Skip to main content

Dynamical Evolution of Planetary Systems

  • Reference work entry
  • First Online:
Planets, Stars and Stellar Systems

Abstract

The apparent regularity of the motion of the giant planets of our solar system suggested for decades that said planets formed onto orbits similar to the current onesand that nothing dramatic ever happened during their lifetime. The discovery of extrasolar planets showed astonishingly that the orbital structure of our planetary system is not typical. Many giant extrasolar planets have orbits with semimajor axes of ∼ 1 AU,and some have even smaller orbital radii, sometimes with orbital periods of just a few days. Moreover, most extrasolar planets have large eccentricities, up to values that only comets have in our solar system. Why is there such a great diversitybetween our solar system and the extrasolar systems, as well as among the extrasolar systems themselves? This chapter aims to give a partial answer to this fundamental question. Its guideline is a discussion of the evolution of our solarsystem, certainly biased by a view that emerges, in part, from a series of works comprising the “Nice model.” According to this view, the giant planets of the solar system migrated radially while they were still embedded in a protoplanetary disk of gas and presumably achieved a multi-resonant orbital configuration, characterized by smaller interorbital spacings and smaller eccentricities and inclinations with respect to the current configuration.The current orbits of the giant planets may have been achieved during a phase of orbital instability, during which the planets acquired temporarily large-eccentricity orbits and all experienced close encounters with at least oneother planet. This instability phase occurred presumably during the putative “Late Heavy Bombardment” of the terrestrial planets, approximately ∼ 3.9 Gy ago (Tera et al. 1974). The interaction with a massive, distant planetesimal disk (the ancestor of the current Kuiper belt) eventually damped the eccentricities of the planets, ending the phase of mutual planetary encounters and parking the planets onto their current, stable orbits. This new view of the evolution of the solar system makes our system not very different from the extrasolar ones. In fact, the best explanation for the large orbital eccentricities of extrasolar planets is that the planets that are observed are the survivors of strong instability phases of original multi-planet systems on quasi-circular orbits. The main difference between the solar system and the extrasolar systems is in the magnitude of such an instability. In the extrasolar systems, encounters among giant planets had to be the norm. In our case, the two major planets (Jupiter and Saturn) never had close encounters with each other: They only encountered “minor” planets like Uranus and/or Neptune. This was probably just mere luck, as simulations show that Jupiter-Saturn encounters in principle could have occurred. Another relevant difference with the extrasolar planets is that, during the gas-disk phase, our giant planets avoided migrating permanently into the inner solar system, thanks to the specific mass ratio of the Jupiter/Saturn pair and the rapid disappearance of the disk soon after the formation of the giant planets. This chapter ends on a note on terrestrial planets. The structure of a terrestrial-planet system depends sensitively on the dynamical evolution of the giant planets and on their final orbits. It appears clear that habitable terrestrial planets, with moderate eccentricity orbits, cannot exist in systems where the giant planets became violently unstable and developed very elliptic orbits. Thus, our very existence is possible only because the instability phase experienced by the giant planets of our solar system was of “moderate” strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The orbital radius beyond which temperature is cold enough that water condenses into ice. The snow line is situated at about 3–5 AU from a solar-mass star, depending on time and on disk models (Min et al. 2011).

  2. 2.

    In summary, three mechanisms have been proposed to move planets from the snow line region to large distances from the central star: (i) outward Type II migration of planets originally formed in the outer part of a disk in rapid viscous spreading (Veras and Armitage 2004), (ii) outward migration of a pair of resonant planets with a Jupiter-Saturn mass hierarchy (Crida et al. 2009), and (iii) scattering of a planet to a wide elliptic orbit (Veras et al. 2009). These mechanisms are potential alternatives to the possibility that distant planets formed in situ, by the gravitational instability mechanism (Boley 2009)

  3. 3.

    The reader should remember that two planets are stable if their orbital separation is a few times their mutual Hill radius \({R}_{H} =\bar{ a}{[({m}_{1} + {m}_{2})/{M}_{S}]}^{1/3}\), where m1 and m2 are the masses of the two planets and \(\bar{a}\) is their mean semimajor axis, while MS is the mass of the star. Suppose now that planets tend to acquire orbits whose mutual separation is not much larger than this Hill-stability limit. If a planetary system is made of two planetary cores, when one of two objects becomes a giant planet, the system is likely to be destabilized because RH increases by a factor 3–4 as the mass of one planet grows by a factor 30–60. Instead, a stable system made of one giant planet and one core is not likely to be strongly destabilized when the core grows to the status of a giant planet, because RH increases only by a factor ∼ 2(1 ∕ 3) = 1. 25. Similarly, in a system made of one giant planet and two cores, the growth of one of the cores to the status of a giant planet is likely to destabilize the remaining core but not the first planet

  4. 4.

    Currently, the record for the most complex resonance chain in the solar system is detained by Jupiter’s satellites Io, Europa, and Ganymede, which are locked in a 3-body resonance, also known as the Laplace resonance.

  5. 5.

    Named for the French city of Nice, where it was developed.

  6. 6.

    The situation was not nearly as sensitive in Gomes et al. (2005), because the planets were not assumed to be in resonance with each other.

