. G., Palmer, D. L., Panteleeva, T., Smith, B., Swain, M. R., Smythe, R. F., Summers, K. R., Tsubota, K., Tyau, C., Vasisht, G., Wetherell, E., Wizinowich, P. L., & Woillez, J. M. 2009, PASP, 121, 1120

    Article  ADS  Google Scholar 

  • Cornwell, T. J. 1987, A&A, 180, 269

    Google Scholar 

  • Cornwell, T. J., & Wilkinson, P. N. 1981, MNRAS, 196, 1067

    ADS  Google Scholar 

  • Danchi, W. C., Bester, M., Degiacomi, C. G., Greenhill, L. J., & Townes, C. H. 1994, AJ, 107, 1469

    Article  ADS  Google Scholar 

  • Delplancke, F., Derie, F., Lév”que, S., Ménardi, S., Abuter, R., Andolfato, L., Ballester, P., de Jong, J., Di Lieto, N., Duhoux, P., Frahm, R., Gitton, P., Glindemann, A., Palsa, R., Puech, F., Sahlmann, J., Schuhler, N., Duc, T. P., Valat, B., & Wallander, A. 2006, in Presented at the SPIE Conf., Vol. 6268, SPIE Conf. Ser. (Bellingham WA: SPIE)

    Google Scholar 

  • di Benedetto, G. P., & Rabbia, Y. 1987, A&A, 188, 114

    Google Scholar 

  • Eisner, J. A., Akeson, R., Colavita, M., Ghez, A., Graham, J., Hillenbrand, L., Millan-Gabet, R., Monnier, J. D., Pott, J. U., Ragland, S., Wizinowich, P., & Woillez, J. 2010, Science with the Keck Interferometer ASTRA program. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7734

    Google Scholar 

  • Fried, D. L. 1965, J Opt Soc Am, 55, 1427

    Article  MathSciNet  ADS  Google Scholar 

  • Glindemann, A. 2010, Principles of Stellar Interferometry (Berlin: Springer)

    Google Scholar 

  • Golay, M. 1971, J Opt Soc Am, 61, 272+

    Google Scholar 

  • Goss, W. M., Brown, R. L., & Lo, K. Y. 2003, Astron Nachr Suppl, 324, 497

    Article  ADS  Google Scholar 

  • Greenhill, L. J., Gwinn, C. R., Schwartz, C., Moran, J. M., & Diamond, P. J. 1998, Nature, 396, 650

    Article  ADS  Google Scholar 

  • Gull, S. F. & Skilling, J. 1983, in Proceedings of an International Symposium held in Sydney, Australia, Indirect Imaging. Measurement and Processing for Indirect Imaging, ed. J. A. Roberts (Cambridge, UK: Cambridge University Press), 267+

    Google Scholar 

  • Hanbury Brown, R., Davis, J., & Allen, L. R. 1974, MNRAS, 167, 121

    ADS  Google Scholar 

  • Hecht, E. 2002, Optics (Boston, MA: Addison-Wesley)

    Google Scholar 

  • Heffner, H. 1962, Proc IRE, 50, 1604

    Article  Google Scholar 

  • Hofmann, K., & Weigelt, G. 1993, A&A, 278, 328

    Google Scholar 

  • Högbom, J. A. 1974, A&AS, 15, 417

    Google Scholar 

  • Holdaway, M. A., & Helfer, T. T. 1999, in ASP Conf. Ser., Vol. 180, Synthesis Imaging in Radio Astronomy II, ed. G. B. Taylor, C. L. Carilli, & R. A. Perley (San Francisco, CA: ASP), 537–+

    Google Scholar 

  • Ireland, M. J., Monnier, J. D., & Thureau, N. 2006, Monte-Carlo imaging for optical interferometry. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6268

