Skip to main content

SPR Biosensors

  • Reference work entry
  • First Online:

Abstract

Surface plasmon resonance (SPR) refers to excited charge density oscillations that exist along the boundary between a metal and a dielectric with permittivities of opposite signs. When the orientation of the electric field vector of an incident light matches the movement of free electrons in the metal as restricted by the boundary conditions associated with some material and structural parameters, surface plasma waves (SPW) can be excited, and consequently efficient coupling with large energy as guided electromagnetic wave along the interface may occur. This phenomenon of unexpected attenuation was first discovered by Wood [1] in 1902 when they measured the reflection of metallic gratings and found that some optical power was absorbed by the metal because of the excitation of SPW. The focus on developing SPR sensing was inspired after the introduction of attenuated total internal reflection (ATR) by Otto [2] and Kretschmann [3] in 1968. It was not until 1983 that Liedberg and Nylander [4] reported the first practical sensing application of SPR for biomolecular detection. Since then, SPR biosensors have experienced rapid development in the last two decades and become a valuable platform for qualitative and quantitative measurements of biomolecular interactions with the advantages of high sensitivity, versatile target molecule selection, and real-time detection. For this reason, SPR sensors are now widely adopted for meeting the needs of biology, food quality and safety analysis, and medical diagnostics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wood RW (1902) XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos Mag Ser 6 4(21):396

    Google Scholar 

  2. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216(4):398–410

    Article  Google Scholar 

  3. Kretschmann E, Raether HZ (1968) Radiative decay of non-radiative surface plasmons excited by light. Verlag der Zeitschrift für Naturforschung 23:2135–2136

    Google Scholar 

  4. Liedberg B, Nylander C, Lundstrum I (1983) Surface plasmon resonance for gas detection and biosensing. Sensor Actuator B 4:299–304

    Article  Google Scholar 

  5. Wu CM, Jian ZC, Joe SF, Chang LB (2003) High sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensor Actuator B 92(1–2):133–136

    Article  Google Scholar 

  6. Chiu MH, Wang SF, Chang RS (2005) D-type fiber biosensor based on surface plasmon resonance technology and heterodyne interferometry. Opt Lett 30(3):233–235

    Article  Google Scholar 

  7. Wang SF, Chiu MH, Chang RS (2006) Numerical simulation of a D-type optical fiber sensor based on the Kretchmann’s configuration and heterodyne interferometry. Sensor Actuator B 114(1):120–126

    Article  Google Scholar 

  8. Chiu MH, Shih CH (2008) Searching for optimal sensitivity of single-mode D-type optical fiber sensor in the phase measurement. Sensor Actuator B 131(2):596–601

    Article  Google Scholar 

  9. Wang SF (2009) U-shaped optical fiber sensor based on multiple total internal reflections in heterodyne interferometry. Opt Lasers Eng 47(10):1039–1043

    Article  Google Scholar 

  10. Li YC, Chang YF, Su LC, Chou C (2008) Differential-phase surface plasmon resonance biosensor. Anal Chem 80(14):5590–5595

    Article  Google Scholar 

  11. Kuo WC, Chou C, Wu HT (2003) Optical heterodyne surface-plasmon resonance biosensor. Opt Lett 28(15):1329–1331

    Article  Google Scholar 

  12. Chou C, Wu HT, Huang YC, Chen YL, Kuo WC (2006) Characteristics of a paired surface plasma waves biosensor. Opt Express 14(10):4307–4315

    Article  Google Scholar 

  13. Lee J-Y, Mai L-W, Hsu C-C, Sung Y-Y (2013) Enhanced sensitivity to surface plasmon resonance phase in wavelength-modulated heterodyne interferometry. Opt Commun 289:28–32

    Article  Google Scholar 

  14. Ho HP, Law WC, Wu SY, Liu XH, Wong SP, Lin C, Kong SK (2006) Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique. Sensor Actuator B 114(1):80–84

    Article  Google Scholar 

  15. Peng HJ, Wong SP, Lai YW, Liu XH, Ho HP, Zhao S (2003) Simplified system based on photoelastic modulation technique for low-level birefringence measurement. Rev Sci Instrum 74(11):4745–4749

    Article  Google Scholar 

  16. Yuan W, Ho HP, Wu SY, Suen YK, Kong SK (2009) Polarization-sensitive surface plasmon enhanced ellipsometry biosensor using the photoelastic modulation technique. Sensor Actuator A 151(1):23–28

    Article  Google Scholar 

  17. Stewart CE, Hooper IR, Sambles JR (2008) Surface plasmon differential ellipsometry of aqueous solutions for bio-chemical sensing. J Phys D 41(10):105408–105415

    Article  Google Scholar 

  18. Hooper IR, Rooth M, Sambles JR (2009) Dual-channel differential surface plasmon ellipsometry for bio-chemical sensing. Biosens Bioelectron 25(2):411–417

    Article  Google Scholar 

  19. Markowicz PP, Law WC, Baev A, Prasad PN, Patskovsky S, Kabashin AV (2007) Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt Express 15(4):1745–1754