References

  • Abramov, O., & Mojzsis, S. J. 2009, Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature, 459, 419–422

    Article  ADS  Google Scholar 

  • Adams, F. C., & Laughlin, G. 2003, Migration and dynamical relaxation in crowded systems of giant planets. Icarus, 163, 290–306

    Article  ADS  Google Scholar 

  • Agnor, C., & Asphaug, E. 2004, Accretion efficiency during planetary collisions. ApJ, 613, L157–L160

    Article  ADS  Google Scholar 

  • Agnor, C. B., Canup, R. M., & Levison, H. F. 1999, On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus, 142, 219–237

    Article  ADS  Google Scholar 

  • Alibert, Y., Mordasini, C., & Benz, W. 2004, Migration and giant planet formation. A&A, 417, L25–L28

    Article  ADS  Google Scholar 

  • Asphaug, E., Agnor, C. B., & Williams, Q. 2006, Hit-and-run planetary collisions. Nature, 439, 155–160

    Article  ADS  Google Scholar 

  • Bailey, B. L., & Malhotra, R. 2009, Two dynamical classes of Centaurs. Icarus, 203, 155–163

    Article  ADS  Google Scholar 

  • Baldwin, R. B. 2006, Was there ever a Terminal Lunar Cataclysm? With lunar viscosity arguments. Icarus, 184, 308–318

    Article  ADS  Google Scholar 

  • Barge, P., & Sommeria, J. 1995, Did planet formation begin inside persistent gaseous vortices? A&A, 295, L1–L4

    ADS  Google Scholar 

  • Barnes, R., & Greenberg, R. 2006, Stability limits in extrasolar planetary systems. ApJ, 647, L163–L166

    Article  ADS  Google Scholar 

  • Baruteau, C., & Masset, F. 2008, On the corotation torque in a radiatively inefficient disk. ApJ, 672, 1054–1067

    Article  ADS  Google Scholar 

  • Batygin, K., & Brown, M. E. 2010, Early dynamical evolution of the solar system: pinning down the initial condition of the nice model. ArXiv e-prints arXiv:1004.5414

    Google Scholar 

  • Batygin, K., Brown, M. E., & Fraser, W. C. 2011, In-situ formation of the cold classical Kuiper belt. ApJ, 738, p 13.

    Article  ADS  Google Scholar 

  • Beauge, C., & Nesvorny, D. 2011, Multiple-planet scattering and the origin of hot Jupiters. ArXiv e-prints arXiv:1110.4392

    Google Scholar 

  • Bernstein, G. M., Trilling, D. E., Allen, R. L., Brown, M. E., Holman, M., & Malhotra, R. 2004, The size distribution of trans-neptunian bodies. AJ, 128, 1364–1390

    Article  ADS  Google Scholar 

  • Binzel, R. P., Bus, S. J., Burbine, T. H., & Sunshine, J. M. 1996, Spectral properties of near-earth asteroids: evidence for sources of ordinary chondrite meteorites. Science, 273, 946–948

    Article  ADS  Google Scholar 

  • Bitsch, B., & Kley, W. 2010, Orbital evolution of eccentric planets in radiative discs. A&A, 523, A30

    Article  ADS  Google Scholar 

  • Bitsch, B., & Kley, W. 2011, Range of outward migration and influence of the disc’s mass on the migration of giant planet cores. A&A, 536, A77

    Article  ADS  Google Scholar 

  • Bodenheimer, P., Hubickyj, O., & Lissauer, J. J. 2000, Models of the in situ formation of detected extrasolar giant planets. Icarus, 143, 2–14

    Article  ADS  Google Scholar 

  • Boley, A. C. 2009, The two modes of gas giant planet formation. ApJ, 695, L53–L57

    Article  ADS  Google Scholar 

  • Booth, M., Wyatt, M. C., Morbidelli, A., Moro-Martín, A., & Levison, H. F. 2009, The history of the Solar system’s debris disc: observable properties of the Kuiper belt. MNRAS, 399, 385–398

    Article  ADS  Google Scholar 

  • Boss, A. P. 2000, Possible rapid gas giant planet formation in the Solar Nebula and other protoplanetary disks. ApJ, 536, L101–L104

    Article  ADS  Google Scholar 

  • Boss, A. P. 2001, Formation of planetary-mass objects by protostellar collapse and fragmentation. ApJ, 551, L167–L170

    Article  ADS  Google Scholar 

  • Boss, A. P. 2002, Stellar metallicity and the formation of extrasolar gas giant planets. ApJ, 567, L149–L153

    Article  ADS  Google Scholar 

  • Bottke, W. F., Levison, H. F., Nesvorný, D., & Dones, L. 2007, Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus, 190, 203–223

    Article  ADS  Google Scholar 

  • Bottke, W. F., Vokrouhlicky, D., Nesvorny, D., Minton, D., Morbidelli, A., & Brasser, R. 2010, The E-belt: a possible missing link in the late heavy bombardment. Lunar Planet. Inst. Sci. Conf. Abstr., 41, 1269

    ADS  Google Scholar 

  • Bottke, W. F., Vokrouhlicky, D., Minton, D., Nesvorny, D., Brasser, R., & Simonson, B. 2011, The great archean bombardment, or the late heavy bombardment. Lunar Planet. Inst. Sci. Conf. Abstr., 42, 2591

    ADS  Google Scholar 

  • Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K., & Levison, H. F. 2009, Constructing the secular architecture of the solar system II: the terrestrial planets. A&A, 507, 1053–1065

    Article  ADS  Google Scholar 

  • Burbine, T. H., Binzel, R. P., Bus, S. J., Buchanan, P. C., Hinrichs, J. L., Hiroi, T., Meibom, A., & Sunshine, J. M. 2000, Forging asteroid-meteorite relationships through reflectance spectroscopy. Lunar Planet. Inst. Sci. Conf. Abstr., 31, 1844

    ADS  Google Scholar 

  • Butler, R. P., et al. 2006, Catalog of nearby exoplanets. ApJ, 646, 505–522

    Article  ADS  Google Scholar 

  • Cameron, A. G. W. 1978, Physics of the primitive solar accretion disk. Moon Planets, 18, 5–40

    Article  ADS  Google Scholar 

  • Canup, R. M., & Asphaug, E. 2001, Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708–712

    Article  ADS  Google Scholar 

  • Canup, R. M., & Esposito, L. W. 1996, Accretion of the moon from an impact-generated disk. Icarus, 119, 427–446

    Article  ADS  Google Scholar 

  • Canup, R. M., & Ward, W. R. 2006, A common mass scaling for satellite systems of gaseous planets. Nature, 441, 834–839

    Article  ADS  Google Scholar 

  • Capobianco, C. C., Duncan, M., & Levison, H. F. 2011, Planetesimal-driven planet migration in the presence of a gas disk. Icarus, 211, 819–831

