Skip to main content

Terrestrial Planets

  • Reference work entry
  • First Online:
Planets, Stars and Stellar Systems

Abstract

The four terrestrial planets (Mercury, Venus, Earth, and Mars) and Earth’s Moon display similar compositions, interior structures, and geologic histories. The terrestrial planets formed by accretion ∼ 4.5 Ga ago out of the solar nebula, whereas the Moon formed through accretion of material ejected off Earth during a giant impact event shortly after Earth formed. Geophysical investigations (gravity anomalies, seismic analysis, heat flow measurements, and magnetic field studies) reveal that all five bodies have differentiated into a low-density silicate crust, an intermediate density silicate mantle, and an iron-rich core. Seismic and heat flow measurements are only available for Earth and its Moon, and only Earth and Mercury currently exhibit actively produced magnetic fields (although Mars and the Moon retain remanent fields). Surface evolutions of all five bodies have been influenced by impact cratering, volcanism, tectonism, and mass wasting. Aeolian activity only occurs on bodies with a substantial atmosphere (Venus, Earth, and Mars) and only Earth and Mars display evidence of fluvial and glacial processes. Earth’s volcanic and tectonic activity is largely driven by plate tectonics, whereas those processes on Venus result from vertical motions associated with hotspots and mantle upwellings. Mercury displays a unique tectonic regime of global contraction caused by gradual solidification of its large iron core. Early large impact events stripped away much of Mercury’s crust and mantle, produced Venus’ slow retrograde rotation, ejected material off Earth that became the Moon, and may have created the Martian hemispheric dichotomy. The similarities and differences between the interiors and surfaces of these five bodies provide scientists with a better understanding of terrestrial planet evolutionary paths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASTER :

Advanced Spaceborne Thermal Emission and Reflection radiometer

ESA :

European Space Agency

Ga :

Giga-years (billion years, or 109 years)

JHU APL :

Johns Hopkins University Applied Physics Laboratory

JPL :

Jet Propulsion Laboratory

KREEP :

Potassium (K), Rare Earth Element, and Phosphorus rich lunar rocks

KT :

Cretaceous-Tertiary

LCROSS :

Lunar CRater Observation and Sensing Satellite

LHB :

Late Heavy Bombardement

LPI :

Lunar and Planetary Institute

LRO :

Lunar Reconnaissance Orbiter

Ma :

Million years (106 years)

MESSENGER :

MErcury Surface, Space ENvironment, GEochemistry, and Ranging

MFF :

Medusae Fossae Formation

MGS :

Mars Global Surveyor

MOLA :

Mars Orbiter Laser Altimeter

MSSS :

Malin Space Science Systems

NASA :

National Aeronautics and Space Administration

PLD :

Polar layered deposits

SELENE :

SELenological and ENgineering Explorer

SMART-1 :

First Small Missions for Advanced Research and Technology

SNC :

Shergottites, Nakhlites, and Chassignites (Martian meteorites)

References

  • Acuña, M. H., Connerney, J. E. P., Ness, N. F., et al. 1999, Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284, 790–793

    Article  ADS  Google Scholar 

  • Alvarez, L. W., Alvarez, W., Asaro, F., & Michel, H. V. 1980, Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 1095–1108

    Article  ADS  Google Scholar 

  • Andrews-Hanna, J. C., Zuber, M. T., & Banerdt, W. B. 2008, The Borealis basin and the origin of the Martian crustal dichotomy. Nature, 453, 1212–1215

    Article  ADS  Google Scholar 

  • Asimow, P. D., & Wood, J. A. 1992, Fluid outflows from Venus impact craters: analysis from Magellan data. J Geophys Res, 97, 13643–13665

    Article  ADS  Google Scholar 

  • Baker, V. R. 1982, The channels of Mars (Austin: University of Texas Press), 198

    Google Scholar 

  • Baker, V. R., & Nummedal, D. 1978, The channeled scabland: a guide to the geomorphology of the Columbia basin, Washington (Washington, DC: NASA Planetary Geology Program), 186

