Skip to main content

Resonant Waveguide Imaging of Living Systems: From Evanescent to Propagative Light

  • Reference work entry
  • First Online:
Handbook of Photonics for Biomedical Engineering
  • 2228 Accesses

Abstract

For more than 50 years, resonant waveguides (RWGs) have offered highly sensitive label-free sensing platforms to monitor surface processes such as protein adsorption, affinity binding, monolayer to multilayer build-up, bacteria and more generally adherent or confined living mammalian cells and tissues. Symmetrical planar dielectric RWG sensitivity was improved by metal coating of at least one of their surfaces for surface plasmon resonance undertaking (SPRWG). However, RWG sensitivity was often obtained at the expense of spatial resolution and could not compete with other high resolution fluorescence microscopies. For years, RWGs have only rarely been combined with high-resolution microscopy. Only recently, the improvement of intensity and phase light modulation techniques and the availability of low-cost high numerical aperture lenses have drastically changed the devices and methodologies based on RWGs. We illustrate in this chapter how these different technical and methodological evolutions have offered new, versatile, and powerful imaging tools to the biological community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1–2):8

    Article  Google Scholar 

  2. Zourob M, Lakhatakia A (2010) Optical guided-wave chemical and biosensors I. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  3. Zourob M, Lakhatakia A (2010) Optical guided-wave chemical and biosensors II. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  4. Horvath R, Pedersen HC, Skivesen N, Svanberg C, Larsen NB (2005) Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating. J Micromech Microeng 15(6):1260

    Article  Google Scholar 

  5. Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91(5):1925

    Article  Google Scholar 

  6. Velasco-Garcia MN (2009) Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin Cell Dev Biol 20(1):27

    Article  Google Scholar 

  7. Zernike F (1955). How I discovered phase contrast. Science 121(3141):345

    Article  Google Scholar 

  8. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science (New York, NY) 300(5616):82

    Article  Google Scholar 

  9. Bereiter-Hahn J, Fox CH, Thorell B (1979) Quantitative reflection contrast microscopy of living cells. J Cell Biol 82:767

    Article  Google Scholar 

  10. Verschueren H (1985) Interference reflection microscopy in cell biology: methodology and applications. J Cell Sci 75:279

    Google Scholar 

  11. Popescu G, Deflores LP, Vaughan JC, Badizadegan K, Iwai H, Dasari RR, Feld MS (2004) Fourier phase microscopy for investigation of biological structures and dynamics. Opt Lett 29(21):2503

    Article  Google Scholar 

  12. Rappaz B, Marquet P, Cuche E, Emery Y, Depeursinge C, Magistretti P (2005) Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13(23):9361

    Article  Google Scholar 

  13. Tychinskii VP (2001) Coherent phase microscopy of intracellular processes. Physics-Uspekhi 44(6):617

    Article  Google Scholar 

  14. Popescu G, Ikeda T, Dasari RR, Feld MS (2006) Diffraction phase microscopy for quantifying cell structure and dynamics. Opt Lett 31(6):775

    Article  Google Scholar 

  15. Tychinskii VP (2007) Dynamic phase microscopy : is a ‘dialogue’ with the cell possible ? Physics-Uspekhi 50(5):513

    Article  Google Scholar 

  16. Bon P, Maucort G, Wattellier B (2009) Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt Express 17(15):468

    Article  Google Scholar 

  17. Popescu G (2011) Quantitative phase imaging of cells and tissues. McGraw Hill, New York

    Google Scholar 

  18. Bon P, Savatier J, Merlin M, Wattellier B, Monneret S (2012) Optical detection and measurement of living cell morphometric features with singleshot quantitative phase microscopy. J Biomed Opt 17(7):076004

    Article  Google Scholar 

  19. Martinez-Torres C, Berguiga L, Streppa L, Boyer-Provera E, Schaeffer L, Elezgaray J, Arneodo A, Argoul F (2014) Diffraction phase microscopy: retrieving phase contours on living cells with a wavelet-based space-scale analysis. J Biomed Opt 19(3):036007

    Article  Google Scholar 

  20. Martinez-Torres C, Laperrousaz B, Berguiga L, Boyer-Provera E, Elezgaray J, Nicolini FE, Maguer-Satta V, Arneodo A, Argoul F (2015) Deciphering the internal complexity of living cells with quantitative phase microscopy: a multiscale approach. J Biomed Opt 20(9):096005