    Article  ADS  Google Scholar 

  • Carpenter, J. M., et al. 2009, Formation and evolution of planetary systems: properties of debris dust around solar-type stars. ApJSS, 181, 197–226

    Article  ADS  Google Scholar 

  • Cassen, P. M., Smith, B. F., Miller, R. H., & Reynolds, R. T. 1981, Numerical experiments on the stability of preplanetary disks. Icarus, 48, 377–392

    Article  ADS  Google Scholar 

  • Chambers, J. E. 2001, Making more terrestrial planets. Icarus, 152, 205–224

    Article  ADS  Google Scholar 

  • Chambers, J. 2006, A semi-analytic model for oligarchic growth. Icarus, 180, 496–513

    Article  ADS  Google Scholar 

  • Chambers, J. E., & Cassen, P. 2002, The effects of Nebula surface density profile and giant-planet. Meteoritics and Planetary Science 37, 1523–1540

    Article  ADS  Google Scholar 

  • Chambers, J. E., & Wetherill, G. W. 1998, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304–327

    Article  ADS  Google Scholar 

  • Chapman, C. R., Cohen, B. A., & Grinspoon, D. H. 2007, What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus, 189, 233–245

    Article  ADS  Google Scholar 

  • Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, Dynamical outcomes of planet-planet scattering. ApJ, 686, 580–602

    Article  ADS  Google Scholar 

  • Chiang, E. I. 2003, Excitation of orbital eccentricities by repeated resonance crossings: requirements. ApJ, 584, 465–471

    Article  ADS  Google Scholar 

  • Cohen, B. A., Swindle, T. D., & Kring, D. A. 2000, Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science, 290, 1754–1756

    Article  ADS  Google Scholar 

  • Cresswell, P., Dirksen, G., Kley, W., & Nelson, R. P. 2007, On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks. A&A, 473, 329–342

    Article  ADS  Google Scholar 

  • Crida, A., & Morbidelli, A. 2007, Cavity opening by a giant planet in a protoplanetary disc and effects on planetary migration. MNRAS, 377, 1324–1336

    Article  ADS  Google Scholar 

  • Crida, A., Morbidelli, A., & Masset, F. 2006, On the width and shape of gaps in protoplanetary disks. Icarus, 181, 587–604

    Article  ADS  Google Scholar 

  • Crida, A., Sándor, Z., & Kley, W. 2008, Influence of an inner disc on the orbital evolution of massive planets migrating in resonance. A&A, 483, 325–337

    Article  ADS  Google Scholar 

  • Crida, A., Masset, F., & Morbidelli, A. 2009, Long range outward migration of giant planets, with application to fomalhaut b. ApJ, 705, L148–L152

    Article  ADS  Google Scholar 

  • D’Angelo, G., Lubow, S. H., & Bate, M. R. 2006, Evolution of giant planets in eccentric disks. ApJ, 652, 1698–1714

    Article  ADS  Google Scholar 

  • Dauphas, N., & Pourmand, A. 2011, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature, 473, 489–492

    Article  ADS  Google Scholar 

  • di Sisto, R. P., & Brunini, A. 2007, The origin and distribution of the Centaur population. Icarus, 190, 224–235

    Article  ADS  Google Scholar 

  • Durisen, R. H., Boss, A. P., Mayer, L., Nelson, A. F., Quinn, T., & Rice, W. K. M. 2007, Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson: University of Arizona Press), 607–622

    Google Scholar 

  • Fernandez, J. A., & Ip, W.-H. 1984, Some dynamical aspects of the accretion of Uranus and Neptune – the exchange of orbital angular momentum with planetesimals. Icarus, 58, 109–120

    Article  ADS  Google Scholar 

  • Ferraz-Mello, S., Beaugé, C., & Michtchenko, T. A. 2003, Evolution of migrating planet pairs in resonance. Celest. Mech. Dyn. Astron., 87, 99–112

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fischer, D. A., & Valenti, J. 2005, The planet-metallicity correlation. ApJ, 622, 1102–1117

    Article  ADS  Google Scholar 

  • Fogg, M. J., & Nelson, R. P. 2005, Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration. A&A, 441, 791–806

    Article  ADS  Google Scholar 

  • Fogg, M. J., & Nelson, R. P. 2007, On the formation of terrestrial planets in hot-Jupiter systems. A&A, 461, 1195–1208

    Article  ADS  Google Scholar 

  • Ford, E. B., Havlickova, M., & Rasio, F. A. 2001, Dynamical instabilities in extrasolar planetary systems containing two giant planets. Icarus, 150, 303–313

    Article  ADS  Google Scholar 

  • Ford, E. B., & Rasio, F. A. 2008, Origins of eccentric extrasolar planets: testing the planet-planet scattering model. ApJ, 686, 621–636

    Article  ADS  Google Scholar 

  • Fouchet, T., Moses, J. I., & Conrath, B. J. 2009, Saturn: composition and chemistry, ed. M. Dougherty, L. Esposito, S. Krimigis et al. (Springer). Saturn from Cassini-Huygens, 83

    Google Scholar 

  • Fuentes, C. I., & Holman, M. J. 2008, a SUBARU archival search for faint trans-neptunian objects. AJ, 136, 83–97

    Article  ADS  Google Scholar 

  • Gáspár, A., Rieke, G. H., Su, K. Y. L., Balog, Z., Trilling, D., Muzzerole, J., Apai, D., & Kelly, B. C. 2009, The low level of debris disk activity at the time of the late heavy bombardment: a spitzer study of Praesepe. ApJ, 697, 1578–1596

    Article  ADS  Google Scholar 

  • Goldreich, P., & Sari, R. 2003, Eccentricity evolution for planets in gaseous disks. ApJ, 585, 1024–1037

    Article  ADS  Google Scholar 

  • Goldreich, P., & Tremaine, S. 1979, The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ, 233, 857–871

    Article  ADS  MathSciNet  Google Scholar 

  • Goldreich, P., & Tremaine, S. 1980, Disk-satellite interactions. ApJ, 241, 425–441

