Skip to main content

Surface Plasmon-Enhanced Super-Localization Microscopy

  • Reference work entry
  • First Online:
Handbook of Photonics for Biomedical Engineering
  • 2244 Accesses

Abstract

Super-resolution microscopy has drawn tremendous interests because it allows precise tracking of molecular interactions and observation of dynamics on a nanometer scale. Intracellular and extracellular processes can be measured at the molecular level; thus, super-resolution techniques help in the understanding of biomolecular events in cellular and sub-cellular conditions and have been applied to many areas such as cellular and molecular analysis and ex vivo and in vivo observation.

In this chapter, we review near-field imaging that relies on evanescent waves such as TIRFM with an emphasis on super-resolution microscopy techniques that emerge recently based on excitation and localization of SP. In particular, three approaches are detailed: firstly, SUPRA imaging that employs the electromagnetic localization of near-fields by random nanopatterns; secondly, NLS that capitalizes on nanoscale fluorescence sampling at periodic nanoapertures; and finally, PSALM that depends on temporal switching of amplified local fields for enhancement of imaging resolution. The resolution typically achieved by these techniques is laterally below 100 nm and closely related to the size of a near-field hot spot and nanostructures used to localize SP. We expect the achievable imaging resolution to decrease significantly in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

FDTD:

Finite-difference time domain

FWHM:

Full width at half maximum

NA:

Numerical aperture

NLS:

Nanoscale localization sampling

PALM:

Photo-activated localization microscopy

PSALM:

Plasmonics-based spatially activated light microscopy

PSF:

Point-spread function

PSIM:

Plasmonic structured illumination microscopy

RCWA:

Rigorous coupled-wave analysis

SEM:

Scanning electron microscopy

SIM:

Structured illumination microscopy

SP:

Surface plasmon

SPM:

Surface plasmon microscopy

SPP:

Surface plasmon polariton

SPR:

Surface plasmon resonance

SPRi:

Surface plasmon resonance imaging

STED:

Stimulated emission depletion

STORM:

Stochastic optical reconstruction microscopy

SUPRA:

SP-enhanced random activation

TIR:

Total internal reflection

TIRF:

Total internal reflection fluorescence

TIRFM:

Total internal reflection fluorescence microscopy

References

  1. Gould SJ (2000) The lying stones of Marrakech: penultimate reflections in natural history. Jonathan Cape, London

    Book  Google Scholar 

  2. Rutherford E, Martin C, Murphy PA, Arkwright JA, Barnard JE, Smith KM, Gye WE, Ledingham JCG, Salaman RN, Twort FW, Andrewes CH, Douglas SR, Hindle E, Brierley WB, Boycott AE (1929) Discussion on “Ultra-microscopic viruses infecting animals and plants”. Proc R Soc Lond Ser B 104(733):537–560

    Article  Google Scholar 

  3. Koch R (1876) Untersuchungen über Bakterien: V. Die Ätiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte des Bacillus anthracis. Cohns Beitr Biol Pflanz 2(2):277–310

    Google Scholar 

  4. Ardenne M (1938) Das Elektronen-Rastermikroskop. Z Phys 109(9–10):553–572

    Article  Google Scholar 

  5. Nebesářová J, Vancová M (2007) How to observe small biological objects in low voltage electron microscope. Microsc Microanal 13(S03):248–249

    Google Scholar 

  6. Drummy LF, Yang J, Martin DC (2004) Low-voltage electron microscopy of polymer and organic molecular thin films. Ultramicroscopy 99(4):247–256

    Article  Google Scholar 

  7. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  8. Born M, Wolf E (1999) Principles of optics, 7th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Abbe E (1870) Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:413–420

    Article  Google Scholar 

  10. Heintzmann R, Ficz G (2006) Breaking the resolution limit in light microscopy. Brief Funct Genomic Proteomic 5(4):289–301

    Article  Google Scholar 

  11. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89(1):141–145

    Article  Google Scholar 

  12. Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2(4):268–275

    Article  Google Scholar 

  13. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  Google Scholar 

  14. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  Google Scholar 

  15. Sahl SJ, Leutenegger M, Hilbert M, Hell SW, Eggeling C (2010) Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc Natl Acad Sci U S A 107(15):6829–6834

