Skip to main content

Cadmium-Free Quantum Dots for Biophotonic Imaging and Sensing

  • Reference work entry
  • First Online:

Abstract

The use of cadmium-based quantum dots (QDs) in biomedical applications has made substantial progress during the past few years. However, several environmental, clinical, and toxicological groups have raised serious concerns related to cadmium-based toxicity and are doubtful about using cadmium-based QDs for clinical research. Studies have shown that some cadmium-based QD formulations induced in vitro and in vivo toxicity when they degrade and release cadmium ions in the biological environment. This concern has prompted the QD community to explore new means to design and develop next generation of cadmium-free QDs for replacing the commonly used heavy-metal-based nanocrystals in biological sciences research and applications. With the advancement of solution-phase synthesis methods, a series of QDs based on indium phosphide (InP), copper indium sulfide (CuInS2), silver indium sulfide (AgInS2), silver sulfide (Ag2S), doped Zn chalcogenide, carbon (C), and silicon (Si) have been successfully developed, which bear a strong resemblance to the cadmium-based QDs in terms of their optical property and colloidal stability. Many research groups have started to use these cadmium-free QDs and evaluate them using various in vitro and in vivo models. However, there remain some challenges that need to be overcome before perfecting the bioconjugated cadmium-free QD formulations for biomedical applications and translational medicine research. In this review, our aim is to provide an overview and discussions on the current findings and challenges in designing and applying colloidal cadmium-free nanocrystals as the next generation of optical nanoprobes for theranostic use. In particular, we highlight the current trend in the synthesis and surface modification of cadmium-free QDs, the use of bioconjugated cadmium-free QDs for in vitro and in vivo imaging and sensing, surface-cell labeling with QDs, biodistribution of cadmium-free QDs, and the potential toxicity of cadmium-free QDs from cellular to nonhuman primate models. Such information will be viable in generating a set of guidelines for engineering clinically usable QDs for applications ranging from optical image-guided surgery to targeted stem cell therapy research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alivisatos A (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  Google Scholar 

  2. Grieve K, Mulvaney P, Grieser F (2000) Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Curr Opin Coll Interf Sci 5(1):168–172

    Article  Google Scholar 

  3. Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  Google Scholar 

  4. Bruchez M et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  Google Scholar 

  5. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  Google Scholar 

  6. Zhang C-Y et al (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831

    Article  Google Scholar 

  7. Gao X et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  Google Scholar 

  8. Dubertret B et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762

    Article  Google Scholar 

  9. Wu X et al (2002) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46

    Article  Google Scholar 

  10. Bagalkot V et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    Article  Google Scholar 

  11. Yang H et al (2006) GdIII-functionalized fluorescent quantum dots as multimodal imaging probes. Adv Mater 18(21):2890–2894

    Article  Google Scholar 

  12. Wang S et al (2007) Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J Am Chem Soc 129(13):3848–3856

    Article  Google Scholar 

  13. Chen O et al (2013) Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater 12:445–451

    Article  Google Scholar 

  14. Dabbousi B et al (1997) (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  Google Scholar 

  15. Zheng Y, Gao S, Ying JY (2007) Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv Mater 19(3):376–380

    Article  Google Scholar 

  16. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165

    Article  MathSciNet  Google Scholar 

  17. Yong K-T et al (2013) Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 42(3):1236–1250

    Article  Google Scholar 

  18. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  Google Scholar 

  19. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  Google Scholar 

  20. Murray C, Kagan C, Bawendi M (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci 30(1):545–610

    Article  Google Scholar 

  21. Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13(11):3843–3858

    Article  Google Scholar 

  22. Samokhvalov P, Artemyev M, Nabiev I (2013) Basic principles and current trends in colloidal synthesis of highly luminescent semiconductor nanocrystals. Chem A Eur J 19(5):1534–1546

    Article  Google Scholar 

  23. Park J et al (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46(25):4630–4660

    Article  Google Scholar 

  24. Xie R, Rutherford M, Peng X (2009) Formation of high-quality I − III − VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc 131(15):5691–5697

    Article  Google Scholar 

  25. Bharali DJ et al (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127(32):11364–11371

    Article  Google Scholar 

  26. Ryu E et al (2009) Step-wise synthesis of InP/ZnS core − shell quantum dots and the role of zinc acetate. Chem Mater 21(4):573–575

    Article  Google Scholar 

  27. Xie R, Battaglia D, Peng X (2007) Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J Am Chem Soc 129(50):15432–15433