    Article  ADS  MathSciNet  Google Scholar 

  • Goldreich, P., Lithwick, Y., & Sari, R. 2004, Final stages of planet formation. ApJ, 614, 497–507

    Article  ADS  Google Scholar 

  • Gomes, R. S., Morbidelli, A., & Levison, H. F. 2004, Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus, 170, 492–507

    Article  ADS  Google Scholar 

  • Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466–469

    Article  ADS  Google Scholar 

  • Gradie, J., & Tedesco, E. 1982, Compositional structure of the asteroid belt. Science, 216, 1405–1407

    Article  ADS  Google Scholar 

  • Greenberg, R., Hartmann, W. K., Chapman, C. R., & Wacker, J. F. 1978, Planetesimals to planets – numerical simulation of collisional evolution. Icarus, 35, 1–26

    Article  ADS  Google Scholar 

  • Greenzweig, Y., & Lissauer, J. J. 1992, Accretion rates of protoplanets. II – Gaussian distributions of planetesimal velocities. Icarus, 100, 440–463

    Article  ADS  Google Scholar 

  • Guillot, T. 2005, The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci., 33, 493–530

    Article  ADS  Google Scholar 

  • Guillot, T., & Hueso, R. 2006, The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc. MNRAS, 367, L47–L51

    Article  ADS  Google Scholar 

  • Guillot, T., Santos, N. C., Pont, F., Iro, N., Melo, C., & Ribas, I. 2006, A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars. A&A, 453, L21–L24

    Article  ADS  Google Scholar 

  • Haisch, K. E., Jr., Lada, E. A., & Lada, C. J. 2001, Disk frequencies and lifetimes in young clusters. ApJ, 553, L153–L156

    Article  ADS  Google Scholar 

  • Hansen, B. M. S. 2009, Formation of the terrestrial planets from a narrow annulus. ApJ, 703, 1131–1140

    Article  ADS  Google Scholar 

  • Hartmann, W. K., Ryder, G., Dones, L., & Grinspoon, D. 2000, The time-dependent intense bombardment of the primordial earth/moon system, in Origin of the Earth and Moon, ed. R. M. Canup, K. Righter, et al. (Tucson: University of Arizona Press), 493–512

    Google Scholar 

  • Hartmann, W. K., Quantin, C., & Mangold, N. 2007, Possible long-term decline in impact rates. 2. Lunar impact-melt data regarding impact history. Icarus, 186, 11–23

    Article  ADS  Google Scholar 

  • Hayashi, C. 1981, Structure of the Solar Nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the Nebula. Prog. Theor. Phys. Suppl., 70, 35–53

    Article  ADS  Google Scholar 

  • Henrard, J. 1993, The adiabatic invariants in classical mechanics. Dyn. Rep., 2, 117–235

    MathSciNet  MATH  Google Scholar 

  • Hillenbrand, L. A., Carpenter, J. M., Kim, J. S., Meyer, M. R., Backman, D. E., Moro-Martín, A., Hollenbach, D. J., Hines, D. C., Pascucci, I., & Bouwman, J. 2008, The complete census of 70 μm-bright Debris Disks within “the Formation and Evolution of Planetary Systems” Spitzer Legacy Survey of Sun-like Stars. ApJ, 677, 630–656

    Article  ADS  Google Scholar 

  • Horn, B., Lyra, W., Mac Low, M.-M., & Sándor, Z. 2012, Orbital migration of interacting low-mass planets in evolutionary radiative turbulent models. ArXiv e-prints arXiv:1202.1868

    Google Scholar 

  • Ida, S., & Lin, D. N. C. 2004, Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around stars with a range of metallicities. ApJ, 616, 567–572

    Google Scholar 

  • Ida, S., & Lin, D. N. C. 2008, Toward a deterministic model of planetary formation. V. Accumulation near the ice line and super-earths. ApJ, 685, 584–595

    Google Scholar 

  • Ida, S., & Makino, J. 1993, Scattering of planetesimals by a protoplanet – slowing down of runaway growth. Icarus, 106, 210

    Article  ADS  Google Scholar 

  • Ida, S., Bryden, G., Lin, D. N. C., & Tanaka, H. 2000, Orbital migration of neptune and orbital distribution of trans-neptunian objects. ApJ, 534, 428–445

    Article  ADS  Google Scholar 

  • Johansen, A., Youdin, A., & Mac Low, M.-M. 2009, Particle clumping and planetesimal formation depend strongly on metallicity. ApJ, 704, L75–L79

    Article  ADS  Google Scholar 

  • Jurić, M., & Tremaine, S. 2008, Dynamical origin of extrasolar planet eccentricity distribution. ApJ, 686, 603–620

    Article  ADS  Google Scholar 

  • Kalas, P., Graham, J. R., Chiang, E., Fitzgerald, M. P., Clampin, M., Kite, E. S., Stapelfeldt, K., Marois, C., & Krist, J. 2008, Optical images of an exosolar planet, 25 light-years from Earth. Science, 322, 1345

    Article  ADS  Google Scholar 

  • Kelsall, T., et al. 1998, The COBE diffuse infrared background experiment search for the cosmic infrared background. II. Model of the interplanetary dust cloud. ApJ, 508, 44–73

    Google Scholar 

  • Kenyon, S. J., & Bromley, B. C. 2006, Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. AJ, 131, 1837–1850

    Google Scholar 

  • Kenyon, S. J., Bromley, B. C., O’Brien, D. P., & Davis, D. R. 2008, Formation and collisional evolution of Kuiper belt objects, in The Solar System Beyond Neptune, ed. M. A. Barucci et al. (Tucson: University of Arizona Press), 293–313

    Google Scholar 

  • Kirsh, D. R., Duncan, M., Brasser, R., & Levison, H. F. 2009, Simulations of planet migration driven by planetesimal scattering. Icarus, 199, 197–209

    Article  ADS  Google Scholar 

  • Kleine, T., Touboul, M., Bourdon, B., Nimmo, F., Mezger, K., Palme, H., Jacobsen, S. B., Yin, Q.-Z., & Halliday, A. N. 2009, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta, 73, 5150–5188