    Article  Google Scholar 

  16. Nägerl UV, Bonhoeffer T (2010) Imaging living synapses at the nanoscale by STED microscopy. J Neurosci 30(28):9341–9346

    Article  Google Scholar 

  17. Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J, Anders M, Schneider J, Muller B, Hell SW, Krausslich HG (2012) Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338(6106):524–528

    Article  Google Scholar 

  18. Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104(4):770–777

    Article  Google Scholar 

  19. Wagner E, Lauterbach MA, Kohl T, Westphal V, Williams GS, Steinbrecher JH, Streich JH, Korff B, Tuan HT, Hagen B, Luther S, Hasenfuss G, Parlitz U, Jafri MS, Hell SW, Lederer WJ, Lehnart SE (2012) Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ Res 111(4):402–414

    Article  Google Scholar 

  20. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  Google Scholar 

  21. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  Google Scholar 

  22. Gould TJ, Verkhusha VV, Hess ST (2009) Imaging biological structures with fluorescence photoactivation localization microscopy. Nat Protoc 4(3):291–308

    Article  Google Scholar 

  23. Pereira CF, Rossy J, Owen DM, Mak J, Gaus K (2012) HIV taken by STORM: super-resolution fluorescence microscopy of a viral infection. Virol J 9:84

    Article  Google Scholar 

  24. Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F, Rogers GC, Huang B, Agard DA (2012) Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol 14(11):1159–1168

    Article  Google Scholar 

  25. Bailey B, Farkas DL, Taylor DL, Lanni F (1993) Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366(6450):44–48

    Article  Google Scholar 

  26. Neil MAA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22(24):1905–1907

    Article  Google Scholar 

  27. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87

    Article  Google Scholar 

  28. Choi JR, Kim D (2012) Enhanced image reconstruction of three-dimensional fluorescent assays by subtractive structured-light illumination microscopy. J Opt Soc Am A 29(10):2165–2173

    Article  Google Scholar 

  29. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086

    Article  Google Scholar 

  30. Shao L, Kner P, Rego EH, Gustafsson MG (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8(12):1044–1046

    Article  Google Scholar 

  31. York AG, Parekh SH, Dalle Nogare D, Fischer RS, Temprine K, Mione M, Chitnis AB, Combs CA, Shroff H (2012) Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9(7):749–754

    Article  Google Scholar 

  32. Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MG (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci U S A 109(14):5311–5315

    Article  Google Scholar 

  33. Arpali SA, Arpali C, Coskun AF, Chiang HH, Ozcan A (2012) High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging. Lab Chip 12(23):4968–4971

    Article  Google Scholar 

  34. Rankin BR, Hell SW (2009) STED microscopy with a MHz pulsed stimulated-Raman-scattering source. Opt Express 17(18):15679–15684

    Article  Google Scholar 

  35. Takahara J, Kobayashi T (2004) Low-dimensional optical waves and nano-optical circuits. Opt Photon News 15(10):54–59

    Article  Google Scholar 

  36. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3–4):131–314

    Article  Google Scholar 

  37. Raether H (1988) Surface plasmon on smooth and rough surface and on Gratings. Springer, New York

    Book  Google Scholar 

  38. Kim Y, Chung K, Lee W, Kim DH, Kim D (2012) Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin-streptavidin interactions. Appl Phys Lett 101(23):233701

    Article  Google Scholar 

  39. Oh Y, Lee W, Kim D (2011) Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas. Opt Lett 36(8):1353–1355

    Article  Google Scholar 

  40. Kim K, Kim DJ, Moon S, Kim D, Byun KM (2009) Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings. Nanotechnology 20(31):315501

    Article  Google Scholar 

  41. Ma K, Kim DJ, Kim K, Moon S, Kim D (2010) Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing. IEEE J Sel Top Quantum Electron 16(4):1004–1014

    Article  Google Scholar 

  42. Yoon SJ, Kim D (2007) Thin-film-based field penetration engineering for surface plasmon resonance biosensing. J Opt Soc Am A 24(9):2543–2549