    Article  Google Scholar 

  21. Martinez Torres C, Laperrousaz B, Berguiga L, Boyer Provera E, Elezgaray J, Nicolini FE, Maguer-Satta V, Arneodo A, Argoul F (2016) In: Popescu G, Park Y (eds) Quantitative phase imaging II. SPIE proceedings, SPIE, Bellingham, WA vol 9718. p 97182C

    Google Scholar 

  22. Li SY, Ramsden JJ, Prenosil JE, Heinzle E (1994) Measurement of adhesion and spreading kinetics of baby hamster kidney and hybridoma cells using an integrated optical method. Biotechnol Prog 10(5):520

    Article  Google Scholar 

  23. Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B 6(2):209

    Article  Google Scholar 

  24. Kunz RE, Cottier K (2006). Optimizing integrated optical chips for labelfree (bio-)chemical sensing. Anal Bioanal Chem 384(1):180

    Article  Google Scholar 

  25. Otto A (1968) Excitation of nonradiative surface plasmon waves in silver by the method of frustrated total reflection. Z Phys 410:398

    Article  Google Scholar 

  26. Kretschmann E, Raether H (1968). Radiative decay of non-radiative surface plasmons excitated by light. Z Naturforsch A 23:2135

    Google Scholar 

  27. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  28. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1

    Article  Google Scholar 

  29. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528

    Article  Google Scholar 

  30. Nikitin PI, Grigorenko AN, Beloglazov AA, Valeiko MV, Savchuk AI, Savchuk OA, Steiner G, Kuhne C, Huebner A, Salzer R (2000) Surface plasmon resonance interferometry for micro-array biosensing. Sensors Actuators A Phys 85(1–3):189

    Article  Google Scholar 

  31. Notcovich AG, Zhuk V, Lipson SG (2000) Surface plasmon resonance phase imaging. Appl Phys Lett 76(13):1665

    Article  Google Scholar 

  32. Grigorenko AN, Beloglazov AA, Nikitin PI (2000) Dark-field surface plasmon resonance microscopy. Opt Commun 174(1):151

    Article  Google Scholar 

  33. Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33(8):5186

    Article  Google Scholar 

  34. Kano H, Mizuguchi S, Kawata S (1998) Excitation of surface-plasmon polaritons by a focused laser beam. J Opt Soc Am A 15(4):1381

    Article  Google Scholar 

  35. Kano H, Knoll W (2000) A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe. Opt Commun 182:11

    Google Scholar 

  36. Stabler G, Somekh MG, See CW (2004) High-resolution wide-field surface plasmon microscopy. J Microsc 214(3):328

    Article  MathSciNet  Google Scholar 

  37. Zhang J, See CW, Somekh MG, Pitter MC, Liu SG (2004) Widefield surface plasmon microscopy with solid immersion excitation. Appl Phys Lett 85(22):5451

    Article  Google Scholar 

  38. Somekh MG, Liu SG, Velinov TS, See CW (2000) Optical V(z) for high-resolution 2 pi surface plasmon microscopy. Opt Lett 25(11):823

    Article  Google Scholar 

  39. Berguiga L, Zhang S, Argoul F, Elezgaray J (2007) High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions. Opt Lett 32(5):509

    Article  Google Scholar 

  40. Somekh MG, Stabler G, Liu S, Zhang J, See CW (2009) Wide field high resolution surface plasmon interference microscopy. Opt Lett 34(20):3110

    Article  Google Scholar 

  41. Berguiga L, Roland T, Monier K, Elezgaray J, Argoul F (2011) Amplitude and phase images of cellular structures with a scanning surface plasmon microscope. Opt Express 19(7):6571

    Article  Google Scholar 

  42. Boyer-Provera E, Rossi A, Oriol L, Dumontet C, Plesa A, Berguiga L, Elezgaray J, Arneodo A, Argoul F (2013) Wavelet-based decomposition of high resolution surface plasmon microscopy V (Z) curves at visible and near infrared wavelengths. Opt Express 21(6):7456

    Article  Google Scholar 

  43. Berguiga L, Boyer-Provera E, Martinez-Torres C, Elezgaray J, Arneodo A, Argoul F (2013) Guided wave microscopy: mastering the inverse problem. Opt Lett 38(21):4269