    Article  ADS  Google Scholar 

  • Kley, W., & Crida, A. 2008, Migration of protoplanets in radiative discs. A&A, 487, L9–L12

    Article  ADS  Google Scholar 

  • Kley, W., & Dirksen, G. 2006, Disk eccentricity and embedded planets. A&A, 447, 369–377

    Article  ADS  MATH  Google Scholar 

  • Kley, W., Peitz, J., & Bryden, G. 2004, Evolution of planetary systems in resonance. A&A, 414, 735–747

    Article  ADS  Google Scholar 

  • Kley, W., Lee, M. H., Murray, N., & Peale, S. J. 2005, Modeling the resonant planetary system GJ 876. A&A, 437, 727–742

    Article  ADS  Google Scholar 

  • Kokubo, E., & Genda, H. 2010, Formation of terrestrial planets from protoplanets under a realistic accretion condition. ApJ, 714, L21–L25

    Article  ADS  Google Scholar 

  • Kokubo, E., & Ida, S. 1998, Oligarchic growth of protoplanets. Icarus, 131, 171–178

    Article  ADS  Google Scholar 

  • Kokubo, E., Kominami, J., & Ida, S. 2006, Formation of terrestrial planets from protoplanets. I statistics of basic dynamical properties. ApJ, 642, 1131–1139

    Article  ADS  Google Scholar 

  • Lambrechts, M., & Johansen, A. 2012, Rapid growth of gas-giant cores by pebble accretion. A&A (in press)

    Google Scholar 

  • Levison, H. F., & Agnor, C. 2003, The role of giant planets in terrestrial planet formation. AJ, 125, 2692–2713

    Article  ADS  Google Scholar 

  • Levison, H. F., & Morbidelli, A. 2007, Models of the collisional damping scenario for ice-giant planets and Kuiper belt formation. Icarus, 189, 196–212

    Article  ADS  Google Scholar 

  • Levison, H. F., Lissauer, J. J., & Duncan, M. J. 1998, Modeling the diversity of outer planetary systems. AJ, 116, 1998–2014

    Article  ADS  Google Scholar 

  • Levison, H. F., Dones, L., Chapman, C. R., Stern, S. A., Duncan, M. J., & Zahnle, K. 2001, Could the Lunar “Late Heavy Bombardment” Have Been Triggered by the Formation of Uranus and Neptune? Icarus, 151, 286–306

    Article  ADS  Google Scholar 

  • Levison, H. F., Morbidelli, A., Gomes, R., & Backman, D. 2007, Planet migration in planetesimal disks, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson: University of Arizona Press), 669–684

    Google Scholar 

  • Levison, H. F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., & Tsiganis, K. 2008, Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus, 196, 258–273

    Article  ADS  Google Scholar 

  • Levison, H. F., Bottke, W. F., Gounelle, M., Morbidelli, A., Nesvorný, D., & Tsiganis, K. 2009, Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature, 460, 364–366

    Article  ADS  Google Scholar 

  • Levison, H. F., Thommes, E., & Duncan, M. J. 2010, Modeling the formation of giant planet cores. I. evaluating key processes. AJ, 139, 1297–1314

    Google Scholar 

  • Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorny, D., & Gomes, R. 2011, Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. AJ, 142, 152

    Article  ADS  Google Scholar 

  • Lin, D. N. C., & Ida, S. 1997, On the origin of massive eccentric planets. ApJ, 477, 781

    Article  ADS  Google Scholar 

  • Lin, D. N. C., & Papaloizou, J. 1986a. On the tidal interaction between protoplanets and the primordial solar nebula. II – self-consistent nonlinear interaction. ApJ, 307, 395–409

    Google Scholar 

  • Lin, D. N. C., & Papaloizou, J. 1986b, On the tidal interaction between protoplanets and the protoplanetary disk. III – orbital migration of protoplanets. ApJ, 309, 846–857

    Article  ADS  Google Scholar 

  • Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature, 380, 606–607

    Article  ADS  Google Scholar 

  • Lodders, K. 2003, Solar system abundances and condensation temperatures of the elements. ApJ, 591, 1220–1247

    Article  ADS  Google Scholar 

  • Lynden-Bell, D., & Pringle, J. E. 1974, The evolution of viscous discs and the origin of the Nebular variables. MNRAS, 168, 603–637

    Article  ADS  Google Scholar 

  • Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2009a. Standing on the shoulders of giants. Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. A&A, 493, 1125–1139

    Article  ADS  Google Scholar 

  • Lyra, W., Johansen, A., Zsom, A., Klahr, H., & Piskunov, N. 2009b. Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks. A&A, 497, 869–888

    Article  ADS  Google Scholar 

  • Lyra, W., Paardekooper, S.-J., & Mac Low, M.-M. 2010, Orbital migration of low-mass planets in evolutionary radiative models: avoiding catastrophic infall. ApJ, 715, L68–L73

    Article  ADS  Google Scholar 

  • Malhotra, R. 1993, The origin of Pluto’s peculiar orbit. Nature, 365, 819–821

    Article  ADS  Google Scholar 

  • Malhotra, R. 1995, The origin of pluto’s orbit: implications for the solar system beyond Neptune. AJ, 110, 420

    Article  ADS  Google Scholar 

  • Marchi, S., Bottke, W. F., Kring, D. A., & Morbidelli, A. 2012, The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett., 325, 27–38

    Article  ADS  Google Scholar 

  • Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., & Doyon, R. 2008, Direct imaging of multiple planets orbiting the star HR 8799. Science, 322, 1348

    Article  ADS  Google Scholar 

  • Marzari, F., & Weidenschilling, S. J. 2002, Eccentric extrasolar planets: the jumping Jupiter model. Icarus, 156, 570–579

    Article  ADS  MATH  Google Scholar 

  • Marzari, F., Baruteau, C., & Scholl, H. 2010, Planet-planet scattering in circumstellar gas disks. A&A, 514, L4