    Google Scholar 

  • Jennison, R. C. 1958, MNRAS, 118, 276+

    Google Scholar 

  • Jennison, R. C., & Das Gupta, M. K. 1953, Nature, 172, 996

    Article  ADS  Google Scholar 

  • Johnson, M. A., Betz, A. L., & Townes, C. H. 1974, Phys Rev Lett, 33, 1617

    Article  ADS  Google Scholar 

  • Keto, E. 1997, ApJ, 475, 843

    Article  ADS  Google Scholar 

  • Kishimoto, M., Hönig, S. F., Antonucci, R., Kotani, T., Barvainis, R., Tristram, K. R. W., & Weigelt, G. 2009, A&A, 507, L57

    Google Scholar 

  • Kraus, S., Hofmann, K., Benisty, M., Berger, J., Chesneau, O., Isella, A., Malbet, F., Meilland, A., Nardetto, N., Natta, A., Preibisch, T., Schertl, D., Smith, M., Stee, P., Tatulli, E., Testi, L., & Weigelt, G. 2008, A&A, 489, 1157

    Google Scholar 

  • Labeyrie, A. 1975, ApJ Lett, 196, L71

    Article  ADS  Google Scholar 

  • Labeyrie, A., Lipson, S. G., & Nisenson, P. 2006, An Introduction to Optical Stellar Interferometry (Cambridge, UK: Cambridge University Press)

    Book  Google Scholar 

  • Lachaume, R. 2003, A&A, 400, 795

    Google Scholar 

  • Lane, B. F., Kuchner, M. J., Boden, A. F., Creech-Eakman, M., & Kulkarni, S. R. 2000, Nature, 407, 485

    Article  ADS  Google Scholar 

  • Lawson, P. R., ed. 2000, Principles of Long Baseline Stellar Interferometry (Pasadena, CA: NASA/JPL)

    Google Scholar 

  • Malbet, F., & Perrin, G., eds. 2007, Foreword: Proceedings of the Euro Summer School ”Observation and Data Reduction with with the VLT Interferometer”. http://vltischool.obs.ujf-grenoble.fr. New A Rev., 51:563–564

  • Malbet, F., Cotton, W., Duvert, G., Lawson, P., Chiavassa, A., Young, J., Baron, F., Buscher, D., Rengaswamy, S., Kloppenborg, B., Vannier, M., & Mugnier, L. 2010, The 2010 interferometric imaging beauty contest. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 7734

    Google Scholar 

  • McCready, L. L., Pawsey, J. L., & Payne-Scott, R. 1947, R Soc Lond Proc Ser A, 190, 357

    Article  ADS  Google Scholar 

  • Meimon, S., Mugnier, L. M., & Le Besnerais, G. 2008, J Opt Soc Am A, 26, 108

    Article  ADS  Google Scholar 

  • Mérand, A., Kervella, P., Coudé du Foresto, V., Ridgway, S. T., Aufdenberg, J. P., ten Brummelaar, T. A., Berger, D. H., Sturmann, J., Sturmann, L., Turner, N. H., & McAlister, H. A. 2005, A&A, 438, L9

    Google Scholar 

  • Michelson, A. A., & Pease, F. G. 1921, ApJ, 53, 249

    Article  ADS  Google Scholar 

  • Millan-Gabet, R., Schloerb, F. P., & Traub, W. A. 2001, ApJ, 546, 358

    Article  ADS  Google Scholar 

  • Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P., & Inoue, M. 1995, Nature, 373, 127

    Article  ADS  Google Scholar 

  • Monnier, J. D. 2003, Rep Prog Phys, 66, 789

    Article  ADS  Google Scholar 

  • Monnier, J. D., Berger, J.-P., Millan-Gabet, R., Traub, W. A., Schloerb, F. P., Pedretti, E., Benisty, M., Carleton, N. P., Haguenauer, P., Kern, P., Labeye, P., Lacasse, M. G., Malbet, F., Perraut, K., Pearlman, M., & Zhao, M. 2006, ApJ, 647, 444

    Article  ADS  Google Scholar 

  • Monnier, J. D., Zhao, M., Pedretti, E., Thureau, N., Ireland, M., Muirhead, P., Berger, J., Millan-Gabet, R., Van Belle, G., ten Brummelaar, T., McAlister, H., Ridgway, S., Turner, N., Sturmann, L., Sturmann, J., & Berger, D. 2007, Science, 317, 342