    Article  Google Scholar 

  43. Lakowicz JR (1991) Topics in fluorescence spectroscopy. Plenum Press, New York

    Google Scholar 

  44. De Fornel F (2001) Evanescent waves: from Newtonian optics to atomic optics. Springer, Berlin

    Book  Google Scholar 

  45. Rothenhausler B, Knoll W (1988) Surface–plasmon microscopy. Nature 332(6165):615–617

    Article  Google Scholar 

  46. Giebel K, Bechinger C, Herminghaus S, Riedel M, Leiderer P, Weiland U, Bastmeyer M (1999) Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophys J 76(1):509–516

    Article  Google Scholar 

  47. De Bruijn HE, Kooyman RP, Greve J (1993) Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object. Appl Opt 32(13):2426–2430

    Article  Google Scholar 

  48. Boozer C, Kim G, Cong S, Guan H, Londergan T (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr Opin Biotechnol 17(4):400–405

    Article  Google Scholar 

  49. Campbell CT, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28(15):2380–2392

    Article  Google Scholar 

  50. Hickel W, Kamp D, Knoll W (1989) Surface-plasmon microscopy. Nature 339(6221):186

    Article  Google Scholar 

  51. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  Google Scholar 

  52. Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79(7):2979–2983

    Article  Google Scholar 

  53. Wang W, Yang Y, Wang S, Nagaraj VJ, Liu Q, Wu J, Tao N (2012) Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells. Nat Chem 4(10):846–853

    Article  Google Scholar 

  54. Berger CEH, Kooyman RPH, Greve J (1994) Resolution in surface plasmon microscopy. Rev Sci Instrum 65(9):2829–2836

    Article  Google Scholar 

  55. Somekh MG, Liu S, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Opt 39(34):6279–6287

    Article  Google Scholar 

  56. Tanaka T, Yamamoto S (2003) Laser-scanning surface plasmon polariton resonance microscopy with multiple photodetectors. Appl Opt 42(19):4002–4007

    Article  Google Scholar 

  57. Berguiga L, Zhang S, Argoul F, Elezgaray J (2007) High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions. Opt Lett 32(5):509–511

    Article  Google Scholar 

  58. Somekh MG, Stabler G, Liu S, Zhang J, See CW (2009) Wide-field high-resolution surface-plasmon interference microscopy. Opt Lett 34(20):3110–3112

    Article  Google Scholar 

  59. Bouhelier A, Ignatovich F, Bruyant A, Huang C, Colas des Francs G, Weeber JC, Dereux A, Wiederrecht GP, Novotny L (2007) Surface plasmon interference excited by tightly focused laser beams. Opt Lett 32(17):2535–2537

    Article  Google Scholar 

  60. Kim DJ, Kim D (2010) Subwavelength grating-based nanoplasmonic modulation for surface plasmon resonance imaging with enhanced resolution. J Opt Soc Am B 27(6):1252–1259

    Article  Google Scholar 

  61. Byun KM, Kim S, Kim D (2005) Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis. Opt Express 13(10):3737–3742

    Article  Google Scholar 

  62. Kim K, Yoon SJ, Kim D (2006) Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study. Opt Express 14(25):12419–12431

    Article  Google Scholar 

  63. Byun KM, Yoon SJ, Kim D, Kim SJ (2007) Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt Lett 32(13):1902–1904

    Article  Google Scholar 

  64. Malic L, Cui B, Veres T, Tabrizian M (2007) Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts. Opt Lett 32(21):3092–3094

    Article  Google Scholar 

  65. Brockman JM, Frutos AG, Corn RM (1999) A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein − DNA interactions with surface plasmon resonance imaging. J Am Chem Soc 121(35):8044–8051

    Article  Google Scholar 

  66. Blow N (2009) Proteins and proteomics: life on the surface. Nat Methods 6(5):389–393

    Article  Google Scholar 

  67. Wark AW, Lee HJ, Corn RM (2005) Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem 77(13):3904–3907

    Article  Google Scholar 

  68. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58(1):267–297

    Article  Google Scholar 

  69. Yu F, Knoll W (2004) Immunosensor with self-referencing based on surface plasmon diffraction. Anal Chem 76(7):1971–1975