    Article  ADS  MATH  Google Scholar 

  • Masset, F. S., & Casoli, J. 2010, Saturated torque formula for planetary migration in viscous disks with thermal diffusion: recipe for protoplanet population synthesis. ApJ, 723, 1393–1417

    Article  ADS  Google Scholar 

  • Masset, F., & Snellgrove, M. 2001, Reversing type II migration: resonance trapping of a lighter giant protoplanet. MNRAS, 320, L55–L59

    Article  ADS  Google Scholar 

  • Masset, F. S., Morbidelli, A., Crida, A., & Ferreira, J. 2006, Disk surface density transitions as protoplanet traps. ApJ, 642, 478–487

    Article  ADS  Google Scholar 

  • Maurer, P., Eberhardt, P., Geiss, J., Grogler, N., Stettler, A., Brown, G. M., Peckett, A., & Krahenbuhl, U. 1978, Pre-Imbrian craters and basins – ages, compositions and excavation depths of Apollo 16 breccias. Geochim. Cosmochim. Acta, 42, 1687–1720

    Article  ADS  Google Scholar 

  • Milani, A., Nobili, A. M., & Carpino, M. 1987, Secular variations of the semimajor axes – theory and experiments. A&A, 172, 265–279

    ADS  MATH  Google Scholar 

  • Militzer, B., & Hubbard, W. B. 2009, Comparison of Jupiter interior models derived from first-principles simulations. Astrophys. Space Sci., 322, 129–133

    Article  ADS  Google Scholar 

  • Min, M., Dullemond, C. P., Kama, M., & Dominik, C. 2011, The thermal structure and the location of the snow line in the protosolar Nebula: axisymmetric models with full 3-D radiative transfer. Icarus, 212, 416–426

    Article  ADS  Google Scholar 

  • Minton, D. A., & Malhotra, R. 2009, A record of planet migration in the main asteroid belt. Nature, 457, 1109–1111

    Article  ADS  Google Scholar 

  • Moeckel, N., & Armitage, P. J. 2012, Hydrodynamic outcomes of planet scattering in transitional discs. MNRAS, 419, 366–376

    Article  ADS  Google Scholar 

  • Moekel, N., Raymond, S. N., & Armitage, Ph. J. 2008, Extrasolar planets eccentricities from scattering in the presence of residual gas-disks. ApJ, 688, 1361–1367

    Article  ADS  Google Scholar 

  • Moorhead, A. V., & Adams, F. C. 2005, Giant planet migration through the action of disk torques and planet scattering. Icarus, 178, 517–539

    Article  ADS  Google Scholar 

  • Morbidelli, A., & Crida, A. 2007, The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus, 191, 158–171

    Article  ADS  Google Scholar 

  • Morbidelli, A., Chambers, J., Lunine, J. I., Petit, J. M., Robert, F., Valsecchi, G. B., & Cyr, K. E. 2000, Source regions and time scales for the delivery of water to Earth. Meteorit. Planet. Sci., 35, 1309–1320

    Article  ADS  Google Scholar 

  • Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F., & Gomes, R. 2007, Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture. AJ, 134, 1790–1798

    Article  ADS  Google Scholar 

  • Morbidelli, A., Crida, A., Masset, F., & Nelson, R. P. 2008a, Building giant-planet cores at a planet trap. A&A, 478, 929–937

    Article  ADS  Google Scholar 

  • Morbidelli, A., Levison, H. F., & Gomes, R. 2008b. The dynamical structure of the Kuiper belt and its primordial origin, in The Solar System Beyond Neptune, ed. M. A. Barucci et al. (Tucson: University of Arizona Press), 275–292

    Google Scholar 

  • Morbidelli, A., Brasser, R., Gomes, R., Levison H. F., & Tsiganis, K., 2010, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. AJ, 140, 1391–1401

    Article  ADS  Google Scholar 

  • Morbidelli, A., Marchi, S., & Bottke, W. F. 2012, The saw timeline of the first billion year of Lunar bombardment. LPI Contrib., 1649, 53–54

    ADS  Google Scholar 

  • Morishima, R., Stadel, J., & Moore, B. 2010, From planetesimals to terrestrial planets: N-body simulations including the effects of Nebular gas and giant planets. Icarus, 207, 517–535

    Article  ADS  Google Scholar 

  • Morfill, G. E., & Voelk, H. J. 1984, Transport of dust and vapor and chemical fractionation in the early protosolar cloud. ApJ, 287, 371–395

    Article  ADS  Google Scholar 

  • Nelson, R. P. 2005, On the orbital evolution of low mass protoplanets in turbulent, magnetised disks. A&A, 443, 1067–1085

    Article  ADS  Google Scholar 

  • Nelson, R. P., & Papaloizou, J. C. B. 2003, The interaction of a giant planet with a disc with MHD turbulence – II. The interaction of the planet with the disc. MNRAS, 339, 993–1005

    Google Scholar 

  • Nesvorný, D. 2011, Young solar system’s fifth giant planet? ApJ, 742, L22

    Article  ADS  Google Scholar 

  • Nesvorný, D., & Morbidelli, A., 2012, Statistical study of the early solar systems instability with 4, 5 and 6 giant planets. AJ (in press)

    Google Scholar 

  • Nesvorný, D., Jenniskens, P., Levison, H. F., Bottke, W. F., Vokrouhlický, D., & Gounelle, M. 2010, Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. ApJ, 713, 816–836

    Google Scholar 

  • Nettelmann, N., Holst, B., Kietzmann, A., French, M., Redmer, R., & Blaschke, D. 2008, Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. ApJ, 683, 1217–1228

    Article  ADS  Google Scholar 

  • Neukum, G. 1983, Habilitation Dissertation for Faculty Membership (Munich: University of Munich)

    Google Scholar 

  • Neukum, G., & Ivanov, B. A. 1994, Crater size distributions and impact probabilities on Earth from Lunar, terrestrial-planet, and asteroid cratering data, in Hazards Due to Comets and Asteroids, ed. T. Gehrels (Tucson: University of Arizona Press), 359