    Article  Google Scholar 

  44. Berguiga L, Streppa L, Boyer-Provera E, Martinez-Torres C, Schaeffer L, Elezgaray J, Arneodo A, Argoul F (2016) Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam. Appl Optics 55(6):1216

    Article  Google Scholar 

  45. Tien PK (1977) Integrated optics and new wave phenomena wave guides. Rev Mod Phys 49(2):361

    Article  Google Scholar 

  46. Salamon Z, Macleod HA, Tollin G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochim Biophys Acta 1331(2):131

    Article  Google Scholar 

  47. Hickel W, Knoll W (1990) Surface plasmon optical characterization of lipid monolayers at 5 μm lateral resolution. J Appl Phys 67(8):3572

    Article  Google Scholar 

  48. Aust EF, Knoll W (1993) Electrooptical waveguide microscopy. J Appl Phys 73(6):2705

    Article  Google Scholar 

  49. Bivolarska M, Velinov T, Stoitsova S (2006) Guided-wave and ellipsometric imaging of supported cells. J Microsc 224:242

    Article  MathSciNet  Google Scholar 

  50. Golosovsky M, Lirtsman V, Yashunsky V, Davidov D, Aroeti B (2009) Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells. J Appl Phys 105(10):102036

    Article  Google Scholar 

  51. Yashunsky V, Marciano T, Lirtsman V, Golosovsky M, Davidov D, Aroeti B (2012) Real-time sensing of cell morphology by infrared waveguide spectroscopy. PLoS One 7(10):e48454

    Article  Google Scholar 

  52. Yashunsky V, Kharilker L, Zlotkin-Rivkin E, Rund D, Melamed-Book N, Zahavi EE, Perlson E, Mercone S, Golosovsky M, Davidov D, Aroeti B (2013) Real-time sensing of enteropathogenic E. coli-induced effects on epithelial host cell height, cell-substrate interactions, and endocytic processes by infrared surface plasmon spectroscopy. PLoS One 8(10):e78431

    Article  Google Scholar 

  53. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569

    Article  Google Scholar 

  54. Wolter VH (1950) Untersuchungen zur Strahlversetzung bei Totalreflexion des Lichtes mit der Methode der Minimumstrahlkennzeichnung. Z Naturforsch A J Phys Sci 5(3):143

    MATH  Google Scholar 

  55. Goos F, Hanchen H (1943) Ein neuer und fundamentaler versuch zur totalreflexion. Ann Phys 6(1):333

    Google Scholar 

  56. Artmann VK (1948). Berechnung der seitenverstzung des totalreflectierten strahles. Ann Phys 6(2):87

    Article  MATH  Google Scholar 

  57. McGuirk M, Carniglia CK (1977) An angular spectrum representation approach to the Goos-Hanchen shift. J Opt Soc Am 67(1):103

    Article  Google Scholar 

  58. Puri A, Birman JL (1986) Goos-Hänchen beam shift at total internal reflection with application to spatially dispersive media. J Opt Soc Am A 3(4):543

    Article  Google Scholar 

  59. Götte JB, Aiello A, Wördman JP (2008) Loss-induced transition of the Goos-Hänchen effect for metals and dielectrics. Opt Express 16(6):3961

    Article  Google Scholar 

  60. Horowitz BR, Tamir T (1973) Unified theory of total reflection phenomena at a dielectric interface. Appl Phys 1(1):31

    Article  Google Scholar 

  61. Novotny L, Grober RD, Karrai K (2001) Reflected image of a strongly focused spot. Opt Lett 26(11):789

    Article  Google Scholar 

  62. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  63. Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2(4):268

    Article  Google Scholar 

  64. Ambrose EJ (1956) A surface contact microscopy for the study of cell movements. Nature 178:1194

    Article  Google Scholar 

  65. Byrne GD, Pitter MC, Zhang J, Falcone FH, Stolnik S, Somekh MG (2008) Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles. J Microsc 231(Pt 1):168

    Article  MathSciNet  Google Scholar 

  66. Choi R (2015) Design and characterisation of a label free evanescent waveguide microscope. MPhil Thesis, University of Nottingham

