Skip to main content

Photonic Crystal Fiber-Based Biosensors

  • Reference work entry
  • First Online:

Abstract

Photonic crystal fibers (PCFs) are newly emerging optical fibers that present a diversity of new features beyond what conventional optical fibers can provide. Owing to their unique geometric structure and light-guiding properties, PCFs show an outstanding potential for microliter- or even nanoliter-volume biosensing purposes. In this chapter we briefly review applications of PCFs for developing compact and robust biosensors. This research subject has recently invoked much attention due to the gradually maturing fabrication techniques of fiber microstructures, as well as development of surface processing technique enabling activation of fiber microstructures with functional materials. Particularly, we consider two sensor types: surface-modified and unmodified PCF biosensors . For the first sensor type, we focus mainly on biomolecule-decorated microstructures and metalized air hole arrays. The sensors functionalized with bioreceptors typically employ fluorescence of dye labels of the targeted biomolecules to track specific events, such as DNA hybridization and protein binding. The metallization of air holes of PCF with nanoscaled film or particle aggregates introduces a new physical phenomenon called surface plasmon effect to further strengthen the optical field that interacts with bio-samples and push-up, which is of great significance for biological analysis at ultra-low concentrations and even at single molecule level. The second sensor type directly relies on light absorption from aqueous bio-samples in the air channels of PCF. To elaborate the contribution of PCF in such sensing operation mode, two sensor implementations are presented in the following and detail the influence of fiber structures on the absorption-based sensing performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Russell PS (2001) A neat idea. IEE Rev 57:19–23

    Article  Google Scholar 

  2. Russell PS (2003) Photonic crystal fibers. Science 299:358–362

    Article  Google Scholar 

  3. Knight JC (2003) Photonic crystal fibers. Nature 424:847–851

    Article  Google Scholar 

  4. Cerqueira A (2010) Recent progress and novel applications of photonic crystal fibers. Rep Prog Phys 73:024401–024421

    Article  Google Scholar 

  5. Knight JC, Birks TA, Russell PS, Atkin DM (1996) All-silica single-mode optical fiber with photonic crystal cladding. Opt Lett 21:1547–1549

    Article  Google Scholar 

  6. Birks TA, Knight JC, Russell PS (1997) Endlessly single-mode photonic crystal fiber. Opt Lett 22:961–963

    Article  Google Scholar 

  7. Kurokawa K, Nakajima K, Tsujikawa K, Yamamoto T, Tajima K (2009) Ultra-wideband transmission over low loss PCF. J Lightw Technol 27:1653–1662

    Article  Google Scholar 

  8. Dai J, Harrington JA (1997) High-peak-power, pulsed CO2 laser delivery by hollow glass waveguides. Appl Optics 36:5072–5077

    Article  Google Scholar 

  9. Cregan RF, Mangan BJ, Knight JC, Birks TA, Russell PS, Roberts PJ, Allan DC (1999) Single-mode photonic band gap guidance of light in air. Science 285:1537–1539

    Article  Google Scholar 

  10. Roberts PJ, Couny F, Sabert H, Mangan BJ, Williams DP, Farr L, Mason MW, Tomlinson A, Birks TA, Knight JC, Russell PS (2005) Ultimate low loss of hollow-core photonic crystal fibers. Opt Express 13:236–244

    Article  Google Scholar 

  11. Allan DC, West JA, Fajardo JC, Gallagher MT, Koch KW, Borrelli NF (2001) Photonic crystal fibers: effective index and band gap guidance. In: Photonic crystals and light localization in the 21st century, vol 563. Springer Netherlands, Dordrecht, pp 305–320

    Chapter  Google Scholar 

  12. Kumar VVRK, George AK, Reeves WH, Knight JC, Russell PS (2002) Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt Express 10:1520–1525

    Article  Google Scholar 

  13. Monro TM, Kiang KM, Lee JH, Frampton K, Yusoff Z, Moore R, Tucknott J, Hewak DW, Rutt HN, Richardson DJ (2002) High nonlinearity extruded single-mode holey optical fibers. Paper presented at the optical fiber communication conference, Anaheim, 17 Mar 2002

    Google Scholar 

  14. Feng X, Mairaj AK, Hewak DW, Monroe TM (2004) Towards high-index glass based monomode holey fiber with large mode area. Electron Lett 40:167–169

    Article  Google Scholar 

  15. Mori A, Shikano K, Enbutsu K, Oikawa KM, Kato KN, Aozasa S (2004) 1.5μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient of 657W−1km−1. Paper presented at the 30th European conference on optical communication, Stockholm, 5–9 Sept 2004

    Google Scholar 

  16. Chen C, Laronche A, Bouwmans G, Bigot L, Quiquempois Y, Albert J (2008) Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index. Opt Express 16:9645–9653