    Article  Google Scholar 

  20. Law WC, Markowicz P, Yong KT, Roy I, Baev A, Patskovsky S, Kabashin AV, Ho HP, Prasad PN (2007) Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics. Biosens Bioelectron 23(5):627–632

    Article  Google Scholar 

  21. Patskovsky S, Jacquemart R, Meunier M, de Crescenzo G, Kabashin AV (2008) Phase-sensitive spatially-modulated surface plasmon resonance polarimetry for detection of biomolecular interactions. Sensor Actuator B 133(2):628–631

    Article  Google Scholar 

  22. Patskovsky S, Maisonneuve M, Meunier M, Kabashin AV (2008) Mechanical modulation method for ultra-sensitive phase measurements in photonics biosensing. Opt Express 16(26):21305–21314

    Article  Google Scholar 

  23. Chiang HP, Lin JL, Chen ZW (2006) High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths. Appl Phys Lett 88(14), 141105

    Article  Google Scholar 

  24. Chiang HP, Lin JL, Chang R, Su SY, Leung PT (2005) High-resolution angular measurement using surface-plasmon- resonance via phase interrogation at optimal incident wavelengths. Opt Lett 30(20):2727–2729

    Article  Google Scholar 

  25. Zheng Z, Wan Y, Zhao X, Zhu J (2009) Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors. Appl Optics 48(13):2491–2495

    Article  Google Scholar 

  26. Ng SP, Loo FC, Wu SY, Kong SK, Wu CML, Ho HP (2013) Common-path spectral interferometry with temporal carrier for highly sensitive surface plasmon resonance sensing. Opt Express 21(17):20268–20273

    Article  Google Scholar 

  27. Nikitina PI, Grigorenkoa AN, Beloglazova AA, Valeikoa MV, Savchukb AI, Savchukc OA, Steinerc G, Kuhnec C, Huebnerc A, Salzerc R (2000) Surface plasmon resonance interferometry for micro-array biosensing. Sensor Actuator A 85(1):189–193

    Article  Google Scholar 

  28. Homola J, Yee SS (1998) Novel polarization control scheme for spectral surface plasmon resonance sensors. Sensor Actuator B 51(1–3):331–339

    Article  Google Scholar 

  29. Steiner G, Sablinskas V, H¨ubner A, Kuhne C, Salzer R (1999) Surface plasmon resonance imaging of microstructured monolayers. J Mol Struct 509(1–3):265–273

    Article  Google Scholar 

  30. Piliarik M, Vaisocherová H, Homola J (2005) A new surface plasmon resonance sensor for high-throughput screening applications. Biosens Bioelectron 20(10):2104–2110

    Article  Google Scholar 

  31. Piliarik M, Vaisocherová H, Homola J (2007) Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensor Actuator B 121(1):187–193

    Article  Google Scholar 

  32. Su YD, Chen SJ, Yeh TL (2005) Common-path phase-shift interferometry surface plasmon resonance imaging system. Opt Lett 30(12):1488–1490

    Article  Google Scholar 

  33. Yu X, Ding X, Liu F, Deng Y (2008) A novel surface plasmon resonance imaging interferometry for protein array detection. Sensor Actuator B 130(1):52–58

    Article  Google Scholar 

  34. Kabashin AV, Nikitin PI (1997) Interferometer based on a surface plasmon resonance for sensor applications. Quantum Electron 27(7):653–654

    Article  Google Scholar 

  35. Kabashin AV, Nikitin PI (1998) Surface plasmon resonance interferometer for bio- and chemical-sensors. Opt Commun 150(1–6):5–8

    Article  Google Scholar 

  36. Notcovich AG, Zhuk V, Lipson SG (2000) Surface plasmon resonance phase imaging. Appl Phys Lett 76(13):1665–1667

    Article  Google Scholar 

  37. Ho HP, Lam WW, Wu SY (2002) Surface plasmon resonance sensor based on the measurement of differential phase. Rev Sci Instrum 73(10):3534–3539

    Article  Google Scholar 

  38. Ho HP, Lam WW (2003) Application of differential phase measurement technique to surface plasmon resonance sensors. Sensor Actuator B 96(3):554–559

    Article  Google Scholar 

  39. Wu SY, Ho HP, Law WC, Lin C (2004) Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration. Opt Lett 29(20):2378–2380

    Article  Google Scholar 

  40. Yuan W, Ho HP, Wong CL, Kong SK, Lin C (2007) Surface plasmon resonance biosensor incorporated in a Michelson interferometer with enhanced sensitivity. IEEE Sensor J 7(1):70–73

    Article  Google Scholar 

  41. Ho HP, Yuan W, Wong CL, Wu SY, Suen YK, Kong SK, Lin C (2007) Sensitivity enhancement based on application of multi-pass interferometry in phase-sensitive surface plasmon resonance biosensor. Opt Commun 275(2):491–496

    Article  Google Scholar 

  42. Ng SP, Wu SY, Ho HP, Wu CML (2008) A white-light interferometric surface plasmon resonance sensor with wide dynamic range and phase-sensitive response. In: IEEE international conference on electron devices and solid-state circuits, HKSAR, Dec 2008