    Google Scholar 

  67. Radler J, Sackmann E (1993) Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces. J Phys II 3:727

    Google Scholar 

  68. Limozin L, Sengupta K (2009) Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. Eur J Chem Phys Phys Chem 10:2752

    Google Scholar 

  69. Herold KE, Rasooly A (2012) Biosensors and molecular technologies for cancer diagnostics. CRC Press, Boca Raton

    Book  Google Scholar 

  70. Hickel W, Knoll W (1990) Optical waveguide microscopy. Appl Phys Lett 57(13):1286

    Article  Google Scholar 

  71. Thoma F, Langbein U, Mittler-Neher S (1997) Waveguide scattering microscopy. Opt Commun 134:16

    Article  Google Scholar 

  72. Hassanzadeh A, Nitsche M, Mittler S, Armstrong S, Dixon J, Langbein U (2008) Waveguide evanescent field fluorescence microscopy: thin film fluorescence intensities and its application in cell biology. Appl Phys Lett 92(23):233503

    Article  Google Scholar 

  73. Nahar Q (2014) Oriented collagen and applications of waveguide evanescent field scattering (WEFS) microscopy. PhD thesis, University of Western Ontario

    Google Scholar 

  74. Grandin HM, Städler B, Textor M, Vörös J (2006) Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface. Biosens Bioelectron 21(8):1476

    Article  Google Scholar 

  75. Agnarsson B, Ingthorsson S, Gudjonsson T, Leosson K (2009) Evanescent-wave fluorescence microscopy using symmetric planar waveguides. Opt Express 17(7):5075

    Article  Google Scholar 

  76. Horvath R, Pedersen HC, Skivesen N, Selmeczi D, Larsen NB (2005) Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing. Appl Phys Lett 86(7):071101

    Article  Google Scholar 

  77. Agnarsson B, Lundgren A, Gunnarsson A, Rabe M, Kunze A, Mapar M, Simonsson L, Bally M, Zhdanov VP, Hook F (2015). Evanescent lightscattering microscopy for label-free interfacial imaging: from single sub-100 nm vesicles to live cells. ACS Nano 9(12):11849

    Article  Google Scholar 

  78. Binnig G, Quate CF (1986) Atomic force microscope. Phys Rev Lett 56(9):930

    Article  Google Scholar 

  79. Betzig E, Trautman JK, Harris TD, Weiner JS (1991) Breaking the diffraction barrier: optical microscopy on the nanometer scale. Science 251:1468

    Article  Google Scholar 

  80. Bailey B, Farkas DL, Lansing Taylor D, Lanni F (1993) Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366:44

    Article  Google Scholar 

  81. Cragg GE, So PT (2000) Lateral resolution enhancement with standing evanescent waves. Opt Lett 25(1):46

    Article  Google Scholar 

  82. Frohn JT, Knapp HF, Stemmer A (2000) True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proc Natl Acad Sci U S A 97(13):7232

    Article  Google Scholar 

  83. Beck M, Aschwanden M, Stemmer A (2008) Sub-100-nanometre resolution in total internal reflection fluorescence microscopy. J Microsc 232(1):99

    Article  MathSciNet  Google Scholar 

  84. Streibl N (1984). Phase imaging by the transport equation of intensity. Opt Commun 49(1):6

    Article  Google Scholar 

  85. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(2):82

    Article  Google Scholar 

  86. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081

    Article  Google Scholar 

  87. Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94(12):4957

    Article  Google Scholar 

  88. Somekh MG, Hsu K, Pitter MC (2008) Resolution in structured illumination microscopy: a probabilistic approach. J Opt Soc Am A 25(6):1319

    Article  Google Scholar 

  89. Saxena M, Eluru G, Gorthi SS (2015) Structured illumination microscopy. Adv Opt Photon 7:241

    Article  Google Scholar 

  90. Strohl F, Kaminski CF (2016). New frontiers in structured illumination microscopy. Optica 3(6):667

    Article  Google Scholar 

  91. Muller M, Monkemoller V, Hennig S, Hubner W, Huser T (2016) Opensource image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat Commun 7:10980

    Article  Google Scholar 

  92. Chen J, Xu Y, Lv X, Lai X, Zeng S (2013) Super-resolution differential interference contrast microscopy by structured illumination. Opt Express 21(1):112

    Article  Google Scholar 

  93. So PT, Kwon HS, Dong CY (2001) Resolution enhancement in standingwave total internal reflection microscopy: a point-spread-function engineering approach. J Opt Soc Am A 18(11):2833