    Article  Google Scholar 

  17. Benabid F, Couny F, Knight JC, Birks TA, Russell PS (2005) Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434:488–491

    Article  Google Scholar 

  18. Woliński TR, Ertman S, Lesiak P, Domański AW, Czapla A, Dąbrowski R, Nowinowski-Kruszelicki E, Wójcik J (2006) Photonic liquid crystal fibers – a new challenge for fiber optics and liquid crystals photonics. Opt Electron Rev 14:329–334

    Google Scholar 

  19. Hassani A, Skorobogatiy M (2006) Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express 14:11616–11621

    Article  Google Scholar 

  20. Yu X, Zhang Y, Pan SS, Shum P, Yan M, Leviatan Y, Li CM (2010) A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J Opt 12:015055

    Article  Google Scholar 

  21. Yan H, Gu C, Yang CX, Liu J, Jin GF, Zhang JT, Hou LT, Yao Y (2006) Hollow core photonic crystal fiber surface-enhanced Raman probe. Appl Phys Lett 89:204101

    Article  Google Scholar 

  22. Yan H, Liu J, Yang CX, Jin GF, Gu C, Hou LT (2008) Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe. Opt Express 16:8300–8305

    Article  Google Scholar 

  23. Wadsworth W, Witkowska A, Leon-Saval S, Birks TA (2005) Hole inflation and tapering of stock photonic crystal fibres. Opt Express 13:6541–6549

    Article  Google Scholar 

  24. François A, Ebendorff-Heidepriem A, Monro TM (2009) Comparison of surface functionalization processes for optical fibre biosensing applications. Paper presented at the 20th international conference on optical fibre sensors, Edinburgh, 7–8 Oct 2009

    Google Scholar 

  25. Rindorf L, Høiby PE, Jensen JB, Pedersen LH, Bang O, Geschke O (2006) Towards biochips using microstructured optical fiber sensors. Anal Bioanal Chem 385:1370–1375

    Article  Google Scholar 

  26. Padmanabhan S, Shinoj VK, Murukeshan VM, Padmanabhan P (2010) Highly sensitive optical detection of specific protein in breast cancer cells using microstructured fiber in extremely low sample volume. J Biomed Opt 15:017005

    Article  Google Scholar 

  27. Rindorf L, Jensen JB, Dufva M, Pedersen LH, Høiby PE (2006) Photonic crystal fiber long-period gratings for biochemical sensing. Opt Express 14:8224–8231

    Article  Google Scholar 

  28. Passaro D, Foroni M, Poli F, Cucinotta A, Selleri S, Lægsgaard J, Bjarklev AO (2008) All-silica hollow-core microstructured Bragg fibers for biosensor application. IEEE Sens J 8:1280–1286

    Article  Google Scholar 

  29. Yang XH, Wang LL (2007) Fluorescence pH probe based on microstructured polymer optical fiber. Opt Express 15:16478–16483

    Article  Google Scholar 

  30. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J 7:1118–1129

    Article  Google Scholar 

  31. Xie Z, Lu Y, Wei H, Yan J, Wang P, Ming H (2009) Broad spectral photonic crystal fiber surface enhanced Raman scattering probe. Appl Phys B 95:751–755

    Article  Google Scholar 

  32. Peacock AC, Amezcua-Correa A, Yang J, Sazio PJA, Howdle SM (2008) Highly surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions. Appl Phys Lett 92:141113

    Article  Google Scholar 

  33. Oo MKK, Han Y, Martini R, Sukhishvili S, Du H (2009) Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. Opt Lett 34:968–970

    Article  Google Scholar 

  34. Oo MKK, Han Y, Kanka J, Sukhishvili S, Du H (2010) Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy. Opt Lett 35:968–970

    Article  Google Scholar 

  35. Cox FM, Argyros A, Large MCJ, Kalluri S (2007) Surface enhanced Raman scattering in a hollow core microstructured optical fiber. Opt Express 15:13675–13681

    Article  Google Scholar 

  36. Zhang Y, Shi C, Gu C, Seballos L, Zhang J (2007) Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering. Appl Phys Lett 90:193504

    Article  Google Scholar 

  37. Yang X, Shi C, Newhouse R, Zhang J, Gu C (2011) Hollow-core photonic crystal fibers for surface-enhanced Raman scattering probes. Int J Opt 754610:1–11

    Article  Google Scholar 

  38. Han Y, Tan S, Oo MKK, Pristinski D, Sukhishvili S, Du H (2010) Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers. Adv Mater 22:2647–2651

    Article  Google Scholar 

  39. Schroder K, Csaki A, Schwuchow A, Jahn F, Strelau K, Latka I, Henkel T, Malsch D, Schuster K, Weber K, Schneider T, Moller R, Fritzsche W (2012) Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications. IEEE Sens J 12:218–224