    Google Scholar 

  • Baker, V. R., Komatsu, G., Gulick, V. C., & Parker, T. J. 1997, Channels and valleys, in Venus II, eds. S. W. Bougher, D. M. Hunten, & R. J. Phillips (Tucson: University of Arizona Press), 757–793

    Google Scholar 

  • Barlow, N. G. 2005, A review of Martian impact crater ejecta structures and their implications for target properties, in Large meteorite impacts III, eds. T. Kenkmann, F. Hörz, & A. Deutsch, Geological Society of America Special Paper 384, Boulder, CO (Washington, DC: The Society), 433–442

    Google Scholar 

  • Barlow, N. G. 2008, Mars: an introduction to its interior, surface, and atmosphere (Cambridge: Cambridge University Press), 264

    Google Scholar 

  • Barsukov, V. L. 1992, Venusian igneous rocks, in Venus geology, geochemistry, and geophysics, eds. V. L. Barsukov, A. T. Basilevsky, V. P. Volkov, & V. N. Zharkov (Tucson: University of Arizona Press), 165–176

    Google Scholar 

  • Berman, D. C., & Hartmann, W. K. 2002, Recent fluvial, volcanic, and tectonic activity on the Cerberus Plains of Mars. Icarus, 159, 1–17

    Article  ADS  Google Scholar 

  • Bibring, J.-P., Langevin, Y., Mustard, J. F., et al. 2006, Global mineraological and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400–404

    Article  ADS  Google Scholar 

  • Bogard, D. D., & Johnson, P. 1983, Martian gases in an Antarctic meteorite? Science, 221, 651–654

    Article  ADS  Google Scholar 

  • Bohor, B. F., Modreski, P. J., & Foord, E. E. 1987, Shocked quartz in the Cretaceous-Tertiary boundary clays: evidence for a global distribution. Science, 236, 703–709

    Article  ADS  Google Scholar 

  • Bottke, W. F., Levison, H. F., Nesvorný, D., & Dones, L. 2007, Can planetismals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus, 190, 203–223

    Article  ADS  Google Scholar 

  • Bougher, S. W., Hunten, D. M., & Phillips, R. J. 1997, Venus II (Tucson: University of Arizona Press), 1362

    Google Scholar 

  • Breuer, D., & Spohn, T. 2003, Early plate tectonics versus single-plate tectonics on Mars: evidence from manetic field history and crust evolution. J Geophys Res, 108, E75072, doi: 10.1029/2002JE001999

    Article  ADS  Google Scholar 

  • Breuer, D., Spohn, T., & Wüllner, U. 1993, Mantle differentiation and the crustal dichotomy of Mars: evidence from magnetic field history and crust evolution. J Geophys Res, 108, E75072, doi: 10.1029/2002JE001999

    Article  Google Scholar 

  • Bullock, M. A., & Grinspoon, D. H. 2001, The recent evolution of climate on Venus. Icarus, 150, 19–37

    Article  ADS  Google Scholar 

  • Byrne, S., Dundas, C. M., Kennedy, M. R., et al. 2009, Distribution of mid-latitude ground ice on Mars from new impact craters. Science, 325, 1674–1676

    Article  ADS  Google Scholar 

  • Canup, R. M., & Agnor, C. B. 2000, Accretion of the terrestrial planets and the Earth-Moon system, in Origin of the Earth and Moon, eds. R. M. Canup & K. Righter (Tucson: University of Arizona Press), 113–129

    Google Scholar 

  • Canup, R. M., & Esposito, L. W. 1996, Accretion of the Moon from an impact-generated disk. Icarus, 119, 427–446

    Article  ADS  Google Scholar 

  • Carter, L. M., Campbell, B. A., Watters, T. R., et al. 2009, Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus, 199, 295–302