    Article  Google Scholar 

  28. Kortan A et al (1990) Nucleation and growth of cadmium selenide on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J Am Chem Soc 112(4):1327–1332

    Article  Google Scholar 

  29. Zimmer JP et al (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128(8):2526–2527

    Article  Google Scholar 

  30. Gerion D et al (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B Condens Phase 105(37):8861–8871

    Article  Google Scholar 

  31. Fernández-Argüelles MT et al (2007) Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes. Nano Lett 7(9):2613–2617

    Article  Google Scholar 

  32. Smith AM, Nie S (2008) Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J Am Chem Soc 130(34):11278–11279

    Article  Google Scholar 

  33. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  Google Scholar 

  34. Wang Y et al (2013) Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl Mater Interf 5:2786

    Article  Google Scholar 

  35. Qian J et al (2007) Imaging pancreatic cancer using surface-functionalized quantum dots. J Phys Chem B 111(25):6969–6972

    Article  Google Scholar 

  36. Kumar S et al (2013) Room temperature ferromagnetism in Ni doped ZnS nanoparticles. J Alloys Compd 554:357–362

    Article  Google Scholar 

  37. Xie RS et al (2011) Fe:ZnSe semiconductor nanocrystals: synthesis, surface capping, and optical properties. J Alloys Compd 509(7):3314–3318

    Article  Google Scholar 

  38. Zou WS et al (2011) Synthesis in aqueous solution and characterisation of a new cobalt-doped ZnS quantum dot as a hybrid ratiometric chemosensor. Anal Chim Acta 708(1–2):134–140

    Article  Google Scholar 

  39. Pradhan N et al (2005) An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J Am Chem Soc 127(50):17586–17587

    Article  Google Scholar 

  40. Liu N et al (2012) Enhanced luminescence of ZnSe:Eu3+/ZnS core-shell quantum dots. J Non Cryst Solids 358(17):2353–2356

    Article  Google Scholar 

  41. Reddy DA et al (2012) Effect of Mn co-doping on the structural, optical and magnetic properties of ZnS:Cr nanoparticles. J Alloys Compd 537:208–215

    Article  Google Scholar 

  42. Pradhan N et al (2007) Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett 7(2):312–317

    Article  Google Scholar 

  43. Pradhan N, Peng XG (2007) Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J Am Chem Soc 129(11):3339–3347

    Article  Google Scholar 

  44. Wolkin M et al (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82(1):197–200

    Article  Google Scholar 

  45. Warner JH et al (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 117(29):4626–4630

    Article  Google Scholar 

  46. Erogbogbo F et al (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2(5):873–878

    Article  Google Scholar 

  47. Park J-H et al (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336

    Article  Google Scholar 

  48. Belomoin G et al (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80(5):841–843

    Article  Google Scholar 

  49. Wilcoxon J, Samara G, Provencio P (1999) Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys Rev B 60(4):2704

    Article  Google Scholar 

  50. Holmes JD et al (2001) Highly luminescent silicon nanocrystals with discrete optical transitions. J Am Chem Soc 123(16):3743–3748

    Article  Google Scholar 

  51. Heath JR (1992) A liquid-solution-phase synthesis of crystalline silicon. Science 258(5085):1131–1133

    Article  Google Scholar 

  52. Bley RA, Kauzlarich SM (1996) A low-temperature solution-phase route for the synthesis of silicon nanoclusters. J Am Chem Soc 118(49):12461–12462

    Article  Google Scholar 

  53. Bapat A et al (2003) Synthesis of highly oriented, single-crystal silicon nanoparticles in a low-pressure, inductively coupled plasma. J Appl Phys 94(3):1969–1974

    Article  Google Scholar 

  54. Littau K et al (1993) A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J Phys Chem 97(6):1224–1230

    Article  Google Scholar 

  55. Li X et al (2003) Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19(20):8490–8496

    Article  Google Scholar 

  56. Hua F et al (2006) Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. Langmuir 22(9):4363–4370

    Article  Google Scholar 

  57. Sun YP et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  Google Scholar 

  58. Zheng LY et al (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131(13):4564

    Article  Google Scholar 

  59. Lu J et al (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8):2367–2375

    Article  Google Scholar 

  60. Ding H et al (2013) Luminescent carbon quantum dots and their application in cell imaging. New J Chem 37(8):2515–2520