    Article  Google Scholar 

  40. Addison CJ, Brolo AG (2006) Nanoparticle-containing structures as a substrate for surface-enhanced Raman scattering. Langmuir 22:8696–8702

    Article  Google Scholar 

  41. Andrade GFS, Fan M, Brolo AG (2010) Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosens Bioelectron 25:2270–2275

    Article  Google Scholar 

  42. Kumar S, Aaron J, Sokolov K (2008) Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc 3:314–320

    Article  Google Scholar 

  43. Zhang J, Li X, Sun X, Li Y (2005) Surface enhanced Raman scattering effects of silver colloids with different shapes. J Phys Chem B 109:12544–12548

    Article  Google Scholar 

  44. Fan M, Andrade GFS, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25

    Article  Google Scholar 

  45. Warren-Smith SC, Afshar S, Monro TM (2008) Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing. Opt Express 16:9034–9045

    Article  Google Scholar 

  46. Argyros A, Pla J (2007) Hollow-core polymer fibers with a Kagome lattice: potential for transmission in the infrared. Opt Express 15:7713–7719

    Article  Google Scholar 

  47. Zhang YT, Yong D, Yu X, Xia L, Liu DM, Zhang Y (2013) Amplification of surface-enhanced Raman scattering in photonics crystal fiber using offset launch method. Plasmonics 8:209–215

    Article  Google Scholar 

  48. Jensen JB, Pedersen LH, Høiby PE, Nielsen LB, Hansen TP, Folkenberg JR, Riishede J, Noordegraaf D, Nielsen K, Carlsen A, Bjarklev A (2004) Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt Lett 29:1974–1976

    Article  Google Scholar 

  49. Monro TM, Belardi W, Furusawa K, Baggett JC, Broderick NGR, Richardson DJ (2001) Sensing with microstructured optical fibres. Meas Sci Technol 12:854–858

    Article  Google Scholar 

  50. Fini JM (2004) Microstructure fibres for optical sensing in gases and liquids. Meas Sci Technol 15:1120–1128

    Article  Google Scholar 

  51. Tao SQ, Winstead CB, Xian H, Soni K (2002) A highly sensitive hexachromium monitor using water core optical fiber with UV LED. J Environ Monit 4:815–818

    Article  Google Scholar 

  52. Smolka S, Barth M, Benson O (2007) Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Opt Express 15:12783–12791

    Article  Google Scholar 

  53. Martelli C, Canning J, Stocks D, Crossley MJ (2006) Water-soluble porphyrin detection in a pure-silica photonic crystal fiber. Opt Lett 31:2100–2102

    Article  Google Scholar 

  54. Yu X, Sun Y, Ren GB, Shum P, Ngo NQ, Kwok YC (2008) Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber. IEEE Photon Technol Lett 20:336–338

    Article  Google Scholar 

  55. Sun Y, Yu X, Nguyen N-T, Shum P, Kwok YC (2008) Long path-length axial absorption detection in photonic crystal fiber. J Anal Chem 80:4220–4224

    Article  Google Scholar 

  56. Yu X, Kwok YC, Khairudin NA, Shum P (2009) Absorption detection of Cobalt(II) ions in an index-guiding microstructured optical fiber. Sens Actuators B 137:462–466

    Article  Google Scholar 

  57. Yu X, Zhang Y, Kwok YC, Shum P (2010) Highly-sensitive photonic crystal fiber based absorption spectroscopy. Sens Actuators B 145:110–113

    Article  Google Scholar 

  58. Feit MD, Fleck JA (1980) Computation of mode properties in optical fiber waveguides by a propagating beam method. Appl Optics 19:1154–1164

    Article  Google Scholar 

  59. Knight JC, Birks TA, Russel PJ (1996) All-silica single-mode operational fiber with photonic crystal cladding. Opt Lett 21:1547–1549

    Article  Google Scholar 

  60. Zhu Y, Shum P, Bay H, Yan M, Yu X, Hu J, Hao J, Lu C (2005) Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber. Opt Lett 30:367–369

    Article  Google Scholar 

  61. Zhao CL, Yang XF, Lu C, Jin W, Demokan MS (2004) Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. IEEE Photon Technol Lett 16:2535–2537

    Article  Google Scholar 

  62. Yu X, Liu D, Dong H, Fu S, Dong X, Tang M, Shum P, Ngo NQ (2006) Temperature stability improvement of a multi-wavelength Sagnac loop fiber laser by using HiBi-MOF as birefringent component. Opt Eng 45:044201–044204

    Article  Google Scholar 

  63. Cordeiro CMB, Franco MAR, Chesini G, Barretto ECS, Lwin R, Brito Cruz CH, Large MC (2006) Microstructured-core optical fibre for evanescent sensing applications. Opt Express 14:13056–13063

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Yu, X., Yong, D., Zhang, Y. (2017). Photonic Crystal Fiber-Based Biosensors. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_8

Download citation

Publish with us

Policies and ethics