    Article  ADS  Google Scholar 

  • Muterspaugh, M. W., Lane, B. F., Kulkarni, S. R., Konacki, M., Burke, B. F., Colavita, M. M., Shao, M., Wiktorowicz, S. J., & O’Connell, J. 2010, AJ, 140, 1579

    Article  ADS  Google Scholar 

  • Narayan, R., & Nityananda, R. 1986, ARAA, 24, 127

    Article  ADS  Google Scholar 

  • Oliver, B. M. 1965, Proc IEEE, 53, 436

    Article  Google Scholar 

  • Pathria, R. K. 1972, Statistical Mechanics (Oxford, NY: Pergamon Press)

    Google Scholar 

  • Pauls, T. A., Young, J. S., Cotton, W. D., & Monnier, J. D. 2005, PASP, 117, 1255

    Article  ADS  Google Scholar 

  • Pawsey, J. L., Payne-Scott, R., & McCready, L. L. 1946, Nature, 157, 158

    Article  ADS  Google Scholar 

  • Peterson, D. M., Hummel, C. A., Pauls, T. A., Armstrong, J. T., Benson, J. A., Gilbreath, G. C., Hindsley, R. B., Hutter, D. J., Johnston, K. J., Mozurkewich, D., & Schmitt, H. R. 2006, Nature, 440, 896

    Article  ADS  Google Scholar 

  • Porcas, R. W., Booth, R. S., Browne, I. W. A., Walsh, D., & Wilkinson, P. N. 1979, Nature, 282, 385

    Article  ADS  Google Scholar 

  • Quirrenbach, A. 2000, in Principles of Long Baseline Stellar Interferometry (Pasadena, CA: NASA/JPL), 71–+

    Google Scholar 

  • Quirrenbach, A. 2001, ARA&A, 39, 353

    Google Scholar 

  • Quirrenbach, A., Bjorkman, K. S., Bjorkman, J. E., Hummel, C. A., Buscher, D. F., Armstrong, J. T., Mozurkewich, D., Elias, II, N. M., & Babler, B. L. 1997, ApJ, 479, 477

    Article  ADS  Google Scholar 

  • Readhead, A. C. S., & Wilkinson, P. N. 1978, ApJ, 223, 25

    Article  ADS  Google Scholar 

  • Readhead, A. C. S., Walker, R. C., Pearson, T. J., & Cohen, M. H. 1980, Nature, 285, 137

    Article  ADS  Google Scholar 

  • Readhead, A., Nakajima, T., Pearson, T., Neugebauer, G., Oke, J., & Sargent, W. 1988, AJ, 95, 1278

    Article  ADS  Google Scholar 

  • Reid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., Moscadelli, L., & Xu, Y. 2009, ApJ, 693, 397

    Article  ADS  Google Scholar 

  • Roddier, F. 1986, Opt Commun, 60, 145+

    Google Scholar 

  • Rogers, A. E. E., Hinteregger, H. F., Whitney, A. R., Counselman, C. C., Shapiro, I. I., Wittels, J. J., Klemperer, W. K., Warnock, W. W., Clark, T. A., & Hutton, L. K. 1974, ApJ, 193, 293

    Article  ADS  Google Scholar 

  • Rogstad, D. H. 1968, Appl Opt, 7, 585+

    Google Scholar 

  • Rogstad, D. H., & Shostak, G. S. 1972, ApJ, 176, 315

    Article  ADS  Google Scholar 

  • Rots, A. H. 1975, A&A, 45, 43

    Google Scholar 

  • Rots, A. H., & Shane, W. W. 1975, A&A, 45, 25

    Google Scholar 

  • Saha, S. K. 2011, Aperture Synthesis, ed. Saha, S. K. (New York, NY: Springer)

    Book  Google Scholar 

  • Shao, M., & Colavita, M. M. 1992, A&A, 262, 353

    Google Scholar 

  • Sivia, D. 1987, PhD thesis, Cambridge University

    Google Scholar 

  • Skilling, J., & Bryan, R. K. 1984, MNRAS, 211, 111+

    Google Scholar 

  • Smith, F. G. 1951, Nature, 168, 555

    Article  ADS  Google Scholar 

  • Sullivan, W. T. 2009, Cosmic Noise (Cambridge: Cambridge University Press)