    Article  Google Scholar 

  61. Jeong J et al (2012) Color-tunable photoluminescent fullerene nanoparticles. Adv Mater 24(15):1999–2003

    Article  Google Scholar 

  62. Luo PG et al (2014) Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 4(21):10791–10807

    Article  Google Scholar 

  63. Wang F et al (2010) One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem Mater 22(16):4528–4530

    Article  Google Scholar 

  64. Sahu S et al (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48(70):8835–8837

    Article  Google Scholar 

  65. Yang ST et al (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113(42):18110–18114

    Article  Google Scholar 

  66. Wang X et al (2010) Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed 49(31):5310–5314

    Article  Google Scholar 

  67. Bhunia SK et al (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep 3:1473

    Article  Google Scholar 

  68. Shen JH et al (2012) One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem 36(1):97–101

    Article  Google Scholar 

  69. Lu J et al (2011) Transforming C60 molecules into graphene quantum dots. Nat Nanotechnol 6(4):247–252

    Article  Google Scholar 

  70. Krunks M et al (1999) Structural and optical properties of sprayed CuInS2 films. Thin Solid Films 338(1):125–130

    Article  Google Scholar 

  71. Torimoto T et al (2007) Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J Am Chem Soc 129(41):12388–12389

    Article  Google Scholar 

  72. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  Google Scholar 

  73. Chemseddine A, Weller H (1993) Highly monodisperse quantum sized CdS particles by size selective precipitation. Berichte der Bunsengesellschaft für physikalische Chemie 97(4):636–638

    Article  Google Scholar 

  74. Murray CB et al (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev 45(1):47–56

    Article  Google Scholar 

  75. Nose K et al (2009) Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species. Chem Mater 21(13):2607–2613

    Article  Google Scholar 

  76. Jiang P et al (2012) Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33(20):5130–5135

    Article  Google Scholar 

  77. Zhang Y et al (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6(5):3695–3702

    Article  Google Scholar 

  78. Zhu C-N et al (2013) Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl Mater Interfaces 5(4):1186–1189

    Article  Google Scholar 

  79. Hocaoglu I et al (2012) Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J Mater Chem 22(29):14674–14681

    Article  Google Scholar 

  80. Hong G et al (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed 124(39):9956–9959

    Article  Google Scholar 

  81. Yamazaki K et al (2000) Long term pulmonary toxicity of indium arsenide and indium phosphide instilled intratracheally in hamsters. J Occup Health Engl Ed 42(4):169–178

    Article  Google Scholar 

  82. Wu P, Yan XP (2013) Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev 42(12):5489–5521

    Article  MathSciNet  Google Scholar 

  83. Yuan X et al (2014) Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots. Nanoscale 6(1):300–307

    Article  Google Scholar 

  84. Jurbergs D et al (2006) Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl Phys Lett 88(23):233116-3

    Article  Google Scholar 

  85. He GS et al (2008) Two-and three-photon absorption and frequency upconverted emission of silicon quantum dots. Nano Lett 8(9):2688–2692

    Article  Google Scholar 

  86. Erogbogbo F et al (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5(1):413

    Article  Google Scholar 

  87. Fan JY, Chu PK (2010) Group IV nanoparticles: synthesis, properties, and biological applications. Small 6(19):2080–2098

    Article  Google Scholar 

  88. Zeng S et al (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43(10):3426–3452

    Google Scholar 

  89. Ding C, Zhu A, Tian Y (2013) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47(1):20–30

    Article  Google Scholar 

  90. Zhang Z et al (2012) Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci 5(10):8869–8890

    Article  Google Scholar 

  91. Wang X et al (2010) Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed 122(31):5438–5442

    Article  Google Scholar 

  92. Cao L et al (2012) Photoluminescence properties of graphene versus other carbon nanomaterials. Acc Chem Res 46(1):171–180

    Article  Google Scholar 

  93. Sun H et al (2013) Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem A Eur J 19(40):13362–13368

    Article  Google Scholar 

  94. Li H et al (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49(26):4430–4434

    Article  Google Scholar 

  95. Bacon M, Bradley SJ, Nann T (2014) Graphene quantum dots. Part Part Syst Char 31(4):415–428

    Google Scholar 

  96. Anilkumar P et al (2011) Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale 3(5):2023–2027

    Article  Google Scholar 

  97. Zhu L et al (2013) Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J Mater Chem C 1(32):4925–4932

    Article  Google Scholar 

  98. Krysmann MJ, Kelarakis A, Giannelis EP (2012) Photoluminescent carbogenic nanoparticles directly derived from crude biomass. Green Chem 14(11):3141–3145