    Article  ADS  Google Scholar 

  • Chao, E. C. T., Shoemaker, E. M., & Madsen, B. M. 1960, First natural occurrence of coesite. Science, 132, 220–222

    Article  ADS  Google Scholar 

  • Christensen, P. R. 2003, Formation of recent Martian gullies through melting of extensive water-rich snow deposits. Nature, 422, 45–47

    Article  ADS  Google Scholar 

  • Cox, A. 1973, Plate tectonics and geomagnetic reversals (San Francisco: W.H. Freeman), 702

    Google Scholar 

  • Craddock, R.A., & Howard, A. D. 2002, The case for rainfall on a warm, wet early Mars. J Geophys Res, 107, 5111, doi: 10.1029/2001JE001505

    Article  Google Scholar 

  • Crumpler, L. S., Aubele, J. C., Senske, D. A., et al. 1997, Volcanoes and centers of volcanism on Venus, in Venus II, eds. S. W. Bougher, D. M. Hunten, & R. J. Phillips (Tucson: University of Arizona Press), 697–756

    Google Scholar 

  • Denevi, B. W., Robinson, M. S., Solomon, S. C., et al. 2009, The evolution of Mercury’s crust: a global perspective from MESSENGER. Science, 324, 613–618

    ADS  Google Scholar 

  • Drake, M. J., & Righter, K. 2002, Determining the composition of the Earth. Nature, 416, 39–44

    Article  ADS  Google Scholar 

  • Feldman, W. C., Prettyman, T. H., Maurice, S., et al. 2004, Global distribution of near-surface hydrogen on Mars. J Geophys Res, 109, E09006, doi: 10.1029/2003JE002160

    Article  ADS  Google Scholar 

  • French, B. M. 1998, Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures (Houston, TX: Lunar and Planetary Institute, Contribution No. 954), 120

    Google Scholar 

  • Frey, H., & Schultz, R. A. 1988, Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys Res Lett, 15, 229–232

    Article  ADS  Google Scholar 

  • Frey, H. V., Roark, J. H., Shockey, K. M., Frey, E. L., & Sakimoto, S. E. H. 2002, Ancient lowlands on Mars. Geophys Res Lett, 29, 1384, doi: 10.1029/2001GL013832

    Article  ADS  Google Scholar 

  • Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466–469

    Article  ADS  Google Scholar 

  • Greeley, R., Bender, K. C., Saunders, R. S., Schubert, G., & Weitz, C. M. 1997, Aeolian processes and features on Venus, in Venus II, eds. S. W. Bougher, D. M. Hunten, & R. J. Phillips (Tucson: University of Arizona Press), 547–589

    Google Scholar 

  • Grimm, R. E., & Hess, P. C. 1997, The crust of Venus, in Venus II, eds. S. W. Bougher, D. M. Hunten, & R. J. Phillips (Tucson: University of Arizona Press), 1205–1244

    Google Scholar 

  • Guest, J. E., Bulmer, M. H., Aubele, J., et al. 1992, Small volcanic edifices and volcanism in the plains of Venus. J Geophys Res, 97, 15949–15966

    Article  ADS  Google Scholar 

  • Hansen, V. L., Willis, J. J., & Banerdt, W. B. 1997, Tectonic overview and synthesis, in Venus II, eds. S. W. Bougher, D. M. Hunten, & R. J. Phillips (Tucson: University of Arizona Press), 797–844

    Google Scholar 

  • Hartmann, W. K., Phillips, R. J., & Taylor, G. J. 1986, Origin of the Moon (Houston: Lunar and Planetary Institute), 797

    Google Scholar 

  • Hays, J. D., Imbrie, J., & Shackleton, N. J., 1976, Variations in the Earth’s orbit: pacemaker of the ice ages. Science, 194, 1121–1132

    Article  ADS  Google Scholar 

  • Head, J. W., Crumpler, L. S., Aubele, J. C., et al. 1992, Venus volcanism: classification of volcanic features and structures, associations and global distribution from Magellan data. J Geophys Res, 97, 13153–13197

