Skip to main content

Adaptive Optics for Aberration Correction in Optical Microscopy

  • Reference work entry
  • First Online:
Handbook of Photonics for Biomedical Engineering

Abstract

All forms of optical microscopy have the potential to suffer from aberrations due to misalignments in the optical system, local refractive index changes in the sample, or, in many cases, both. Aberrations produce a distorted wavefront at the focus of the imaging system leading to a non-optimum focal spot, resulting in a decrease in image resolution and hence a deterioration in image quality. The problem is particularly prevalent when imaging biological tissue using an optical sectioning microscope where the improved axial resolution over standard wide-field techniques leads the user to image deeper into their sample than ever before. The structure present in the tissue presents complex axial and lateral variations in refractive indices, inhomogeneities that increase as the thickness of tissue the light passes through increases. Adaptive optics, a technique that originated in optical astronomy, poses a powerful solution to the problem. The principle behind adaptive optics involves shaping the wavefront of the incoming light in such a way so as to overcome the distortions imposed by the sample and imaging system. Crucial to the successful implementation of adaptive optics in microscopy is the method used to determine the wavefront correction required. Here we introduce the concepts behind adaptive optics, discuss several approaches that have been taken to implement adaptive optics into microscopy, and finally provide examples of its success when applied to a variety of imaging modalities such as multiphoton microscopy, stimulated emission depletion microscopy, and selective plane illumination microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwertner M, Booth M, Wilson T (2007) Specimen-induced distortions in light microscopy. J Microsc 228(1):97–102

    Article  MathSciNet  Google Scholar 

  2. Fahrbach FO, Rohrbach A (2010) A line scanned light-sheet microscope with phase shaped self-reconstructing beams. Opt Express 18(23):24229–24244

    Article  Google Scholar 

  3. Zhu D et al (2013) Recent progress in tissue optical clearing. Laser Photon Rev 7(5):732–757

    Google Scholar 

  4. Combs CA et al (2007) Optimization of multiphoton excitation microscopy by total emission detection using a parabolic light reflector. J Microsc 228(3):330–337

    Article  MathSciNet  Google Scholar 

  5. Combs CA et al (2010) Optimizing multi-photon fluorescence microscopy light collection from living tissue by non-contact total emission detection (TEDII). Biophys J 98(3):180a

    Article  Google Scholar 

  6. Tyson R (2010) Principles of adaptive optics. CRC Press, London, UK

    Google Scholar 

  7. Huang B et al (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813

    Article  Google Scholar 

  8. Albert O et al (2000) Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Opt Lett 25(1):52–54

    Article  Google Scholar 

  9. Sherman L et al (2002) Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J Microsc 206(1):65–71

    Article  MathSciNet  Google Scholar 

  10. Booth MJ et al (2002) Adaptive aberration correction in a confocal microscope. Proc Natl Acad Sci 99(9):5788–5792

    Article  Google Scholar 

  11. Marsh P, Burns D, Girkin J (2003) Practical implementation of adaptive optics in multiphoton microscopy. Opt Express 11(10):1123–1130

    Article  Google Scholar 

  12. Coulman C (1985) Fundamental and applied aspects of astronomical ‘seeing’. Ann Rev Astron Astrophys 23:19–57

    Article  Google Scholar 

  13. Babcock HW (1953) The possibility of compensating astronomical seeing. Publ Astron Soc Pac 65(386):229–236

    Article  Google Scholar 

  14. Greenaway A, Burnett J (2004) Industrial and medical applications of adaptive optics. Technology tracking. IOP Publishing Ltd. Bristol, UK. ISBN 0-7503-0850-8

    Google Scholar 

  15. Dalimier E, Dainty C (2005) Comparative analysis of deformable mirrors for ocular adaptive optics. Opt Express 13(11):4275–4285

    Article  Google Scholar 

  16. Wright AJ et al (2005) Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror. Opt Express 14(1):222–228

    Article  Google Scholar 

  17. Shack RV, Platt B (1971) Production and use of a lenticular Hartmann screen. J Opt Soc Am 61(5):656

    Google Scholar 

  18. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Optics 21(15):2758–2769

    Article  Google Scholar 

  19. Booth MJ, Neil M, Wilson T (1998) Aberration correction for confocal imaging in refractive-index-mismatched media. J Microsc 192(2):90–98

    Article  Google Scholar 

  20. Jiang M et al (2010) Adaptive optics photoacoustic microscopy. Opt Express 18(21):21770–21776

    Article  Google Scholar 

  21. Tao X et al (2011) Adaptive optics confocal microscopy using direct wavefront sensing. Opt Lett 36(7):1062–1064

    Article  Google Scholar 

  22. Feierabend M, Ruckel M, Denk W (2004) Coherence-gated wave-front sensing in strongly scattering samples. Opt Lett 29(19):2255–2257

    Article  Google Scholar 

  23. Neil M, Booth M, Wilson T (2000) Closed-loop aberration correction by use of a modal Zernike wave-front sensor. Opt Lett 25(15):1083–1085