    Article  Google Scholar 

  94. Gliko O, Reddy GD, Anvari B, Brownell WE, Saggau P (2006) Standing wave total internal reflection fluorescence microscopy to measure the size of nanostructures in living cells. J Biomed Opt 11(6):064013

    Article  Google Scholar 

  95. Chung E, Kim D, Cui Y, Kim YH, So PTC (2007) Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens. Biophys J 93(5):1747

    Article  Google Scholar 

  96. Sentenac A, Belkebir K, Giovannini H, Chaumet PC (2009) High resolution total-internal fluorescence microscopy using periodically nanostructured glass slides. J Opt Soc Am A 26(12):2550

    Article  Google Scholar 

  97. Shen H, Huang E, Das T, Xu H, Ellisman M, Liu Z (2014) TIRF microscopy with ultra-short penetration depth. Opt Express 22(9):10728

    Article  Google Scholar 

  98. Brunstein M, Wicker K, Hérault K, Heintzmann R, Oheim M (2013) Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks. Opt Express 21(22):26162

    Article  Google Scholar 

  99. Chung E, Kim D, So PTC (2006) Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy. Opt Lett 31(7):945

    Article  Google Scholar 

  100. Kretschmann E (1978) The ATR method with focused light - application to guided waves on a grating. Opt Commun 26(1):41

    Article  Google Scholar 

  101. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-microm wavelength region. Appl Optics 12(3):555

    Article  Google Scholar 

  102. Olmon RL, Slovick B, Johnson TW, Shelton D, Oh SH, Boreman GD, Raschke MB (2012) Optical dielectric function of gold. Phys Rev B 86(23):235147

    Article  Google Scholar 

  103. Lirtsman V, Ziblat R, Golosovsky M, Davidov D, Pogreb R, SacksGranek V, Rishpon J (2005) Surface-plasmon resonance with infrared excitation: Studies of phospholipid membrane growth. J Appl Phys 98(9):093506

    Article  Google Scholar 

  104. Yin X, Hesselink L, Liu Z, Fang N, Zhang X (2004) Large positive and negative lateral optical beam displacements due to surface plasmon resonance. Appl Phys Lett 85(3):372

    Article  Google Scholar 

  105. Oh GY, Kim DG, Kim HS, Choi YW (2009) Analysis of surface plasmon resonance with Goos-Hanchen shift using FDTD method. Proc SPIE 7218:72180J

    Article  Google Scholar 

  106. Wang LG, Chen H, Zhu SY (2005) Large negative GoosHanchen shift from a weakly absorbing dielectric slab. Opt Lett 30(21):2936

    Article  Google Scholar 

  107. Liu X, Cao Z, Zhu P, Shen Q, Liu X (2006) Large positive and negative lateral optical beam shift in prism-waveguide coupling system. Phys Rev E 73(5):056617

    Article  Google Scholar 

  108. Chen B, Basaran C (2011) Statistical phase-shifting step estimation algorithm based on the continuous wavelet transform for high-resolution interferometry metrology. Appl Optics 50(4):586

    Article  Google Scholar 

  109. Homola J (2006) Springer series on chemical sensors and biosensors. Springer, Berlin/Heidelberg

    Google Scholar 

  110. Rothenhausler B, Knoll W (1987) Total internal diffraction of plasmon surface polaritons. Appl Phys Lett 51(11):783

    Article  Google Scholar 

  111. Rothenhausler B, Knoll W (1987) Plasmon surface polariton fields versus TIR evanescent waves for scattering experimentas at surfaces. Opt Commun 63(5):301

    Article  Google Scholar 

  112. Fu E, Foley J, Yager P (2003) Wavelength-tunable surface plasmon resonance microscope. Rev Sci Instrum 74(6):3182

    Article  Google Scholar 

  113. Somekh MG, Liu S, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Optics 39(34):6279

    Article  Google Scholar 

  114. Somekh MG, See CW, Goh J (2000) Wide field amplitude and phase confocal microscope with speckle illumination. Opt Commun 174:75

    Article  Google Scholar 

  115. Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl D (1996) Local excitation, scattering and interference of surface plasmons. Phys Rev Lett 77(9):1889

    Article  Google Scholar 

  116. Velinov T, Somekh MG, Liu S (1999) Direct far-field observation of surface-plasmon propagation by photoinduced scattering. Appl Phys Lett 75(25):3908