    Google Scholar 

  43. Ng SP, Wu CML, Wu SY, Ho HP (2011) White-light spectral interferometry for surface plasmon resonance sensing applications. Opt Express 19(5):4521–4527

    Article  Google Scholar 

  44. Thiel AJ, Frutos AG, Jordan CE, Corn RM, Smith LM (1997) In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal Chem 69(24):4948–4956

    Article  Google Scholar 

  45. Wegner GJ, Wark AW, Lee HJ, Codner E, Saeki T, Fang S, Corn RM (2004) Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Anal Chem 76(19):5677–5684

    Article  Google Scholar 

  46. Wark AW, Lee HJ, Corn RM (2005) Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem 77(13):3904–3907

    Article  Google Scholar 

  47. Wong CL, Ho HP, Suen YK, Chen QL, Yuan W, Wu SY (2008) Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging. Biosensor Bioelectron 24(4):606–612

    Article  Google Scholar 

  48. Halpern AR, Chen Y, Corn RM, Kim D (2011) Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays. Anal Chem 83(7):2801–2806

    Article  Google Scholar 

  49. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867–871

    Article  Google Scholar 

  50. Law WC, Yong KT, Baev A, Prasad PN (2011) Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 5(6):4858–4864

    Article  Google Scholar 

  51. Kravets VG, Schedin F, Kabashin AV, Grigorenko AN (2010) Sensitivity of collective plasmon modes of gold nanoresonators to local environment. Opt Lett 35(7):956–958

    Article  Google Scholar 

  52. Zeng S, Yu X, Law WC, Zhang Y, Hu R, Dinh XQ, Ho HP, Yong KT (2013) Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensor Actuator B 176:1128–1133

    Article  Google Scholar 

  53. Oh Y, Lee W, Kim D (2011) Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas. Opt Lett 36(8):1353–1355

    Article  Google Scholar 

  54. Bai Y, Feng F, Wang C, Wang H, Tian M, Qin J, Duan Y, He X (2013) Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Biosensor Bioelectron 47:265–270

    Article  Google Scholar 

  55. Baccar H, Mejri MB, Hafaiedh I, Ktari T, Aouni M, Abdelghani A (2010) Surface plasmon resonance immunosensor for bacteria detection. Talanta 82(2):810–814

    Article  Google Scholar 

  56. Liu Y, Cheng Q (2012) Detection of membrane-binding proteins by surface plasmon resonance with an all-aqueous amplification scheme. Anal Chem 84(7):3179–3186

    Article  Google Scholar 

  57. Lyon LA, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70(24):5177–5183

    Article  Google Scholar 

  58. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649

    Article  Google Scholar 

  59. Kyprianou D, Guerreiro AR, Nirschl M, Chianella I, Subrahmanyam S, Turner PF, Piletsky S (2010) The application of polythiol molecules for protein immobilisation on sensor surfaces. Biosens Bioelectron 25(5):1049–1055

    Article  Google Scholar 

  60. Altintas Z, Uludag Y, Gurbuz Y, Tothill I (2012) Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules. Anal Chim Acta 712:138–144

    Article  Google Scholar 

  61. Yatabe R, Onodera T, Toko K (2013) Fabrication of an SPR sensor surface with antifouling properties for highly sensitive detection of 2,4,6-Trinitrotoluene using surface-initiated atom transfer polymerization. Sensors 13(7):9294–9304

    Article  Google Scholar 

  62. Sipova H, Zhang S, Dudley AM, Galas D, Wang K, Homola J (2010) Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem 82(24):10110–10115

    Article  Google Scholar 

  63. Souto EP, Silva V, Martins R, Reis B, Luz CS, Kubota T, Damos S (2013) Development of a label-free immunosensor based on surface plasmon resonance technique for the detection of anti-Leishmania infantum antibodies in canine serum. Biosens Bioelectron 46:22–29

    Article  Google Scholar 

  64. Hu J, Li W, Wang T, Lin Z, Jiang M, Hu F (2012) Development of a label-free and innovative approach based on surface plasmon resonance biosensor for on-site detection of infectious bursal disease virus (IBDV). Biosens Bioelectron 31(1):475–479

    Article  Google Scholar 

  65. Ferguson J, Baxter A, Young P, Kennedy G, Elliott C, Weigel S, Gatermann R, Ashwin H, Stead S, Sharman M (2005) Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol. Anal Chim Acta 529(1–2):109–113

    Article  Google Scholar 

  66. Dudak FC, Boyac IH (2007) Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Res Int 40(7):803–807

    Article  Google Scholar 

  67. Spadavecchia J, Manera MG, Quaranta F, Siciliano P, Rella R (2005) Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis. Biosens Bioelectron 21(6):894–900

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Hong Kong Research Grants Council under a group research project (Ref. # CUHK1/CRF/12G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Ho-Pui Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ho, A.HP., Wu, SY., Kong, SK., Zeng, S., Yong, KT. (2017). SPR Biosensors. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_38

Download citation

Publish with us

Policies and ethics