    Google Scholar 

  • Neukum, G., & Wilhelms, D. E. 1982, Ancient lunar impact record. Lunar Planet. Inst. Sci. Conf. Abstr., 13, 590–591

    ADS  Google Scholar 

  • Norman, M. D., Duncan, R. A., & Huard, J. J. 2010, Imbrium provenance for the Apollo 16 Descartes terrain: argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim. Cosmochim. Acta, 74, 763–783

    Article  ADS  Google Scholar 

  • O’Brien, D. P., Morbidelli, A., & Levison, H. F. 2006, Terrestrial planet formation with strong dynamical friction. Icarus, 184, 39–58

    Article  ADS  Google Scholar 

  • O’Brien, D. P., Morbidelli, A., & Bottke, W. F. 2007, The primordial excitation and clearing of the asteroid belt – Revisited. Icarus, 191, 434–452

    Article  ADS  Google Scholar 

  • Öpik, E. J., 1976, Interplanetary Encounters: Close Range Gravitational Interactions (Elsevier, New York)

    Google Scholar 

  • Paardekooper, S.-J., & Mellema, G. 2006, Halting type I planet migration in non-isothermal disks. A&A, 459, L17–L20

    Article  ADS  Google Scholar 

  • Paardekooper, S.-J., & Papaloizou, J. C. B. 2009, On corotation torques, horseshoe drag and the possibility of sustained stalled or outward protoplanetary migration. MNRAS, 394, 2283–2296

    Article  ADS  Google Scholar 

  • Paardekooper, S.-J., Baruteau, C., Crida, A., & Kley, W. 2010, A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag. MNRAS, 401, 1950–1964

    Google Scholar 

  • Papaloizou, J. C. B., Nelson, R. P., & Masset, F. 2001, Orbital eccentricity growth through disc-companion tidal interaction. A&A, 366, 263–275

    Article  ADS  Google Scholar 

  • Papanastassiou, D. A., & Wasserburg, G. J. 1971a. Rb-Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro formation. Earth Planet. Sci. Lett., 12, 36

    Article  ADS  Google Scholar 

  • Papanastassiou, D. A., & Wasserburg, G. J. 1971b. Lunar chronology and evolution from Rb-Sr studies of Apollo 11 and 12 samples. Earth Planet. Sci. Lett., 11, 37

    Article  ADS  Google Scholar 

  • Petit, J.-M., Morbidelli, A., & Chambers, J. 2001, The primordial excitation and clearing of the asteroid belt. Icarus, 153, 338–347

    Article  ADS  Google Scholar 

  • Pierens, A., & Nelson, R. P. 2008, Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. A&A, 482, 333–340

    Article  ADS  MATH  Google Scholar 

  • Podolak, M., & Zucker, S. 2004, A note on the snow line in protostellar accretion disks. Meteorit. Planet. Sci., 39, 1859–1868

    Article  ADS  Google Scholar 

  • Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 124, 62–85

    Article  ADS  Google Scholar 

  • Rafikov, R. R. 2004, Fast accretion of small planetesimals by protoplanetary cores. AJ, 128, 1348–1363

    Article  ADS  Google Scholar 

  • Rasio, F. A., & Ford, E. B. 1996, Dynamical instabilities and the formation of extrasolar planetary systems. Science, 274, 954–956

    Article  ADS  Google Scholar 

  • Raymond, S. N., Quinn, T., & Lunine, J. I. 2004, Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus, 168, 1–17

    Article  ADS  Google Scholar 

  • Raymond, S. N., Quinn, T., & Lunine, J. I. 2005, Terrestrial planet formation in disks with varying surface density profiles. ApJ, 632, 670–676

    Article  ADS  Google Scholar 

  • Raymond, S. N., Quinn, T., & Lunine, J. I. 2006a, High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus, 183, 265–282

    Google Scholar 

  • Raymond, S. N., Mandell, A. M., & Sigurdsson, S. 2006b. Exotic Earths: forming habitable worlds with giant Planet migration. Science, 313, 1413–1416

    Article  ADS  Google Scholar 

  • Raymond, S. N., Quinn, T., & Lunine, J. I. 2007, High-resolution simulations of the final assembly of Earth-like Planets. 2. Water delivery and planetary habitability. Astrobiology, 7, 66–84

    Article  ADS  Google Scholar 

  • Raymond, S. N., Barnes, R., Veras, D., Armitage, P. J., Gorelick, N., & Greenberg, R. 2009a, Planet-Planet scattering leads to tightly packed planetary systems. ApJ, 696, L98–L101

    Article  ADS  Google Scholar 

  • Raymond, S. N., O’Brien, D. P., Morbidelli, A., & Kaib, N. A. 2009b. Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus, 203, 644–662

    Article  ADS  Google Scholar 

  • Raymond, S. N., Armitage, P. J., Moro-Martín, A., Booth, M., Wyatt, M. C., Armstrong, J. C., Mandell, A. M., Selsis, F., & West, A. A. 2011, Debris disks as signposts of terrestrial planet formation. A&A, 530, A62

    Article  ADS  Google Scholar 

  • Ryder, G., 2002, Mass flux in the ancient Earth-Moon system and the benign implications for the origin of life on Earth. J. Geophys. Res.-Planets, 107, 6–14

    Article  Google Scholar 

  • Sándor, Z., Lyra, W., & Dullemond, C. P. 2011, Formation of planetary cores at type I migration traps. ApJ, 728, L9

    Article  ADS  Google Scholar 

  • Saslaw, W. C. 1985, Thermodynamics and galaxy clustering – relaxation of N-body experiments. ApJ, 297, 49–60

    Article  ADS  Google Scholar 

  • Stamatellos, D., & Whitworth, A. P. 2008, Can giant planets form by gravitational fragmentation of discs? A&A, 480, 879–887

    Article  ADS  Google Scholar 

  • Stewart, G., & Wetherill, G. 1988, Evolution of planetesimal velocities. Icarus, 79, 542–553