    Article  Google Scholar 

  117. Bouhelier A, Ignatovich F, Bruyant A, Huang C, Colas des Francs G, Weeber JC, Dereux A, Wiederrecht GP, Novotny L (2007) Surface plasmon interference excited by tightly focused laser beams. Opt Lett 32(17):2535

    Article  Google Scholar 

  118. Dawson P, de Fornel F, Goudonnet JP (1994) Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope. Phys Rev Lett 72(18):2927

    Article  Google Scholar 

  119. Dawson P, Puygranier BAF (2001) Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total reflection. Phys Rev 63:1

    Article  Google Scholar 

  120. Somekh MG (2002) Surface plasmon fluorescence microscopy: an analysis. J Microsc 206(2):120

    Article  MathSciNet  Google Scholar 

  121. Huang B, Wang W, Bates M, Zhuang X (2007) Three-dimensional superresolution imaging by stochastic optical reconstruction microscopy. Science 319:810

    Google Scholar 

  122. Watanabe K, Horiguchi N, Kano H (2007) Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination. Appl Optics 46(22):4985

    Article  Google Scholar 

  123. Watanabe K, Terakado G, Kano H (2009) Localized surface plasmon microscope with an illumination system employing a radially polarized zerothorder Bessel beam. Opt Lett 34(8):1180

    Google Scholar 

  124. Vander R, Lipson SG (2009) High-resolution surface-plasmon resonance real-time imaging. Opt Lett 34(1):37

    Article  Google Scholar 

  125. Roland T, Berguiga L, Elezgaray J, Argoul F (2010) Scanning surface plasmon imaging of nanoparticles. Phys Rev B 81(23):235419

    Article  Google Scholar 

  126. Atalar A (1978) An angular-spectrum approach to contrast in reflection acoustic microscopy. J Appl Phys 49:5130

    Article  Google Scholar 

  127. Atalar A (1979) A physical model for the acoustic signatures. J Appl Phys 50:8237

    Article  Google Scholar 

  128. Pechprasarn S, Somekh MG (2012) Surface plasmon microscopy: resolution, sensitivity and crosstalk. J Microsc 246(3):287

    Article  Google Scholar 

  129. Argoul F, Roland T, Fahys A, Berguiga L, Elezgaray J (2012) Uncovering phase maps from surface plasmon resonance images: Towards a subwavelength resolution. C R Phys 13(8):800

    Article  Google Scholar 

  130. Hu ZJ, Tan PS, Zhu SW, Yuan XC (2010) Structured light for focusing surface plasmon polaritons. Opt Express 18(10):10864

    Article  Google Scholar 

  131. Ilett C, Somekh MG, Briggs GAD (1984) Acoustic microscopy of elastic discontinuities. Proc R Soc Lond A 393:171

    Article  Google Scholar 

  132. Quabis S, Dorn R, Eberler M, Glockl O, Leuchs G (2000) Focusing light to a tighter spot. Opt Commun 179:1

    Article  Google Scholar 

  133. Dorn R, Quabis S, Leuchs G (2003) Sharper focus for a radially polarized light beam. Phys Rev Lett 91(23):233901

    Article  Google Scholar 

  134. Shoham A, Vander R, Lipson SG (2006) Production of radially and azimuthally polarized polychromatic beams. Opt Lett 31(23):3405

    Article  Google Scholar 

  135. Sefat F, Denyer MCT, Youseffi M (2011) Imaging via widefield surface plasmon resonance microscope for studying bone cell interactions with micropatterned ECM proteins. J Microsc 241(3):282

    Article  Google Scholar 

  136. Watanabe K, Matsuura K, Kawata F, Nagata K, Ning J, Kano H (2012) Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites. Biomed Opt Express 3(2):354

    Article  Google Scholar 

  137. Moh KJ, Yuan XC, Bu J, Zhu SW, Gao BZ (2008) Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams. Opt Express 16(25):20734

    Article  Google Scholar 

  138. Soon CF, Khaghani SA, Youseffi M, Nayan N, Saim H, Britland S, Blagden N, Denyer MCT (2013) Interfacial study of cell adhesion to liquid crystals using widefield surface plasmon resonance microscopy. Colloids Surf B 110:156