    Article  ADS  Google Scholar 

  • Head, J. W., Murchie, S. L., Prockter, L. M., et al. 2008, Volcanism on Mercury: evidence from the first MESSENGER flyby. Science, 321, 69–72

    Article  ADS  Google Scholar 

  • Heiken, G. H., Vaniman, D. T., & French, B. M. 1991, Lunar sourcebook: a user’s guide to the Moon (Cambridge: Cambridge University Press), 736

    Google Scholar 

  • Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Camargo-Zanoguera, A., Jacobsen, S. B., & Boynton, W. V. 1991, Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 19, 867–871

    Article  ADS  Google Scholar 

  • Hodges, C. A., & Moore, H. J. 1994, Atlas of volcanic landforms on Mars, Professional Paper No. 1534 (Washington, DC: US Geological Survey), 194

    Google Scholar 

  • Hoyt, W. G. 1987, Coon mountain controversies: meteor crater and the development of the impact theory (Tucson: University of Arizona Press), 442

    Google Scholar 

  • Hubbard, W. B. 1984, Planetary interiors. (New York: Van Nostrand Reinhold Press), 334

    Google Scholar 

  • Hunten, D. M., Colin, L., Donahue, T. M., & Moroz, V. I. 1983, Venus (Tucson: University of Arizona Press), 1143

    Google Scholar 

  • Imbrie, J., & Imbrie, J. Z. 1980, Modeling the climatic response to orbital variations. Science, 207, 943–953

    Article  ADS  Google Scholar 

  • Jakosky, B. M., & Phillips, R. J. 2001, Mars’ volatile and climate history. Nature, 412, 237–244

    Article  ADS  Google Scholar 

  • Kargel, J. S., Fegley, B., Treiman, A., & Kirk, R. L. 1994, Carbonatite-sulfate volcanism on Venus. Icarus, 112, 219–252

    Article  ADS  Google Scholar 

  • Karunatillake, S., Wray, J. J., Squyres, S. W., et al. 2009, Chemically striking regions on Mars and Stealth revisited. J Geophys Res, 114, E12001, doi: 10.1029/2008JE003303

    Article  ADS  Google Scholar 

  • Kieffer, H. H., Jakosky, B. M., Snyder, C. W., & Matthews, M. S. 1992, Mars (Tucson: University of Arizona Press), 1498

    Google Scholar 

  • Kring, D. A., & Cohen, B. A. 2002, Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. J Geophys Res, 107, 5009, doi: 10.1029/2001JE001529

    Google Scholar 

  • Laskar, J., Correia, A. C. M., Gastineau, M., et al. 2004, Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus, 170, 343–364

    Article  ADS  Google Scholar 

  • Maher, K. A., & Stevenson, D. J. 1988, Impact frustration of the origin of life. Nature, 331, 612–614

    Article  ADS  Google Scholar 

  • Malin, M. C., & Edgett, K. S. 2000, Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330–2335

    Article  ADS  Google Scholar 

  • Malin, M. C., Edgett, K. S., Poslolova, L. V., McColley, S. M., & Noe Dobrea, E. Z. 2006, Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1573–1577

    Article  ADS  Google Scholar 

  • Mandt, K. E., DeSilva, S., Zimbelman, J. R., & Crown, D. A. 2008, Origin of the Medusae Fossae Formation, Mars: insights from a synoptic approach. J Geophys Res E, 113, E12011, doi: 10.1029/2008JE003076

    Article  ADS  Google Scholar 

  • McElhinny, M. W. 1979, Palaeomagnetism and plate tectonics (Cambridge: Cambridge University Press), 385

    Google Scholar 

  • McEwen, A. S., Robinson, M. S., Eliason, E. M., et al. 1994, Clementine observations of the Aristarchus region of the Moon. Science, 266, 1858–1862