    Google Scholar 

  • Sutton, E. C., & Hueckstaedt, R. M. 1996, A&AS, 119, 559

    Google Scholar 

  • Taylor, G. B., Carilli, C. L., & Perley, R. A., eds. 1999, ASP Conf. Ser., Vol. 180, Synthesis Imaging in Radio Astronomy II (San Francisco, CA: ASP)

    Google Scholar 

  • ten Brummelaar, T. A., McAlister, H. A., Ridgway, S. T., Bagnuolo, Jr., W. G., Turner, N. H., Sturmann, L., Sturmann, J., Berger, D. H., Ogden, C. E., Cadman, R., Hartkopf, W. I., Hopper, C. H., & Shure, M. A. 2005, ApJ, 628, 453

    Article  ADS  Google Scholar 

  • Thiébaut, E. 2008, MIRA: an effective imaging algorithm for optical interferometry. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7013

    Google Scholar 

  • Thompson, A. R., Clark, B. G., Wade, C. M., & Napier, P. J. 1980, ApJ Suppl, 44, 151

    Article  ADS  Google Scholar 

  • Thompson, A. R., Moran, J. M., & Swenson, Jr., G. W. 2001, Interferometry and Synthesis in Radio Astronomy (2nd ed.; New York: Wiley)

    Google Scholar 

  • van Boekel, R., Min, M., Leinert, C., Waters, L. B. F. M., Richichi, A., Chesneau, O., Dominik, C., Jaffe, W., Dutrey, A., Graser, U., Henning, T., de Jong, J., Köhler, R., de Koter, A., Lopez, B., Malbet, F., Morel, S., Paresce, F., Perrin, G., Preibisch, T., Przygodda, F., Schöller, M., & Wittkowski, M. 2004, Nature, 432, 479

    Article  ADS  Google Scholar 

  • Visser, H. C. D. 1980a, A&A, 88, 159

    Google Scholar 

  • Visser, H. C. D. 1980b, A&A, 88, 149

    Google Scholar 

  • Walsh, D., Carswell, R. F., & Weymann, R. J. 1979, Nature, 279, 381

    Article  ADS  Google Scholar 

  • Weigelt, G. P. 1977, Opt Commun, 21, 55

    Article  ADS  Google Scholar 

  • Whitney, A. R., Shapiro, I. I., Rogers, A. E. E., Robertson, D. S., Knight, C. A., Clark, T. A., Goldstein, R. M., Marandino, G. E., & Vandenberg, N. R. 1971, Science, 173, 225

    Article  ADS  Google Scholar 

  • Wiedner, M. C., Hills, R. E., Carlstrom, J. E., & Lay, O. P. 2001, ApJ, 553, 1036

    Article  ADS  Google Scholar 

  • Wilkinson, P. N., Kellermann, K. I., Ekers, R. D., Cordes, J. M., & Lazio, T. J. W. 2004, New A Rev., 48, 1551

    Article  ADS  Google Scholar 

  • Woolf, N. J. 1982, ARA&A, 20, 367

    Google Scholar 

  • Zhao, M., Monnier, J. D., Pedretti, E., Thureau, N., Mérand, A., ten Brummelaar, T., McAlister, H., Ridgway, S. T., Turner, N., Sturmann, J., Sturmann, L., Goldfinger, P. J., & Farrington, C. 2009, ApJ, 701, 209

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the following colleagues for their comments and contributions: W.M. Goss, R.D. Ekers, T.L. Wilson, S. Kraus, M. Zhao, T. ten Brummelaar, A. King, and P. Teuben.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Monnier, J.D., Allen, R.J. (2013). Radio and Optical Interferometry: Basic Observing Techniques and Data Analysis. In: Oswalt, T.D., Bond, H.E. (eds) Planets, Stars and Stellar Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5618-2_7

Download citation

Publish with us

Policies and ethics