    Article  Google Scholar 

  70. Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf A 171(1–3):115–130

    Article  Google Scholar 

  71. Yu F, Yao D, Knoll W (2003) Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen. Anal Chem 75(11):2610–2617

    Article  Google Scholar 

  72. Millis BA (2012) Evanescent-wave field imaging: an introduction to total internal reflection fluorescence microscopy. Methods Mol Biol 823:295–309

    Article  Google Scholar 

  73. Mertz J (2000) Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description. J Opt Soc Am B 17(11):1906–1913

    Article  Google Scholar 

  74. Rohrbach A (2000) Observing secretory granules with a multiangle evanescent wave microscope. Biophys J 78(5):2641–2654

    Article  Google Scholar 

  75. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11):764–774

    Article  Google Scholar 

  76. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268

    Article  Google Scholar 

  77. Schneckenburger H (2005) Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr Opin Biotechnol 16(1):13–18

    Article  Google Scholar 

  78. Toomre D, Manstein DJ (2001) Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 11(7):298–303

    Article  Google Scholar 

  79. Kim K, Cho EJ, Huh YM, Kim D (2007) Thin-film-based sensitivity enhancement for total internal reflection fluorescence live-cell imaging. Opt Lett 32(21):3062–3064

    Article  Google Scholar 

  80. Lang T, Wacker I, Steyer J, Kaether C, Wunderlich I, Soldati T, Gerdes HH, Almers W (1997) Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18(6):857–863

    Article  Google Scholar 

  81. Fiolka R, Belyaev Y, Ewers H, Stemmer A (2008) Even illumination in total internal reflection fluorescence microscopy using laser light. Microsc Res Technol 71(1):45–50

    Article  Google Scholar 

  82. Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123(21):3621–3628

    Article  Google Scholar 

  83. Jouvenet N, Neil SJ, Bess C, Johnson MC, Virgen CA, Simon SM, Bieniasz PD (2006) Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 4(12):e435

    Article  Google Scholar 

  84. Grigoriev I, Akhmanova A (2010) Microtubule dynamics at the cell cortex probed by TIRF microscopy. Methods Cell Biol 97:91–109

    Article  Google Scholar 

  85. Engel BD, Lechtreck KF, Sakai T, Ikebe M, Witman GB, Marshall WF (2009) Total internal reflection fluorescence (TIRF) microscopy of Chlamydomonas flagella. Methods Cell Biol 93:157–177

    Article  Google Scholar 

  86. Kaiser R, Lévy Y, Vansteenkiste N, Aspect A, Seifert W, Leipold D, Mlynek J (1994) Resonant enhancement of evanescent waves with a thin dielectric waveguide. Opt Commun 104(4–6):234–240

    Article  Google Scholar 

  87. Ke PC, Gan XS, Szajman J, Schilders S, Gu M (1997) Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack. Bioimaging 5(1):1–8

    Article  Google Scholar 

  88. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298(1):1–24

    Article  Google Scholar 

  89. Lakowicz JR, Malicka J, D’Auria S, Gryczynski I (2003) Release of the self-quenching of fluorescence near silver metallic surfaces. Anal Biochem 320:13–20

    Article  Google Scholar 

  90. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  Google Scholar 

  91. Lee J, Hernandez P, Govorov AO, Kotov NA (2007) Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat Mater 6(4):291–295

    Article  Google Scholar 

  92. Hong G, Tabakman SM, Welsher K, Wang H, Wang X, Dai H (2010) Metal-enhanced fluorescence of carbon nanotubes. J Am Chem Soc 132(45):15920–15923

    Article  Google Scholar 

  93. Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19(4):365–370

    Article  Google Scholar 

  94. Ekgasit S, Thammacharoen C, Yu F, Knoll W (2004) Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies. Anal Chem 76(8):2210–2219

    Article  Google Scholar 

  95. Futamata M, Maruyama Y, Ishikawa M (2003) Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. J Phys Chem B 107(31):7607–7617

    Article  Google Scholar 

  96. Aslan K, Huang J, Wilson GM, Geddes CD (2006) Metal-enhanced fluorescence-based RNA sensing. J Am Chem Soc 128(13):4206–4207