    Article  ADS  Google Scholar 

  • Shakura, N. I., & Sunyaev, R. A. 1973, Black holes in binary systems. Observational appearance. A&A, 24, 337–355

    Google Scholar 

  • Stöffler, D., & Ryder, G. 2001, Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci. Rev., 96, 9–54

    Article  ADS  Google Scholar 

  • Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, Three-Dimensional Interaction between a Planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. ApJ, 565, 1257–1274

    Google Scholar 

  • Tera, F., Papanastassiou, D. A., & Wasserburg, G. J. 1974, Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett., 22, 1

    Article  ADS  Google Scholar 

  • Thommes, E. W., Duncan, M. J., & Levison, H. F. 1999, The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System. Nature, 402, 635–638

    Article  ADS  Google Scholar 

  • Thommes, E. W., Duncan, M. J., & Levison, H. F. 2003, Oligarchic growth of giant planets. Icarus, 161, 431–455

    Article  ADS  Google Scholar 

  • Thommes, E., Nagasawa, M., & Lin, D. N. C. 2008, Dynamical shake-up of planetary systems. II N-body simulations of solar system terrestrial planet formation induced by secular resonance sweeping. ApJ, 676, 728–739

    Google Scholar 

  • Tiscareno, M. S., & Malhotra, R. 2003, The dynamics of known centaurs. AJ, 126, 3122–3131 Trail, D., Mojzsis, S. J., & Harrison, T. M. 2007, Thermal events documented in Hadean zircons by ion microprobe depth profiles. Geochim. Cosmochim. Acta, 71, 4044–4065

    Google Scholar 

  • Trilling, D. E., Bryden, G., Beichman, C. A., Rieke, G. H., Su, K. Y. L., Stansberry, J. A., Blaylock, M., Stapelfeldt, K. R., Beeman, J. W., & Haller, E. E. 2008, Debris disks around sun-like stars. ApJ, 674, 1086–1105

    Article  ADS  Google Scholar 

  • Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459–461

    Article  ADS  Google Scholar 

  • Turner, G., Cadogan, P. H., & Yonge, C. J. 1973, Apollo 17 age determinations. Nature, 242, 513–515

    Article  ADS  Google Scholar 

  • Valley J. W., Peck W. H., King E. M., & Wilde S. A. 2002, A cool early Earth. Geology, 30, 351–354

    Article  ADS  Google Scholar 

  • Valsecchi, A., & Manara, G. B. 1997, Dynamics of comets in the outer planetary region. II. Enhanced planetary masses and orbital evolutionary paths. A&A, 323, 986–998

    Google Scholar 

  • Veras, D., & Armitage, P. J. 2004, Outward migration of extrasolar planets to large orbital radii. MNRAS, 347, 613–624

    Article  ADS  Google Scholar 

  • Veras, D., Crepp, J. R., & Ford, E. B. 2009, Formation, survival, and detectability of planets beyond 100 AU. ApJ, 696, 1600–1611

    Article  ADS  Google Scholar 

  • Walsh, K. J., Morbidelli, A., Raymond, S. N. O’Brien, D. P., & Mandell, A. M. 2011, A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206–209

    Article  ADS  Google Scholar 

  • Ward, W. R. 1986, Density waves in the solar Nebula – differential Lindblad torque. Icarus, 67, 164–180

    Article  ADS  Google Scholar 

  • Ward, W. R. 1997, Protoplanet migration by Nebula tides. Icarus, 126, 261–281

    Article  ADS  Google Scholar 

  • Weidenschilling, S. J. 1977, The distribution of mass in the planetary system and solar Nebula. Astrophys. Space Sci., 51, 153–158

    Article  ADS  Google Scholar 

  • Weidenschilling, S. J., & Davis, D. R. 1985, Orbital resonances in the solar Nebula – implications for planetary accretion. Icarus, 62, 16–29

    Article  ADS  Google Scholar 

  • Weidenschilling, S. J., & Marzari, F. 1996, Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature, 384, 619–621

    Article  ADS  Google Scholar 

  • Weidenschilling, S. J., Spaute, D., Davis, D. R., Marzari, F., & Ohtsuki, K. 1997, Accretional evolution of a planetesimal swarm. Icarus, 128, 429–455

    Article  ADS  Google Scholar 

  • Wetherill, G. W. 1992, An alternative model for the formation of the asteroids. Icarus, 100, 307–325

    Article  ADS  Google Scholar 

  • Wetherill, G. W., & Stewart, G. R. 1989, Accumulation of a swarm of small planetesimals. Icarus, 77, 330–357

    Article  ADS  Google Scholar 

  • Wetherill, G. W., & Stewart, G. R. 1993, Formation of planetary embryos – effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106, 190

    Article  ADS  Google Scholar 

  • Villeneuve, J., Chaussidon, M., & Libourel, G. 2009, Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science, 325, 985–988

    Article  ADS  Google Scholar 

  • Wasserburg, G. J., & Papanastassiou, D. A. 1971, Age of an Apollo 15 mare basalt: lunar crust and mantle evolution. Earth Planet. Sci. Lett., 13, 97

    Article  ADS  Google Scholar 

  • Wong, M. H., Mahaffy, P. R., Atreya, S. K., Niemann, H. B., & Owen, T. C. 2004, Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus, 171, 153–170

    Article  ADS  Google Scholar 

  • Wyatt, M. C., Smith, R., Greaves, J. S., Beichman, C. A., Bryden, G., & Lisse, C. M. 2007, Transience of hot dust around sun-like stars. ApJ, 658, 569–583

    Article  ADS  Google Scholar 

  • Zhang, H., & Zhou, J.-L. 2010, On the orbital evolution of a giant planet pair embedded in a gaseous disk. I. Jupiter-Saturn configuration. ApJ, 714, 532–548

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Morbidelli, A. (2013). Dynamical Evolution of Planetary Systems. In: Oswalt, T.D., French, L.M., Kalas, P. (eds) Planets, Stars and Stellar Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5606-9_2

Download citation

Publish with us

Policies and ethics