    Article  Google Scholar 

  24. Wang B, Booth MJ (2009) Optimum deformable mirror modes for sensorless adaptive optics. Opt Commun 282(23):4467–4474

    Article  Google Scholar 

  25. Wright AJ et al (2005) Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy. Microsc Res Tech 67:36–44

    Article  Google Scholar 

  26. Poland SP, Wright AJ, Girkin JM (2008) Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy. Appl Optics 47(6):731–736

    Article  Google Scholar 

  27. Müllenbroich MC et al (2014) Strategies to overcome photobleaching in algorithm based adaptive optics for nonlinear in-vivo imaging. J Biomed Opt 19(1):016021

    Article  Google Scholar 

  28. Ji N, Milkie DE, Betzig E (2010) Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7(2):141–147

    Article  Google Scholar 

  29. Ji N, Sato TR, Betzig E (2012) Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc Natl Acad Sci U S A 109(1):22–27

    Article  Google Scholar 

  30. Török P et al (1995) Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation. J Opt Soc Am A 12(2):325–332

    Article  MathSciNet  Google Scholar 

  31. Kner P et al (2010) High-resolution wide-field microscopy with adaptive optics for spherical correction and motionless focusing. J Microsc 237:136–147

    Article  MathSciNet  Google Scholar 

  32. Booth MJ, Neil MAA, Wilson T (1998) Adaptive aberration imaging in refractive-index-mismatched media. J Microsc 192:90–98

    Article  Google Scholar 

  33. Neil M et al (2000) Adaptive aberration correction in a two-photon microscope. J Microsc 200(2):105–108

    Article  Google Scholar 

  34. Rueckel M, Mack-Bucher JA, Denk W (2006) Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc Natl Acad Sci 103(46):17137–17142

    Article  Google Scholar 

  35. Olivier N, Beaurepaire E (2008) Third-harmonic generation microscopy with focus-engineered beams: a numerical study. Opt Express 16(19):14703–14715

    Article  Google Scholar 

  36. Jesacher A et al (2009) Adaptive harmonic generation microscopy of mammalian embryos. Opt Lett 34(20):3154–3156

    Article  Google Scholar 

  37. Oliver N, Debarre D, Beaurepaire E (2009) Dynamic aberration correction for multiphoton microscopy. Opt Lett 34(20):3145–3147

    Article  Google Scholar 

  38. Wright AJ et al (2007) Adaptive optics for enhanced signal in CARS microscopy. Opt Express 15(26):18209–18219

    Article  Google Scholar 

  39. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–796

    Article  Google Scholar 

  40. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  Google Scholar 

  41. Pavani SRP et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci 106(9):2995–2999

    Article  Google Scholar 

  42. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  Google Scholar 

  43. Klar TA et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210

    Article  Google Scholar 

  44. Deng S et al (2009) Investigation of the influence of the aberration induced by a plane interference on STED microscopy. Opt Express 17(3):1714–1725

    Article  MathSciNet  Google Scholar 

  45. Gould TJ et al (2013) Auto-aligning stimulated emission depletion microscope using adaptive optics. Opt Lett 38(11):1860–1862

    Article  Google Scholar 

  46. Gould TJ et al (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20:20998–21009

    Article  Google Scholar 

  47. Huisken J et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    Article  Google Scholar 

  48. Fahrbach FO, Simon P, Rohrbach A (2010) Microscopy with self-reconstructing beams. Nat Photon 4:780–785

    Article  Google Scholar 

  49. Bourgenot C et al (2012) 3D adaptive optics in a light sheet microscope. Opt Express 20:13252–13261

    Article  Google Scholar 

  50. Hajizadeh F, Nader S, Reihani S (2010) Optimized optical trapping of gold nanoparticles. Opt Express 18(2):551–559

    Article  Google Scholar 

  51. Jesacher A et al (2007) Wavefront correction of spatial light modulators using an optical vortex image. Opt Express 15(9):5801–5808

    Google Scholar 

  52. Čižmár T, Mazilu M, Dholakia K (2010) In situ wavefront correction and its application to micromanipulation’. Nat Photon 4:388

    Article  Google Scholar 

  53. Taisuke O (2003) Enhancement of laser trapping force by spherical aberration correction using a deformable mirror. Jpn J Appl Phys 42:L701

    Article  Google Scholar 

  54. Theofanidou E et al (2004) Spherical aberration correction for optical tweezers’. Opt Commun 236:145

    Article  Google Scholar 

  55. Müllenbroich MC, McAlinden N, Wright AJ (2013) Adaptive optics in an optical trapping system for enhanced lateral trap stiffness at depth. J Opt 15:075305

    Article  Google Scholar 

  56. Baraas RC et al (2007) Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. JOSA A 24(5):1438–1447

    Article  Google Scholar 

  57. Li KY, Roorda A (2007) Automated identification of cone photoreceptors in adaptive optics retinal images. JOSA A 24(5):1358–1363

    Article  Google Scholar 

  58. Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. JOSA A 14(11):2884–2892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda J. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Wright, A.J., Poland, S.P. (2017). Adaptive Optics for Aberration Correction in Optical Microscopy. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_37

Download citation

Publish with us

Policies and ethics