    Article  Google Scholar 

  99. Li L et al (2009) Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 21(12):2422–2429

    Article  Google Scholar 

  100. Yong K-T et al (2010) Synthesis of ternary CuInS2/ZnS quantum dot bioconjugates and their applications for targeted cancer bioimaging. Integr Biol 2(2–3):121–129

    Article  Google Scholar 

  101. Pons T et al (2010) Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4(5):2531–2538

    Article  Google Scholar 

  102. Deng D et al (2012) High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem Mater 24(15):3029–3037

    Article  Google Scholar 

  103. Guo W et al (2013) Synthesis of Zn-Cu-In-S/ZnS core/shell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging. Theranostics 3(2):99–108

    Article  Google Scholar 

  104. Liu L et al (2013) Synthesis of luminescent near-infrared AgInS2 nanocrystals as optical probes for in vivo applications. Theranostics 3(2):109–115

    Article  Google Scholar 

  105. Wang Y, Yan X-P (2013) Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem Commun 49(32):3324–3326

    Article  Google Scholar 

  106. Yong K-T et al (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3(3):502

    Article  Google Scholar 

  107. Low PS, Antony AC (2004) Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 56(8):1055

    Article  Google Scholar 

  108. Lee RJ, Low PS (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269(5):3198–3204

    Google Scholar 

  109. Antony A (1992) The biological chemistry of folate receptors. Blood 79(11):2807–2820

    Google Scholar 

  110. Chang SQ et al (2011) One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a gamma-radiation route. Nanoscale Res Lett 6:1–7

    Article  Google Scholar 

  111. Jayasree A et al (2011) Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging. Carbohydr Polym 85(1):37–43

    Article  Google Scholar 

  112. Manzoor K et al (2009) Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging. Nanotechnology 20(6):065102

    Article  Google Scholar 

  113. Xu ZG et al (2011) Glycopolypeptide-encapsulated Mn-doped ZnS quantum dots for drug delivery: fabrication, characterization, and in vitro assessment. Coll Surf B Biointerf 88(1):51–57

    Article  Google Scholar 

  114. Gaceur M et al (2012) Polyol-synthesized Zn0.9Mn0.1S nanoparticles as potential luminescent and magnetic bimodal imaging probes: synthesis, characterization, and toxicity study. J Nanopart Res 14(7):1

    Article  Google Scholar 

  115. Yu JH et al (2013) High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat Mater 12(4):359–366

    Article  Google Scholar 

  116. Erogbogbo F et al (2010) Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron (III) oxide. ACS Nano 4(9):5131

    Article  Google Scholar 

  117. Brooks PC et al (1994) Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7):1157–1164

    Article  Google Scholar 

  118. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21(23):5563–5565

    Article  Google Scholar 

  119. Li X et al (2011) Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun 47(3):932–934

    Article  Google Scholar 

  120. Cao L et al (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319

    Article  Google Scholar 

  121. Kong B et al (2012) Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater 24(43):5844–5848

    Article  Google Scholar 

  122. Huang X et al (2013) Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7(7):5684–5693

    Article  Google Scholar 

  123. Dong Y et al (2012) One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem 22(18):8764–8766

    Article  Google Scholar 

  124. Liu Q et al (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13(6):2436–2441

    Article  Google Scholar 

  125. Wu X et al (2013) Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C 1(31):4676–4684

    Article  Google Scholar 

  126. Su Y et al (2009) The cytotoxicity of cadmium based, aqueous phase–synthesized, quantum dots and its modulation by surface coating. Biomaterials 30(1):19–25

    Article  Google Scholar 

  127. Chen N et al (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33(5):1238–1244

    Article  Google Scholar 

  128. Zhang Y et al (2013) Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 34(14):3639–3646

    Article  Google Scholar 

  129. Liu J et al (2013) Assessing clinical prospects of silicon quantum dots: acute doses in mice prove safe in monkeys. ACS Nano 7:7303

    Article  Google Scholar 

  130. SUN Y-P et al (2010) Cytotoxicity evaluations of fluorescent carbon nanoparticles. Nano Life 01((01n02)):153–161

    Google Scholar 

  131. Zhu S et al (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater 22(22):4732–4740

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-Tye Yong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Zhang, B., Wang, Y., Hu, R., Roy, I., Yong, KT. (2017). Cadmium-Free Quantum Dots for Biophotonic Imaging and Sensing. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_7

Download citation

Publish with us

Policies and ethics