    Article  ADS  Google Scholar 

  • McGovern, P. J., Smith, J. R., Morgan, J. K., & Bulmer, M. H. 2004, Olympus Mons aureole deposits: new evidence for a flank failure origin. J Geophys Res, 109, E08008, doi: 10.1029/2004JE002258

    Article  ADS  Google Scholar 

  • McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. 1996, Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–930

    Article  ADS  Google Scholar 

  • Melosh, H. J. 1989, Impact cratering: a geological process. (New York: Oxford University Press), 245

    Google Scholar 

  • Melosh, H. J., & McKinnon, W. B. 1978, The mechanics of ringed basin formation. Geophys Res Lett, 5, 985–988

    Article  ADS  Google Scholar 

  • Morbidelli, A., Chambers, J., Lunine, J. L., et al. 2000, Source regions and time scales for the delivery of water to Earth. Meteoritics, 35, 1309–1320

    Article  Google Scholar 

  • Muller, R. A., & MacDonald, G. J. 1997, Glacial cycles and astronomical forcing. Science, 277, 215–218

    Article  ADS  Google Scholar 

  • Namiki, N., Iwata, T., Matsumoto, K., et al. 2009, Farside gravity field of the Moon from four-way Doppler measurements of SELENE (Kaguya). Science, 323, 900–905

    Article  ADS  Google Scholar 

  • Nyquist, L. E., Bogard, D. D., Shih, C.-Y., et al. 2001, Ages and geologic histories of Martian meteorites. Space Sci Rev, 96, 105–164

    Article  ADS  Google Scholar 

  • Ohtake, M., Matsunaga, T., Haruyama, J., et al. 2009, The global distribution of pure anorthosite on the Moon. Nature, 461, 236–240

    Article  ADS  Google Scholar 

  • Pavri, B., Head, J. W., Klose, K. B.,  Wilson, L. 1992, Steep-sided domes on Venus: characteristics, geologic setting, and eruption conditions from Magellan data. J Geophys Res, 97, 13445–13478

    Article  ADS  Google Scholar 

  • Phillips, R. J., Raubertas, R. F., Arvidson, R. E., et al. 1992, Impact craters and Venus resurfacing history. J Geophys Res, 97, 15923–15948

    Article  ADS  Google Scholar 

  • Pieters, C. M., Goswami, J. N., Clark, R. N., et al. 2009, Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science, 326, 568–572

    Article  ADS  Google Scholar 

  • Roddy, D. J., Pepin, R. O, & Merrill, R. B. 1977, Impact and explosion cratering: planetary and terrestrial implications (New York: Pergamon Press), 1301

    Google Scholar 

  • Schaber, G. G., Strom, R. G., Moore, H. J., et al. 1992, Geology and distribution of impact craters on Venus: What are they telling us? J Geophys Res, 97, 13257–13301

    Article  ADS  Google Scholar 

  • Schultz, P. H. 1992, Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan. J Geophys Res, 97, 16183–16248

    Article  ADS  Google Scholar 

  • Sharpton, V. L., Dalrymple, G. B., Marín, L. E., et al. 1992, New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary. Nature, 359, 819–821

    Article  ADS  Google Scholar 

  • Shoemaker, E. M. 1963, Impact mechanics at Meteor Crater, Arizona, in The Moon, Meteorites, and Comets, eds. B. M. Middlehurst & G. P. Kuiper (Chicago, IL: University of Chicago Press), 301–336

    Google Scholar 

  • Solomon, S. C., Smrekar, S. E., Bindschadler, D. L., et al. 1992, Venus tectonics: an overview of Magellan observations. J Geophys Res, 97, 13199–13255

    Article  ADS  Google Scholar 

  • Solomon, S. C., McNutt, R. L., Watters, T. R., et al. 2008, Return to Mercury: a global perspective on MESSENGER’s first Mercury flyby. Science, 321, 59–62