    Article  Google Scholar 

  97. Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer:coupling effect between metal particles. Nano Lett 7(7):2101–2107

    Article  Google Scholar 

  98. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004

    Google Scholar 

  99. Kyriacou SV, Brownlow WJ, Xu XH (2004) Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemistry 43(1):140–147

    Article  Google Scholar 

  100. Edel JB, Wu M, Baird B, Craighead HG (2005) High spatial resolution observation of single-molecule dynamics in living cell membranes. Biophys J 88(6):L43–L45

    Article  Google Scholar 

  101. Kottmann J, Martin O, Smith D, Schultz S (2000) Spectral response of plasmon resonant nanoparticles with a non-regular shape. Opt Express 6(11):213–219

    Article  Google Scholar 

  102. Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Plasmon resonances of silver nanowires with a nonregular cross section. Phys Rev B 64(23):235402

    Article  Google Scholar 

  103. Lee W, Kim K, Kim D (2012) Electromagnetic near-field nanoantennas for subdiffraction-limited surface plasmon-enhanced light microscopy. IEEE J Sel Top Quantum Electron 18(6):1684–1691

    Article  Google Scholar 

  104. Galloway CM, Kreuzer MP, Acimovic SS, Volpe G, Correia M, Petersen SB, Neves-Petersen MT, Quidant R (2013) Plasmon-assisted delivery of single nano-objects in an optical hot-spot. Nano Lett 13(9):4299–4304

    Article  Google Scholar 

  105. Liu ZQ, Liu GQ, Zhou HQ, Liu XS, Huang K, Chen YH, Fu GL (2013) Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays. Nanotechnology 24(15):155203

    Article  Google Scholar 

  106. Neubrech F, Weber D, Katzmann J, Huck C, Toma A, Di Fabrizio E, Pucci A, Hartling T (2012) Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime. ACS Nano 6(8):7326–7332

    Article  Google Scholar 

  107. Suh JY, Kim CH, Zhou W, Huntington MD, Co DT, Wasielewski MR, Odom TW (2012) Plasmonic bowtie nanolaser arrays. Nano Lett 12(11):5769–5774

    Article  Google Scholar 

  108. Ye J, Van Dorpe P (2012) Plasmonic behaviors of gold dimers perturbed by a single nanoparticle in the gap. Nanoscale 4(22):7205–7211

    Article  Google Scholar 

  109. Kim K, Kim DJ, Cho E-J, Suh J-S, Huh Y-M, Kim D (2009) Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells. Nanotechnology 20(1):015202

    Article  Google Scholar 

  110. Xie C, Hanson L, Cui Y, Cui B (2011) Vertical nanopillars for highly localized fluorescence imaging. Proc Natl Acad Sci U S A 108(10):3894–3899

    Article  Google Scholar 

  111. Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett 4(5):957–961

    Article  Google Scholar 

  112. Jin EX, Xu X (2006) Enhanced optical near field from a bowtie aperture. Appl Phys Lett 88(15):153110

    Article  Google Scholar 

  113. Kim K, Yajima J, Oh Y, Lee W, Oowada S, Nishizaka T, Kim D (2012) Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules. Small 8(6):892–900

    Article  Google Scholar 

  114. Schnell M, Garcia-Etxarri A, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R (2009) Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photon 3(5):287–291

    Article  Google Scholar 

  115. Genevet P, Tetienne J-P, Gatzogiannis E, Blanchard R, Kats MA, Scully MO, Capasso F (2010) Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. Nano Lett 10(12):4880–4883

    Article  Google Scholar 

  116. Stranahan SM, Willets KA (2010) Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett 10(9):3777–3784

    Article  Google Scholar 

  117. Kim K, Choi JW, Ma K, Lee R, Yoo KH, Yun CO, Kim D (2010) Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus. Small 6(12):1293–1299

    Article  Google Scholar 

  118. Kim K, Oh Y, Lee W, Kim D (2010) Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence. Opt Lett 35(20):3501–3503

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghyun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Oh, Y., Choi, Jr., Lee, W., Kim, D. (2017). Surface Plasmon-Enhanced Super-Localization Microscopy. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_4

Download citation

Publish with us

Policies and ethics