    Article  Google Scholar 

  139. Peterson AW, Halter M, Tona A, Plant AL (2014) High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol 15:35

    Article  Google Scholar 

  140. Mahadi Abdul Jamil M, Denyer MCT, Youseffi M, Britland ST, Liu S, See CW, Somekh MG, Zhang J (2008) Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy. J Struct Biol 164:75

    Article  Google Scholar 

  141. Wang Z, Ding H, Popescu G (2011) Scattering-phase theorem. Opt Lett 36(7):1215

    Article  Google Scholar 

  142. Wang S, Xue L, Lai J, Li Z (2012) Three-dimensional refractive index reconstruction of red blood cells with one-dimensional moving based on local plane wave approximation. J Opt 14(6):065301

    Article  Google Scholar 

  143. Toma K, Kano H, Offenha A (2014) Label-free measurement of cellelectrode cleft gap distance with high spatial resolution surface plasmon microscopy. ACS Nano 8(12):12612

    Article  Google Scholar 

  144. Streppa L, Berguiga L, Boyer Provera E, Ratti F, Goillot E, Martinez Torres C, Schaeffer L, Elezgaray J, Arneodo A, Argoul F (2016) In: Vo-Dinh T, Lakowicz JR, Ho HPAH, Ray K (eds) Plasmonics in biology and medicine XIII. SPIE proceedings, SPIE, Bellingham, WA vol 9724. p 97240G

    Google Scholar 

  145. Popescu G, Park YK, Choi W, Dasari RR, Feld MS, Badizadegan K (2008) Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells Mol Dis 41(1):10

    Article  Google Scholar 

  146. Park Y, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld MS, Suresh S (2008) Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum. Proc Natl Acad Sci U S A 105(37):13730

    Article  Google Scholar 

  147. Rappaz B, Barbul A, Hoffmann A, Boss D, Korenstein R, Depeursinge C, Magistretti PJ, Marquet P (2009) Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy. Blood Cells Mol Dis 42(3):228

    Article  Google Scholar 

  148. Lioubimov V, Kolomenskii A, Mershin A, Nanopoulos DV, Schuessler HA (2004) Effect of varying electric potential on surface-plasmon resonance sensing. Appl Optics 43(17):3426

    Article  Google Scholar 

  149. Pendry J (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966

    Article  Google Scholar 

  150. Ruppin R (2000) Surface polaritons of a left-handed medium. Phys Lett A 277(1):61

    Article  Google Scholar 

  151. Shalaev VM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30(24):3356

    Article  Google Scholar 

  152. Withayachumnankul W, Abbott D (2009) Metamaterials in the terahertz regime. IEEE Photonics J 1(2):99

    Article  Google Scholar 

  153. Yao H, Zhong S (2014) High-mode spoof SPP of periodic metal grooves for ultra-sensitive terahertz sensing. Opt Express 22(21):25149

    Article  Google Scholar 

  154. Tychinsky V (2009) The metabolic component of cellular refractivity and its importance for optical cytometry. J Biophotonics 2(8–9):494

    Article  Google Scholar 

  155. Yu L, Mohanty S, Zhang J, Genc S, Kim MK, Berns MW, Chen Z (2009) Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery. Opt Express 17(14):12031

    Article  Google Scholar 

  156. Bon P, Wattellier B, Monneret S (2012) Modeling quantitative phase image formation under tilted illuminations. Opt Lett 37(10):1718

    Article  Google Scholar 

  157. Park Y, Best CA, Badizadegan K, Dasari RR, Feld MS, Kuriabova T, Henle ML, Levine AJ, Popescu G (2010) Measurement of red blood cell mechanics during morphological changes. Proc Natl Acad Sci U S A 107(15):6731

    Article  Google Scholar 

  158. Elezgaray J, Berguiga L, Argoul F (2014) Plasmon-based tomographic microscopy. J Opt Soc Am A 31(1):155

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Lyon Science Transfert (projet L659), Région Rhône Alpes (CIBLE Program 2011), INSERM (AAP Physique Cancer 2012), and the French Agency for Research (ANR-AA-PPPP-005, EMMA 2011) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Argoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Argoul, F., Berguiga, L., Elezgaray, J., Arneodo, A. (2017). Resonant Waveguide Imaging of Living Systems: From Evanescent to Propagative Light. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_40

Download citation

Publish with us

Policies and ethics