    Article  ADS  Google Scholar 

  • Stofan, E. R., Hamilton, V. E., Janes, D. M., & Smrekar, S. E. 1997, Coronae on Venus: morphology and origin, in Venus II, ed. S. W. Bougher, D. M. Hunten, & R. J. Phillips (Tucson: University of Arizona Press), 931–965

    Google Scholar 

  • Stöffler, D., & Ryder, G. 2001, Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci Rev, 96, 9–54

    Article  ADS  Google Scholar 

  • Strom, R. G., & Sprague, A. L. 2003, Exploring Mercury: the iron planet (Chichester, UK: Springer Praxis Publishing), 216

    Google Scholar 

  • Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., & Kring, D. A. 2005, The origin of planetary impactors in the inner solar system. Science, 309, 1847–1850

    Article  ADS  Google Scholar 

  • Strom, R. G., Chapman, C. R., Merline, W. J., Solomon, S. C., & Head, J. W. 2008, Mercury cratering record viewed from MESSENGER’s first flyby. Science, 321, 79–81

    Article  ADS  Google Scholar 

  • Tera, F., Papanastassiou, D. A., & Wasserburg, G. J. 1974, Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett, 22, 1–21

    Article  ADS  Google Scholar 

  • Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459–461

    Article  ADS  Google Scholar 

  • Vilas, F., Chapman, C. R., & Matthews, M. S., 1988, Mercury (Tucson: University of Arizona Press), 794

    Google Scholar 

  • Watters, T. R., Leuschen, C. J., Plaut, J. J., et al. 2006, MARSIS radar sounder evidence of buried basins in the northern lowlands on Mars. Nature, 444, 905–908

    Article  ADS  Google Scholar 

  • Watters, T. R., Solomon, S. C., Robinson, M. S., et al. 2009, The tectonics of Mercury: the view after MESSENGER’s first flyby. Earth Planet Sci Lett, 285, 283–296

    Article  ADS  Google Scholar 

  • Werner, S. C., van Gasselt, S., & Neukum, G. 2003, Continual geological activity in Athabasca Valles, Mars. J Geophys Res, 108, 8081, doi: 10.1029/2002JE002020

    Article  Google Scholar 

  • Wieczorek, M. A., & Phillips, R. J. 1998, Potential anomalies on a sphere: applications to the thickness of the lunar crust. J Geophys Res, 103, 1715–1724

    Article  ADS  Google Scholar 

  • Wieczorek, M. A., & Zuber, M. T. 2004, Thickness of the Martian crust: improved constraints from geoid-to-topography ratios. J Geophys Res, 109, E01009, doi: 10.1029/2003JE002153

    Article  ADS  Google Scholar 

  • Wilhelms, D. E., & Squyres, S. W. 1984, The Martian hemispheric dichotomy may be due to a giant impact. Nature, 309, 138–140

    Article  ADS  Google Scholar 

  • Williams-Jones, G., Willaims-Jones, A. E., & Stix, J. 1998, The nature and origin of Venusian canali. J Geophys Res, 103, 8545–8556

    Article  ADS  Google Scholar 

  • Wise, D. U., Golombek, M. P., & McGill, G. E. 1979, Tectonic evolution of Mars. J Geophys Res, 84, 7934–7939

    Article  ADS  Google Scholar 

  • Zuber, M. T. 2001, The crust and mantle of Mars. Nature, 412, 220–227

    Article  ADS  Google Scholar 

  • Zuber, M. T., Smith, D. E., Lemoine, F. G., & Neumann, G. A. 1994, The shape and internal structure of the Moon from the Clementine mission. Science, 266, 1839–1843

    Article  ADS  Google Scholar 

  • Zuber, M. T., Solomon, S. C., Phillips, R. J., et al. 2000, Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287, 1788–1793

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barlow, N.G. (2013). Terrestrial Planets. In: Oswalt, T.D., French, L.M., Kalas, P. (eds) Planets, Stars and Stellar Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5606-9_3

Download citation

Publish with us

Policies and ethics